Continuous Time Monte Carlo methods for fermions

Size: px
Start display at page:

Download "Continuous Time Monte Carlo methods for fermions"

Transcription

1 Continuous Time Monte Carlo methods for fermions Alexander Lichtenstein University of Hamburg In collaboration with A. Rubtsov (Moscow University) P. Werner (ETH Zurich)

2 Outline Calculation of Path Integral Problems with Hirsch-Fay QMC scheme New fermionic solver - CT-QMC - weak coupling: CT-INT - strong coupling: CT-HYB Magnetic nanosystems Progress in DMFT Conclusions

3 Can we calculate a path integral? Interacting Fermions Partition Function Gaussian Integral

4 QMC for Fermions: Sign Problem 2 Приходится вычислять разность близких по величине членов, а это требует очень аккуратного вычисления каждого члена в отдельности Метод интегрирования по траекториям... фактически никогда не был полезен при рассмотрении вырожденных Ферми-систем 1 Р. Фейнман, А.Хиббс Квантовая механика и интегралы по траекториям

5 Path Integral for impurity problem Partition function: Bath Green-function Vk ε d Hybridization Local Interactions

6 Dynamical Mean Field Theory G 0 ( τ τ ) Σ Σ Σ Gˆ i BZ 1 Ω r ( ω ) = Gˆ ( k, i ) ˆ 1 1 G 0 n n ˆ k r ω ( iω ) = G ( iω ) + Σ( iω ) n ˆ n n Σ ΣU G 0 ( τ τ ) Σ Σ Σ Σ DMRG QMC ED Single Impurity Solver IPT FLEX W. Metzner and D. Vollhardt (1987) A. Georges and G. Kotliar (1992) Σˆ new ( ) 1( ) 1 iω = G iω G ( iω ) n ˆ 0 n ˆ n

7 Monte Carlo: basic M. Troyer (ETH) N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, "Equation of State Calculations by Fast Computing Machines" J. Chem. Phys. 21, 1087 (1953)

8 History of pre CT QMC

9 Continuous Time: World Lines

10 Quantum Monte Carlo

11 Discrete QMC: Hirsch Fye algorithm G b

12 Multi-band Hirsch-Fye QMC-scheme exp{ τu Discrete HS-transformation (Hirsch, 1983) mm' [ n n m m' cosh 1 ( n 2 m + n m' )]} = 1 2 S mm ' exp{ λ S Number of Ising fields: N = M( 2M 1), M = { m, σ} Green Functions: mm ' ( τ ) =± 1 ( λ ) exp τu mm ' 1 2 = mm ' 1 Gmm' ( τ, τ ') = Gmm '( τ, τ ', S) det G Z G ( τ, τ ', S) = G ( τ, τ ') + V ( τ ) δ δ V σ 1 1 mm' mm ' m mm ' ττ ' ( τ ) = λ S ( τ ) σ m mm ' mm ' mm ' m ' mm ' + 1, m < m ' = 1, m > m ' H = tc c + U nn S ij σ + i ij iσ jσ mm' mm' m m' 1 mm' τ mm' m ( n m n m' U )} mm m τ

13 Continuous Time Quantum Monte Carlo Partition function: Continuous Time Quantum Monte Carlo (CT-QMC) E. Gull, A. Millis, A.L., A. Rubtsov, M. Troyer, Ph. Werner, Rev. Mod. Phys. 83, 349 (2011)

14 CT QMC: configurations and weights

15 Continuous time QMC

16 Continuous Time QMC: CT-INT Partition function and action for fermionic system with pair interactions Z = Tr( Te S ) S = t c c drdr ' + w c c c c drdr ' dr dr ' r' + r r' r' + r + r r r' rr r' r' r = {,,} τ i s Splitting of the action into Gaussian part and interaction dr β = dτ 0 i s S = S0 + W ( r' r ( ) ) 2 r' 1 r' 2 r' 2 r' α 1 ' r S = t + w + w dr dr c c drdr ' + 0 r r' rr r r 2 2 r' ( + α )( + α ) W = w c c c c dr dr ' dr dr ' r' r' r r r r rr r' r' r' r' α r r ' - additional parameters - necessary to minimize a sign problem A. Rubtsov and A.L., JETP Lett. (2004)

