Role of Hund Coupling in Two-Orbital Systems

Size: px
Start display at page:

Download "Role of Hund Coupling in Two-Orbital Systems"

Transcription

1 Role of Hund Coupling in Two-Orbital Systems Gun Sang Jeon Ewha Womans University NCTS Workshop on Quantum Condensation (QC13) collaboration with A. J. Kim, M.Y. Choi (SNU)

2 Mott-Hubbard Transition Weakly correlated Intermediate regime : hard to describe quantitatively Strongly correlated U W C Kotliar, Vollhardt (2004)

3 Quasiparticle Weight (DMFT+NRG) U W C Bulla, PRL (1999)

4 Two-Orbital System DOS Degenerate bands with different bandwidths Z 1 W 1 W 2 2 energy different U c for Mott transition Orbital-Selective Mott Phase (OSMP) coexistence of localized and itinerant electrons Ca 2-x Sr x RuO 4 (0.2<x<0.5) completely decoupled case U Anisimov, Nekrasov, Kondakov, Rice, Sigrist Bulla, (2002)

5 Multiband System inter-orbital Coulomb interaction U, Hund coupling J from Sakai (2006) Renormalization by the inter-orbital coupling may affect the transition behaviors.

6 Single Transition? large deviation of Z 1 and Z 2 from bare values claim for single Mott transition W1 = 2eV, W2 = 4eV J = 0.2eV, U ' = U 2J T = 0.125meV DMFT+QMC Liebsch (2003)

7 Orbital-Selective Transition? single transition for J=0 orbital-selective transition for finite J DMFT+ED OSMP Koga, Kawakami, Rice, Sigrist (2004)

8 Hamiltonian for Two-Orbital Systems Hamiltonian J ' J : Ising type Hund coupling J : including spin-flip and pairwise hopping

9 Resolution to this issue Isotropic Hund coupling ( J =J ) Two successive first-order transition near 2.0 ev, narrow band : complete MIT wide band : incomplete transition to new more correlated phase near 3.0 ev wide band : complete MIT Liebsch (2005)

10 Resolution to this issue Ising-type Hund coupling only ( J =0 ) lower transition: first-order for both bands upper transition: change of slope Liebsch (2005)

11 NFL for Ising-type Hund Coupling In intermediate phase ImΣ 2 (i0 + ) 0: finite life time at Fermi level non-fermi liquid Fermi liquid non-fermi liquid Mott insulator Biermann, de Medici, Georges (2005); Liebsch, Costi (2006)

12 Motivation Aim to investigate the dependence of transition nature on Ising-type Hund coupling strength J intra-orbital hopping, t α Intra- and inter-orbital Coulomb interaction, (U, U ) Ising-type Hund s coupling, J U = U 2J ; W 1 =2, W 2 =4 Bethe lattice in infinite dimensions half-filled case paramagnetic phase

13 Dynamical Mean-Field Theory + Continuous Time QMC Mapping of lattice model onto two-impurity model two-impurity problem Bethe lattice Impurity solver impurity model impurity solver: continuous-time QMC hybridization expansion Inverse Fourier transform G 0 ( τ ) G ( iω ) 0 n DMFT Selfconsistent Loop G (τ ) G ( i ω Σ ( i ω Self-consistency relation n n ) ) Fourier transform

14 ORBITAL-SELECTIVE MOTT TRANSITION FOR J=U/4

15 Quasiparticle Weight Monotonic decrease as U increases. First-order transition with hysteresis for both around U c1 2.0 Long tail in Z 2 above U c2 Change in slope around U c2 2.5

16 Double Occupancy Monotonic decrease as U increases. First-order transition with hysteresis for both around U c1 2.0 Change in the slope of d 2 around U c2 2.5 d 1 and d 2 are insensitive to temperature above U c1 For U c1 <U<U c2 d 1 far suppressed narrow band is MI d 2 is rather high and decreases gradually wide band is not MI

17 Local Magnetic Moment Monotonic increase as U increases. First-order transition with hysteresis for both around U c1 2.0 Change in the slope for wide band around U c2 2.5 Both are insensitive to temperature above U c1 For U c1 <U<U c2 narrow band: high moment MI wide band: comparatively low and gradually increasing not MI

18 Self-Energy for Wide Band For U<U c1 ImΣ 2 (iω n ) 0 linearly as ω n 0 Fermi liquid (FL) For U >U c2 ImΣ 2 (iω n ) - as ω n 0 Mott insulator (MI) For U c1 <U<U c2 ImΣ 2 (iω n ) finite as ω n 0 finite lifetime at Fermi level non-fermi liquid (NFL)

19 Determination of U c2 imaginary part of selfenergy in wide band fitting low frequency part ImΣ Σ ω 2 c ω a ( iω ) = + b n + n a=0: divergence to - at, MI a<0: convergence to finite negative value at NFL ω = 0 ω = 0

20 Phase Diagram DMFT+CT-QMC (,, ): this work DMFT+ED (,---) DMFT+ED (T=0) ( ) DMFT+HF-QMC ( ) FL NFL MI FL-NFL: first-order transition with negative slope, conventional Mott transition NFL-MI: continuous transition with positive slope

21 EFFECTS OF HUND COUPLING ON ORBITAL-SELECTIVE MOTT TRANSITION

22 Phase diagram in U-U Ising-type Hund coupling isotropic Hund coupling Koga, Kawakami, Rice, Sigrist (2004) generally similar to that with isotropic Hund coupling U c s are slightly lower than isotropic case second transition change from continuous to firstorder

23 VARIATION OF BANDWIDTH RATIO

24 Variation of bandwidth ratio DMFT + ED Gutzwiller J=0 When bandwidth ratio is far from unity, OSMP shows up even for J=0 de Medici,Georges,Biermann (2005); Ferrero,Becca,Fabrizio,Capone (2005)

25 Double Occupancy and Quasiparticle Weights A single first-order transition for small W 2 /W 1 Two separate transitions for large W 2 /W 1 (W 2 /W 1 ) c = 1.5 ± 0.1

26 Phase diagram OSMT appears above finite (W 2 /W 1 ) c slightly smaller NFL region for lower T Ising-type Hund J=U/4 J=0 de Medici,Georges,Biermann (2005)

27 Summary We have investigated metal-insulator transitions in two-orbital system with Isingtype Hund coupling J. For large J/U, FL NFL MI as U. Transition from FL to NFL is first-order Transition from NFL to MI is continuous for large J/U first-order for small J/U We anticipate richer physics by the interplay of Hund coupling and bandwidth ratio.

28 Thank You! Acknowledgement National Research Foundation of Korea Basic Science Research, No Quantum Metamaterials Research Center, No

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Mar 2006

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Mar 2006 Non-Fermi-liquid phases in the two-band Hubbard model: Finite-temperature exact diagonalization study of Hund s rule coupling A. Liebsch and T. A. Costi Institut für Festkörperforschung, Forschungszentrum

More information

Numerical Methods in Quantum Many-body Theory. Gun Sang Jeon Pyeong-chang Summer Institute 2014

Numerical Methods in Quantum Many-body Theory. Gun Sang Jeon Pyeong-chang Summer Institute 2014 Numerical Methods in Quantum Many-body Theory Gun Sang Jeon 2014-08-25 Pyeong-chang Summer Institute 2014 Contents Introduction to Computational Physics Monte Carlo Methods: Basics and Applications Numerical

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 29 Aug 2005 Slave-boson theory of the Mott transition in the two-band Hubbard model

arxiv:cond-mat/ v1 [cond-mat.str-el] 29 Aug 2005 Slave-boson theory of the Mott transition in the two-band Hubbard model EPJ manuscript No. (will be inserted by the editor) arxiv:cond-mat/0508691v1 [cond-mat.str-el] 29 Aug 2005 Slave-boson theory of the Mott transition in the two-band Hubbard model A. Rüegg 1, M. Indergand

More information

Mott physics: from basic concepts to iron superconductors

Mott physics: from basic concepts to iron superconductors Mott physics: from basic concepts to iron superconductors E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Outline Mott physics: Basic concepts (single orbital & half filling) - Mott

More information

Electronic correlations in models and materials. Jan Kuneš

Electronic correlations in models and materials. Jan Kuneš Electronic correlations in models and materials Jan Kuneš Outline Dynamical-mean field theory Implementation (impurity problem) Single-band Hubbard model MnO under pressure moment collapse metal-insulator

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

Diagrammatic Monte Carlo methods for Fermions

Diagrammatic Monte Carlo methods for Fermions Diagrammatic Monte Carlo methods for Fermions Philipp Werner Department of Physics, Columbia University PRL 97, 7645 (26) PRB 74, 15517 (26) PRB 75, 8518 (27) PRB 76, 235123 (27) PRL 99, 12645 (27) PRL

More information

An introduction to the dynamical mean-field theory. L. V. Pourovskii

An introduction to the dynamical mean-field theory. L. V. Pourovskii An introduction to the dynamical mean-field theory L. V. Pourovskii Nordita school on Photon-Matter interaction, Stockholm, 06.10.2016 OUTLINE The standard density-functional-theory (DFT) framework An

More information

Magnetic Moment Collapse drives Mott transition in MnO

Magnetic Moment Collapse drives Mott transition in MnO Magnetic Moment Collapse drives Mott transition in MnO J. Kuneš Institute of Physics, Uni. Augsburg in collaboration with: V. I. Anisimov, A. V. Lukoyanov, W. E. Pickett, R. T. Scalettar, D. Vollhardt,

More information

Cluster Extensions to the Dynamical Mean-Field Theory

Cluster Extensions to the Dynamical Mean-Field Theory Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods? Thomas Pruschke Institut für Theoretische Physik Universität