17 CT-QMC formalism and Green function Perturbation-series expansion Ω = Z = dr dr '... dr dr ' Ω ( r, r ',..., r, r ' ) k= 0 ( 1) k! 1 1 2k 2k k 1 1 2k 2k r' 1r' 2 r' 2k 1r' 2k r1... r2k ( r1, r' 1,..., r2, r' 2 ) Z0 w... w D 12 2k 12k ' 1... ' 2k k k k rr r r r r k ( + r ) ( ) 1 r1 + α... α D = T c c c c r... r r r r'... r' r' r' r' r' 1 2k 2k 2k 1 2k 1 1 2k 2k Since S 0 is Gaussian one can apply the Wick theorem D can be presented as a determinant g0 The Green function can be calculated as follows g ( r ) ( ) 1 r1 r2k r2k α... α Tc c c c c c + r + + r r' r' r' r' r' r' ( k) = r r 1 1 2k 2k ( + r ) ( ) 1 r1 + 2k 2k r' αr'... r' αr' T c c c c 1 1 2k 2k In practice efficient calculation of a ratio is possible due to fast-update formulas ratio of determinants A. Rubtsov and A.L., JETP Lett. (2004)

18 Weak coupling QMC: CT-INT A. Rubtsov, 2004

19 CT INT: details Trivial sign problem: P-H transformation A. Rubtsov, cond-mat 2003 Possible updates:

20 CT INT: multiorbital scheme

21 CT-INT: random walks in the k space Z= Z k-1 + Z k + Z k+1 +. decrease k-1 k+1 Acceptance ratio increase Step k-1 k D w D k 1 k Distribution Step k+1 w k + 1 D D k+ 1 k Maximum at βun 2 k

22 Convergence with Temperature: CT-INT Maximum: βun 2

23 CT QMC Fast Update: k > k+1 Similar to QR-algorithm (K+1) 2 operations

24 Measurement of Green functions

25 Advantages of the CT QMC method non-local in time interactions: dynamical Coulomb screening non-local in space interactions: multi-band systems, E-DMFT Auxiliary field (Hirsch) algorithm is time-consuming since it s necessary to introduce large number of auxiliary fields, while CT-QMC scheme needs almost the same time as in local case Number of auxiliary spins in the Hirsch scheme Short-range interactions Local in time interactions Long-range interactions Non-local in time interactions

26 Complexity of the algorithm

27 Metal-insulator transition in the Hubbard model on Bethe lattice Initial Green function corresponds to semicircular density of state ( ( 2 )) 1 i Gi ( ω ) = µ ω+ ω + 1 We solve the effective one-site + problem by CTQMC method G( τ τ ') = Tc( τ) c ( τ ') S eff Equation of DMFT self-consistency G i i t G i 1 ( ω) ω µ 2 ( ω) 0 = + Self-energy Σ ( iω) = G ( iω) G ( iω) 1 1 0

28 Metal-insulator transition in the Hubbard model on Bethe lattice G(iω) U=3 U= Density of states for β=64: U=2; U=2.2; U=2.4; U= iω U=2 DOS Energy -1-2 U=3 4 3 coexistence of the metallic and insulating solutions: U=2.4, β=64, W=2 Σ(iω) G(iω) iω iω DMFT on Bethe lattice. Parameters: U=2, U=2.2, U=2.4, U=2.6, U=2.8, U=3 β=64, band width W=2 CTQMC scheme with β=64 V. Savkin et al PRB 2005

29 CT-QMC: Hybridization expansion (CT-HYB) Hamiltonian: Loc-d Hyb Bath-a Ph. Werner, et al PRL 97, (2006)

30 CT HYB: diagrammatics with Hubbard X (1,1) (0,1) (1,0) (0,0) 0 β Zk= exp{-u* + * )}*Δ* Δ

31 Strong-Coupling Expansion CT-HYB P. Werner, 2006

32 CT HYB

33 CT HYB: determinant weight

34 CT HYB: determinant weght

35 Diagrams vs. Determinats QMC Ph. Werner

36 CT HYB: Monte Carlo sampling

37 CT HYB: segment scheme +

38 CT HYB: multi orbital segment picture H int = ij U ij n i n j

39 CT QMC efficency

40 CT HYB: General multliorbital Interaction

41 CT HYB: matrix code

42 Use of Symmetry: CT HYB K. Haule PRB 75, (2007)

43 CT HYB: Krylov code

44 CT HYB: Krylov code

45 CT HYB: Krylov scaling

46 CT QMC Krylov: performance

47 ALPS project: CT QMC code CT-INT and CT-HYB

48 Continuous Time Monte Carlo methods for fermions Alexander Lichtenstein University of Hamburg In collaboration with A. Rubtsov (Moscow University) P. Werner, B. Surer (ETH Zurich) H. Hafermann (EPL Paris) T. Wehling (University of Bremen) A. Poteryaev (IMF Ekaterinburg)

49 Impurity solver: miracle of CT-QMC Interaction expansion CT-INT: A. Rubtsov et al, JETP Lett (2004) Hybridization expansion CT-HYB: P. Werner et al, PRL (2006) Efficient Krylov scheme: A. Läuchli and P. Werner, PRB (2009) E. Gull, et al, RMP 83, 349 (2011)