More information

O. Parcollet CEA-Saclay FRANCE

O. Parcollet CEA-Saclay FRANCE Cluster Dynamical Mean Field Analysis of the Mott transition O. Parcollet CEA-Saclay FRANCE Dynamical Breakup of the Fermi Surface in a doped Mott Insulator M. Civelli, M. Capone, S. S. Kancharla, O.P.,

More information

Spin and orbital freezing in unconventional superconductors

Spin and orbital freezing in unconventional superconductors Spin and orbital freezing in unconventional superconductors Philipp Werner University of Fribourg Kyoto, November 2017 Spin and orbital freezing in unconventional superconductors In collaboration with:

More information

arxiv: v1 [cond-mat.str-el] 17 Aug 2018

arxiv: v1 [cond-mat.str-el] 17 Aug 2018 Distinct Nature of Orbital Selective Mott Phases Dominated by the Low-energy Local Spin Fluctuations arxiv:188.578v1 [cond-mat.str-el] 17 Aug 18 Ze-Yi Song, 1 Xiu-Cai Jiang, 1 Hai-Qing Lin, 1,, and Yu-Zhong

More information

Absence of orbital-dependent Mott transition in Ca 2 x Sr x RuO 4

Absence of orbital-dependent Mott transition in Ca 2 x Sr x RuO 4 EUROPHYSICS LETTERS 1 July 23 Europhys. Lett., 63 (1), pp. 97 13 (23) Absence of orbital-dependent Mott transition in Ca 2 x Sr x RuO 4 A. Liebsch Institut für Festkörperforschung, Forschungszentrum Jülich

More information

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models Local moment approach to the multi - orbital single impurity Anderson and Hubbard models Anna Kauch Institute of Theoretical Physics Warsaw University PIPT/Les Houches Summer School on Quantum Magnetism

More information

Local moment approach to multi-orbital Anderson and Hubbard models

Local moment approach to multi-orbital Anderson and Hubbard models Local moment approach to multi-orbital Anderson and Hubbard models Anna Kauch 1 and Krzysztof Byczuk,1 1 Institute of Theoretical Physics, Warsaw University, ul. Hoża 69, PL--681 Warszawa, Poland Theoretical

More information

Multisite versus multiorbital Coulomb correlations studied within finite-temperature exact diagonalization dynamical mean-field theory

Multisite versus multiorbital Coulomb correlations studied within finite-temperature exact diagonalization dynamical mean-field theory PHYSICAL REVIEW B 78, 165123 28 Multisite versus multiorbital Coulomb correlations studied within finite-temperature exact diagonalization dynamical mean-field theory A. Liebsch, 1 H. Ishida, 2 and J.

More information

arxiv: v1 [cond-mat.str-el] 31 Mar 2015

arxiv: v1 [cond-mat.str-el] 31 Mar 2015 Mass-imbalance induced metal-insulator transition in a three-component Hubbard model Duong-Bo Nguyen, Duy-Khuong Phung, Van-Nham Phan, and Minh-Tien Tran Institute of Research and Development, Duy Tan

More information

NiO - hole doping and bandstructure of charge transfer insulator

NiO - hole doping and bandstructure of charge transfer insulator NiO - hole doping and bandstructure of charge transfer insulator Jan Kuneš Institute for Physics, Uni. Augsburg Collaboration: V. I. Anisimov S. L. Skornyakov A. V. Lukoyanov D. Vollhardt Outline NiO -

More information

Diagrammatic Monte Carlo simulation of quantum impurity models

Diagrammatic Monte Carlo simulation of quantum impurity models Diagrammatic Monte Carlo simulation of quantum impurity models Philipp Werner ETH Zurich IPAM, UCLA, Jan. 2009 Outline Continuous-time auxiliary field method (CT-AUX) Weak coupling expansion and auxiliary

More information

The Mott Metal-Insulator Transition

The Mott Metal-Insulator Transition Florian Gebhard The Mott Metal-Insulator Transition Models and Methods With 38 Figures Springer 1. Metal Insulator Transitions 1 1.1 Classification of Metals and Insulators 2 1.1.1 Definition of Metal

More information

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Krzysztof Byczuk Institute of Physics, Augsburg University Institute of Theoretical Physics, Warsaw University October

More information

Realistic Modeling of Materials with Strongly Correlated Electrons

Realistic Modeling of Materials with Strongly Correlated Electrons Realistic Modeling of Materials with Strongly Correlated Electrons G. Keller 1, K. Held 2, V. Eyert 1, V. I. Anisimov 3, K. Byczuk 1, M. Kollar 1, I. Leonov 1, X. Ren 1, and D. Vollhardt 1 1 Theoretical

More information

From Materials to Models and Back. Dieter Vollhardt

From Materials to Models and Back. Dieter Vollhardt From Materials to Models and Back Dieter Vollhardt 28 th Edgar Lüscher Seminar, Klosters; February 8, 2017 From Materials to Models and Back - The Need for Models in Condensed Matter Physics - Outline:

More information

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering DE-FG02-08ER46544 Overview

More information

PHYSICAL REVIEW B 80,

PHYSICAL REVIEW B 80, PHYSICAL REVIEW B 8, 6526 29 Finite-temperature exact diagonalization cluster dynamical mean-field study of the two-dimensional Hubbard model: Pseudogap, non-fermi-liquid behavior, and particle-hole asymmetry

More information

The Hubbard model out of equilibrium - Insights from DMFT -

The Hubbard model out of equilibrium - Insights from DMFT - The Hubbard model out of equilibrium - Insights from DMFT - t U Philipp Werner University of Fribourg, Switzerland KITP, October 212 The Hubbard model out of equilibrium - Insights from DMFT - In collaboration

More information

Dynamical Mean Field within Iterative Perturbation Theory

Dynamical Mean Field within Iterative Perturbation Theory Vol. 111 (2007) ACTA PHYSICA POLONICA A No. 5 Proceedings of the XII National School Correlated Electron Systems..., Ustroń 2006 Dynamical Mean Field within Iterative Perturbation Theory B. Radzimirski

More information

The Gutzwiller Density Functional Theory

The Gutzwiller Density Functional Theory The Gutzwiller Density Functional Theory Jörg Bünemann, BTU Cottbus I) Introduction 1. Model for an H 2 -molecule 2. Transition metals and their compounds II) Gutzwiller variational theory 1. Gutzwiller

More information

Metal-Mott insulator transitions

Metal-Mott insulator transitions University of Ljubljana Faculty of Mathematics and Physics Seminar I b Metal-Mott insulator transitions Author: Alen Horvat Advisor: doc. dr. Tomaž Rejec Co-advisor: dr. Jernej Mravlje Ljubljana, September

More information

arxiv: v1 [cond-mat.mtrl-sci] 8 Nov 2012

arxiv: v1 [cond-mat.mtrl-sci] 8 Nov 2012 Orbital Selectivity in Hund s metals: The Iron Chalcogenides N. Lanatà, 1 H. U. R. Strand, 2 G. Giovannetti, 3 B. Hellsing, 2 L. de Medici, 4 and M. Capone 3 1 Department of Physics and Astronomy, Rutgers

More information

Nano-DMFT : the electronic structure of small, strongly correlated, systems

Nano-DMFT : the electronic structure of small, strongly correlated, systems Nano-DMFT : the electronic structure of small, strongly correlated, systems Nanoscale Dynamical Mean-Field Theory for Molecules and Mesoscopic Devices in the Strong-Correlation Regime Author: S. Florens,

More information

Many body physics issues with the core-hole propagator and resonant inelastic X-ray scattering

Many body physics issues with the core-hole propagator and resonant inelastic X-ray scattering Many body physics issues with the core-hole propagator and resonant inelastic X-ray scattering Jim Freericks (Georgetown University) Funding: Civilian Research and Development Foundation In collaboration

More information

Role of the Octahedra Rotation on the Electronic Structures of 4d Transition Metal Oxides

Role of the Octahedra Rotation on the Electronic Structures of 4d Transition Metal Oxides Role of the Octahedra Rotation on the Electronic Structures of 4d Transition Metal Oxides Changyoung Kim Dept. Physics, Yonsei University B. J. Kim 1, J. Yu 1, S. J. Oh 1, H. Koh 2, I. Nagai 3, S. I. Ikeda

More information

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) New perspectives in superconductors E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) E. Bascones leni@icmm.csic.es Outline Talk I: Correlations in iron superconductors Introduction

More information

Theory of carbon-based magnetism

Theory of carbon-based magnetism Theory of carbon-based magnetism Mikhail Katsnelson Theory of Condensed Matter Institute for Molecules and Materials RU Outline sp magnetism in general: why it is interesting? Defect-induced magnetism

More information

1 G. Kotliar: Lecture 2

1 G. Kotliar: Lecture 2 1 G. Kotliar: Lecture 2 In the previous lecture, following some motivation to study strongly correlated electron systems, we introduced a general methodology for constructing mean field theories. To apply

More information

IMPACT ionization and thermalization in photo-doped Mott insulators

IMPACT ionization and thermalization in photo-doped Mott insulators IMPACT ionization and thermalization in photo-doped Mott insulators Philipp Werner (Fribourg) in collaboration with Martin Eckstein (Hamburg) Karsten Held (Vienna) Cargese, September 16 Motivation Photo-doping:

More information

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS http://www.staff.science.uu.nl/~mitch003/nrg.html March 2015 Anrew Mitchell Utrecht University Quantum impurity problems Part 1: Quantum impurity problems

More information

Metal-Insulator Transitions and Realistic Modelling of Correlated Electron Systems

Metal-Insulator Transitions and Realistic Modelling of Correlated Electron Systems John von Neumann Institute for Computing Metal-Insulator Transitions and Realistic Modelling of Correlated Electron Systems N. Blümer, K. Held, G. Keller, D. Vollhardt published in NIC Symposium 2001,

More information

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models arxiv:1609.03760 Lode Pollet Dario Hügel Hugo Strand, Philipp Werner (Uni Fribourg) Algorithmic developments diagrammatic

More information

Dynamical mean field approach to correlated lattice systems in and out of equilibrium

Dynamical mean field approach to correlated lattice systems in and out of equilibrium Dynamical mean field approach to correlated lattice systems in and out of equilibrium Philipp Werner University of Fribourg, Switzerland Kyoto, December 2013 Overview Dynamical mean field approximation

More information

Theory of magnetic interactions in real materials. Mikhail Katsnelson

Theory of magnetic interactions in real materials. Mikhail Katsnelson Theory of magnetic interactions in real materials Mikhail Katsnelson Outline 1. Introduction 2. Exchange interactions from first principles 3. Beyond DFT: correlated systems and LDA+DMFT 4. Applications:

More information

Correlatd electrons: the case of high T c cuprates

Correlatd electrons: the case of high T c cuprates Correlatd electrons: the case of high T c cuprates Introduction: Hubbard U - Mott transition, The cuprates: Band structure and phase diagram NMR as a local magnetic probe Magnetic susceptibilities NMR

More information

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory From utzwiller Wave Functions to Dynamical Mean-Field Theory Dieter Vollhardt Autumn School on Correlated Electrons DMFT at 25: Infinite Dimensions Forschungszentrum Jülich, September 15, 2014 Supported

More information

Intermediate valence in Yb Intermetallic compounds

Intermediate valence in Yb Intermetallic compounds Intermediate valence in Yb Intermetallic compounds Jon Lawrence University of California, Irvine This talk concerns rare earth intermediate valence (IV) metals, with a primary focus on certain Yb-based

More information

/21. Tsuneya Yoshida. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami 2013/6/07 (EQPCM) 1. Kyoto Univ.

/21. Tsuneya Yoshida. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami 2013/6/07 (EQPCM) 1. Kyoto Univ. 2013/6/07 (EQPCM) 1 /21 Tsuneya Yoshida Kyoto Univ. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami T.Y., Satoshi Fujimoto, and Norio Kawakami Phys. Rev. B 85, 125113 (2012) Outline 2 /21

More information

Inelastic light scattering and the correlated metal-insulator transition

Inelastic light scattering and the correlated metal-insulator transition Inelastic light scattering and the correlated metal-insulator transition Jim Freericks (Georgetown University) Tom Devereaux (University of Waterloo) Ralf Bulla (University of Augsburg) Funding: National

More information

Introduction to DMFT

Introduction to DMFT Introduction to DMFT Lecture 2 : DMFT formalism 1 Toulouse, May 25th 2007 O. Parcollet 1. Derivation of the DMFT equations 2. Impurity solvers. 1 Derivation of DMFT equations 2 Cavity method. Large dimension

More information

Electron Correlation

Electron Correlation Series in Modern Condensed Matter Physics Vol. 5 Lecture Notes an Electron Correlation and Magnetism Patrik Fazekas Research Institute for Solid State Physics & Optics, Budapest lb World Scientific h Singapore

More information

DMFT for correlated bosons and boson-fermion mixtures

DMFT for correlated bosons and boson-fermion mixtures DMFT for correlated bosons and boson-fermion mixtures Workshop on Recent developments in dynamical mean-field theory ETH ürich, September 29, 2009 Dieter Vollhardt Supported by Deutsche Forschungsgemeinschaft

More information

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Frithjof B. Anders Institut für Theoretische Physik Universität Bremen Göttingen, December

More information

5 Hund s metals, explained

5 Hund s metals, explained 5 Hund s metals, explained Luca de Medici Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris 1 rue Vauquelin, 755 Paris, France arxiv:177.3282v2 [cond-mat.str-el] 19 Jul 217 Contents

More information

Imaging orbital-selective quasiparticles in the Hund s metal state of FeSe

Imaging orbital-selective quasiparticles in the Hund s metal state of FeSe SUPPLEMENTARY INFORMATION Articles https://doi.org/10.1038/s41563-018-0151-0 In the format provided by the authors and unedited. Imaging orbital-selective quasiparticles in the Hund s metal state of FeSe

More information

Orbital-selective Mott transitions and their relevance to Iron superconductors

Orbital-selective Mott transitions and their relevance to Iron superconductors Luca de Medici Laboratoire de Physique des Solides Orsay, France Orbital-selective Mott transitions and their relevance to Iron superconductors Collège de France, 6.5. Mott transition Localization of itinerant

More information

Orbital order and Hund's rule frustration in Kondo lattices

Orbital order and Hund's rule frustration in Kondo lattices Orbital order and Hund's rule frustration in Kondo lattices Ilya Vekhter Louisiana State University, USA 4/29/2015 TAMU work done with Leonid Isaev, LSU Kazushi Aoyama, Kyoto Indranil Paul, CNRS Phys.

More information

College of Chemistry, Peking University, Beijing, China. Fritz-Haber-Institut der MPG, Berlin, Germany

College of Chemistry, Peking University, Beijing, China. Fritz-Haber-Institut der MPG, Berlin, Germany KITP Program Excitations in Condensed Matter Localized and Itinerant States in a Unified Picture beyond Density Functional Theory Hong Jiang 1, Patrick Rinke 2 and Matthias Scheffler 2 1 College of Chemistry,

More information

Quantum impurities in a bosonic bath

Quantum impurities in a bosonic bath Ralf Bulla Institut für Theoretische Physik Universität zu Köln 27.11.2008 contents introduction quantum impurity systems numerical renormalization group bosonic NRG spin-boson model bosonic single-impurity

More information

Dynamical Mean-Field Theory for Correlated Electron Materials Dieter Vollhardt

Dynamical Mean-Field Theory for Correlated Electron Materials Dieter Vollhardt Center for Electronic Correlations and Magnetism University of Augsburg Dynamical Mean-Field Theory for Correlated Electron Materials Dieter Vollhardt XXIII Latin American Symposium on Solid State Physics

More information

Dual fermion approach to unconventional superconductivity and spin/charge density wave

Dual fermion approach to unconventional superconductivity and spin/charge density wave June 24, 2014 (ISSP workshop) Dual fermion approach to unconventional superconductivity and spin/charge density wave Junya Otsuki (Tohoku U, Sendai) in collaboration with H. Hafermann (CEA Gif-sur-Yvette,

More information

FROM NODAL LIQUID TO NODAL INSULATOR

FROM NODAL LIQUID TO NODAL INSULATOR FROM NODAL LIQUID TO NODAL INSULATOR Collaborators: Urs Ledermann and Maurice Rice John Hopkinson (Toronto) GORDON, 2004, Oxford Doped Mott insulator? Mott physics: U Antiferro fluctuations: J SC fluctuations

More information

Many-body effects in iron pnictides and chalcogenides

Many-body effects in iron pnictides and chalcogenides Many-body effects in iron pnictides and chalcogenides separability of non-local and dynamical correlation effects Jan M. Tomczak Vienna University of Technology jan.tomczak@tuwien.ac.at Emergent Quantum

More information

Transfer of spectral weight in spectroscopies of correlated electron systems

Transfer of spectral weight in spectroscopies of correlated electron systems PHYSICAL REVIEW B VOLUME 54, NUMBER 12 15 SEPTEMBER 1996-II Transfer of spectral weight in spectroscopies of correlated electron systems M. J. Rozenberg* Laboratoire de Physique Théorique, Ecole Normale

More information

Mott transition : beyond Dynamical Mean Field Theory

Mott transition : beyond Dynamical Mean Field Theory Mott transition : beyond Dynamical Mean Field Theory O. Parcollet 1. Cluster methods. 2. CDMFT 3. Mott transition in frustrated systems : hot-cold spots. Coll: G. Biroli (SPhT), G. Kotliar (Rutgers) Ref:

More information

Introduction to SDFunctional and C-DMFT

Introduction to SDFunctional and C-DMFT Introduction to SDFunctional and C-DMFT A. Lichtenstein University of Hamburg In collaborations with: M. Katsnelson, V. Savkin, L. Chioncel, L. Pourovskii (Nijmegen) A. Poteryaev, S. Biermann, M. Rozenberg,

More information

Dynamical mean-field study of the Mott transition in thin films

Dynamical mean-field study of the Mott transition in thin films Eur. Phys. J. B 8, 555 568 (999) THE EROPEAN PHYSICAL JORNAL B c EDP Sciences Società Italiana di Fisica Springer-Verlag 999 Dynamical mean-field study of the Mott transition in thin films M. Potthoff

More information

Spectral Density Functional Theory

Spectral Density Functional Theory Spectral Density Functional Theory Sergej Savrasov Financial support NSF US DOE LANL Collaborators and Content Constructing New Functionals to Access Energetics and Spectra of Correlated Solids Phonons

More information

The Oxford Solid State Basics

The Oxford Solid State Basics The Oxford Solid State Basics Steven H. Simon University of Oxford OXFORD UNIVERSITY PRESS Contents 1 About Condensed Matter Physics 1 1.1 What Is Condensed Matter Physics 1 1.2 Why Do We Study Condensed

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 11 Aug 2003

arxiv:cond-mat/ v1 [cond-mat.str-el] 11 Aug 2003 Phase diagram of the frustrated Hubbard model R. Zitzler, N. ong, h. Pruschke, and R. Bulla Center for electronic correlations and magnetism, heoretical Physics III, Institute of Physics, University of

More information

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl Magnetism, Bad Metals and Superconductivity: Iron Pnictides and Beyond September 11, 2014 Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises Gertrud Zwicknagl Institut

More information

Valence Bonds in Random Quantum Magnets

Valence Bonds in Random Quantum Magnets Valence Bonds in Random Quantum Magnets theory and application to YbMgGaO 4 Yukawa Institute, Kyoto, November 2017 Itamar Kimchi I.K., Adam Nahum, T. Senthil, arxiv:1710.06860 Valence Bonds in Random Quantum

More information

Metal-insulator transition with Gutzwiller-Jastrow wave functions

Metal-insulator transition with Gutzwiller-Jastrow wave functions Metal-insulator transition with Gutzwiller-Jastrow wave functions Odenwald, July 20, 2010 Andrea Di Ciolo Institut für Theoretische Physik, Goethe Universität Frankfurt Metal-insulator transition withgutzwiller-jastrow

More information

Nonequilibrium Physics of Correlated Electron Materials IV: Nonequilibrium Phase Transitions

Nonequilibrium Physics of Correlated Electron Materials IV: Nonequilibrium Phase Transitions Nonequilibrium Physics of Correlated Electron Materials IV: Nonequilibrium Phase Transitions! A. J. Millis College de France Oct 12, 2015 Two classes of nonequilibrium manybody phenomena 1. Steady state

More information

An efficient impurity-solver for the dynamical mean field theory algorithm

An efficient impurity-solver for the dynamical mean field theory algorithm Papers in Physics, vol. 9, art. 95 (217) www.papersinphysics.org Received: 31 March 217, Accepted: 6 June 217 Edited by: D. Domínguez Reviewed by: A. Feiguin, Northeastern University, Boston, United States.

More information

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346 Excitonic Condensation in Systems of Strongly Correlated Electrons Jan Kuneš and Pavel Augustinský DFG FOR1346 Motivation - unconventional long-range order incommensurate spin spirals complex order parameters

More information

Computational Approaches to Quantum Critical Phenomena ( ) ISSP. Fermion Simulations. July 31, Univ. Tokyo M. Imada.

Computational Approaches to Quantum Critical Phenomena ( ) ISSP. Fermion Simulations. July 31, Univ. Tokyo M. Imada. Computational Approaches to Quantum Critical Phenomena (2006.7.17-8.11) ISSP Fermion Simulations July 31, 2006 ISSP, Kashiwa Univ. Tokyo M. Imada collaboration T. Kashima, Y. Noda, H. Morita, T. Mizusaki,

More information

Surprising Effects of Electronic Correlations in Solids

Surprising Effects of Electronic Correlations in Solids Center for Electronic Correlations and Magnetism University of Augsburg Surprising Effects of Electronic Correlations in Solids Dieter Vollhardt Supported by TRR 80 FOR 1346 University of Florida, Gainesville;

More information

arxiv: v2 [cond-mat.supr-con] 7 Dec 2018

arxiv: v2 [cond-mat.supr-con] 7 Dec 2018 Orbital selectivity enhanced by nematic order in FeSe Rong Yu, 1, Jian-Xin Zhu, 2, and Qimiao Si 3, 1 Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano

More information

Theoretical and experimental study of aromatic hydrocarbon superconductors

Theoretical and experimental study of aromatic hydrocarbon superconductors Workshop on correlations, criticality, and coherence in quantum systems Theoretical and experimental study of aromatic hydrocarbon superconductors Zhongbing Huang 1 Hubei University, Wuhan, China 2 Beijing

More information

Surprises in Correlated Electron Physics

Surprises in Correlated Electron Physics Vol. 111 (2007) ACTA PHYSICA POLONICA A No. 4 Proceedings of the XII National School Correlated Electron Systems..., Ustroń 2006 Surprises in Correlated Electron Physics K. Byczuk a,b, W. Hofstetter c,

More information

arxiv: v1 [cond-mat.str-el] 5 May 2008

arxiv: v1 [cond-mat.str-el] 5 May 2008 Orbital degeneracy, Hund s coupling, and band ferromagnetism: effective quantum parameter, suppression of quantum corrections, and enhanced stability arxiv:85.47v [cond-mat.str-el] 5 May 28 Bhaskar Kamble

More information

Fluctuating exchange theory of dynamical electron correlations and magnetism

Fluctuating exchange theory of dynamical electron correlations and magnetism Fluctuating exchange theory of dynamical electron correlations and magnetism Václav Drchal Institute of Physics ASCR, Praha, Czech Republic Grant Agency of ASCR: project IAA11616 Workshop Frontiers in

More information

Metal-to-Insilator Phase Transition. Hubbard Model.

Metal-to-Insilator Phase Transition. Hubbard Model. Master M2 Sciences de la Matière ENS de Lyon 2016-2017 Phase Transitions and Critical Phenomena Metal-to-Insilator Phase Transition. Hubbard Model. Vitaly Gorelov January 13, 2017 Abstract In this essay

More information

Thermodynamic and spectral properties of compressed Ce calculated using a combined local-density approximation and dynamical mean-field theory

Thermodynamic and spectral properties of compressed Ce calculated using a combined local-density approximation and dynamical mean-field theory PHYSICAL REVIEW B 67, 075108 2003 Thermodynamic and spectral properties of compressed Ce calculated using a combined local-density approximation and dynamical mean-field theory A. K. McMahan, 1 K. Held,

More information

Dynamical mean-field theory

Dynamical mean-field theory Dynamical mean-field theory Marcus Kollar Theoretical Physics III, University of Augsburg, Germany Autumn School: Hands-On DMFT DFG-Forschergruppe 1346 Forschungszentrum Jülich August 4-7, 2011 Outline

More information

Metallic surface of a Mott insulator Mott insulating surface of a metal

Metallic surface of a Mott insulator Mott insulating surface of a metal PHYSICAL REVIEW B VOLUME 60, NUMBER 11 15 SEPTEMBER 1999-I Metallic surface of a Mott insulator Mott insulating surface of a metal M. Potthoff and W. Nolting Institut für Physik, Humboldt-Universität zu

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 4 Jul 2000

arxiv:cond-mat/ v1 [cond-mat.str-el] 4 Jul 2000 EPJ manuscript No. (will be inserted by the editor) arxiv:cond-mat/742v1 [cond-mat.str-el] 4 Jul 2 Phase diagram of the three-dimensional Hubbard model at half filling R. Staudt 1, M. Dzierzawa 1, and

More information

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3 4D-XY Quantum Criticality in Underdoped High-T c cuprates M. Franz University of British Columbia franz@physics.ubc.ca February 22, 2005 In collaboration with: A.P. Iyengar (theory) D.P. Broun, D.A. Bonn

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

When Landau and Lifshitz meet

When Landau and Lifshitz meet Yukawa International Seminar 2007 "Interaction and Nanostructural Effects in Low-Dimensional Systems" November 5-30, 2007, Kyoto When Landau and Lifshitz meet Unconventional Quantum Criticalities November

More information

arxiv: v1 [cond-mat.str-el] 4 Nov 2011

arxiv: v1 [cond-mat.str-el] 4 Nov 2011 Electronic structure of nickelates: from 2D heterostructures to 3D bulk materials P. Hansmann 1, A. Toschi 1, Xiaoping Yang 2, O. K. Andersen 2, K. Held 1 1 Institute for Solid State Physics, Vienna University

More information

Surprising Effects of the Interaction between Electrons in Solids. Dieter Vollhardt

Surprising Effects of the Interaction between Electrons in Solids. Dieter Vollhardt Surprising Effects of the Interaction between Electrons in Solids Dieter Vollhardt Shanghai Jiao Tong University; April 6, 2016 Augsburg: founded in 15 BC Roman Emperor Augustus 63 BC 14 AD Center founded

More information

Wannier Functions in the context of the Dynamical Mean-Field Approach to strongly correlated materials

Wannier Functions in the context of the Dynamical Mean-Field Approach to strongly correlated materials Wannier Functions in the context of the Dynamical Mean-Field Approach to strongly correlated materials Frank Lechermann I. Institute for Theoretical Physics, University of Hamburg, Germany Ab-initio Many-Body

More information

Correlations in a band insulator

Correlations in a band insulator Correlations in a band insulator Michael Sentef, 1, * Jan Kuneš, 1 Philipp Werner, 2 and Arno P. Kampf 1 1 Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics,

More information

arxiv:cond-mat/ v1 27 Jan 2004

arxiv:cond-mat/ v1 27 Jan 2004 Interpolative Approach for Solving Quantum Impurity Model Based on the Slave Boson Mean Field Approximation V. Oudovenko a,e, K. Haule b,e, S. Y. Savrasov c, D. Villani d,e, G. Kotliar e a Laboratory for

More information

Band calculations: Theory and Applications

Band calculations: Theory and Applications Band calculations: Theory and Applications Lecture 2: Different approximations for the exchange-correlation correlation functional in DFT Local density approximation () Generalized gradient approximation

More information

Lecture 2: Ultracold fermions

Lecture 2: Ultracold fermions Lecture 2: Ultracold fermions Fermions in optical lattices. Fermi Hubbard model. Current state of experiments Lattice modulation experiments Doublon lifetimes Stoner instability Ultracold fermions in optical

More information

Des oxydes supraconducteurs aux atomes froids - la matière à fortes corrélations quantiques -

Des oxydes supraconducteurs aux atomes froids - la matière à fortes corrélations quantiques - Chaire de Physique de la Matière Condensée Des oxydes supraconducteurs aux atomes froids - la matière à fortes corrélations quantiques - Antoine Georges Cycle 2009-2010 Cours 8 23 juin 2010 Cours 8: Corrélations

More information

arxiv: v2 [cond-mat.str-el] 11 Nov 2010

arxiv: v2 [cond-mat.str-el] 11 Nov 2010 Multi-orbital simplified parquet equations for strongly correlated electrons Pavel Augustinský and Václav Janiš Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-822 Praha

More information