50 Comparisson of different CT QMC: U=W E. Gull et al cond-mat/060943

51 Comparison of different CT QMC Σ Σ Σ Σ Σ U Σ Σ Σ τ U G( τ τ ) τ Ch. Jung, unpublished CT-QMC review: E. Gull et al. RMP (2011)

52 Scaling of CT QMC Temperature Interactions

53 Benchmark for CT QMC

54 CT HYB: 1 band DMFT results Bethe lattice with W=4t

55 Kondo lattice model

56 KLM: MIT on Bethe lattice

57 CT HYB: 2 orbital model

58 CT HYB for 2 orbitals: OSMT

59 General Interaction: Multiorbital impurity with general U U = ij kl diσ d jσ ' 2 ijkl r12 σσ ' d lσ ' d kσ Krylov-CT-QMC A. Läuchli and Ph. Werner, et al PRB 80, (2009)

60 Anderson Impurity Model Hamiltonian of AIM: Hybridization function:

61 DFT+AIM using Projectors Projections of DFT basis Local Green function on local orbitals VASP PAW basis set G. Trimarchi, et al JPCM (2008), B. Amadon, et al., PRB (2008)

62 Hybridization function Co on/in Cu(111) Hybridization of Co in bulk twice stronger than on surface Hybridization in energy range of Cu d orbitals more anisotropic on surface Co d occupancy: n= 7 8 B. Surer, et al PRB 85, (2012)

63 Constrain GW calculations of U F. Aryasetiawanan et al PRB(2004)

64 Wannier GW and effective U(ω) T. Miyake and F. Aryasetiawan Phys. Rev. B 77, (2008) C-GW GW

65 Strength of Coulomb interactions: Graphene T. Wehling et al., PRL 106, (2011) C. Honerkamp, PRL 100, (2008) Z. Y. Meng et al., Nature 464, (2010)

66 Quasiparticle spectra: DFT vs. QMC Co in Cu: QMC and GGA agree qualitatively Quasiparticle peak twice narrower in QMC than in GGA Co on Cu QMC shows, both, quasiparticle peak and Hubbard like bands at higher energies Significantly reduced width of quasiparticle peak in QMC

67 Orbitally resolved Co DOS from QMC Orbitally resolved DOS of the Co impurities in bulk Cu and on Co (111) obtained from QMC simulations at temperature T = ev and chemical potential μ = 27 ev and μ = 28 ev, respectively. All Co d orbitals contribute to LDOS peak near EF=0

68 Self-energies: Local Fermi liquid Fermi liquid: Atomic Signatures limit: of low energy Fermi liquids in all orbitals!

69 Quasiparticle weight and Kondo temperature Quasiparticle weight QMC(Matsubara) Kondo temperature Exp:

70 Charge fluctuations: QMC results

71 Multi-orbital problems: general interaction New formalism allows one to consider the most general case of multi-orbital interactions Uˆ = U c c c c i, j, k, l; σσ, ' + + ijkl iσ jσ ' lσ ' kσ two band rotationally invariant impurity model three impurity atoms with Hubbard and exchange interaction 0.3 two bands U=4, J=1, β=4-0.2 U=2.4, J=-0.2 and J=0, β= DOS G(iω) Energy iω five bands U=2, J=0.2, β=4 0.6 U=2.4, J=-0.2 and J=0, β= DOS DOS Energy Energy

72 Cluster DMFT G 0 ( τ τ ) Σ Σ Σ Σ Σ ΣU Σ Σ V Σ ΣU Σ Σ Σ Σ Σ Σ M. Hettler et al, PRB 58, 7475 (1998) A. L. and M. Katsnelson, PRB 62, R9283 (2000) G. Kotliar, et al, PRL 87, (2001)

73 Double Bethe Lattice: exact C DMFT A. Ruckenstein PRB (1999)

74 Self consistent condition: C DMFT AF-between plane AF-plane

75 Finite temperature phase diagram order-disorder transition at tp / t=sqrt(2) MIT for intermediate U for large U H. Hafermann, et al. EPL, 85, (2009)

76 Density of States: large U

77 Spin correlations: large U

78 H. Park et al, PRL (2008) MIT in 2d: DMFT vs. C DMFT Uc=9.35t Uc=6.05t U=5.2t X= U=0 U=6t n=1

79 TM-Oxide VO 2 : singlet formation M. Marezio et al., (1972) Temperature (K) Metal Insulator Rutile structure Monoclinic distortion in the insulating phase G( ω) ij i U UH t ij j U ε i a b LH ε j Correlation vs. Bonding U/t

80 Cluster DMFT results for VO 2 Rutile 1.0 ρ(ω) LDA (dashed) DMFT (solid) U=4eV J=0.68eV VO 2 rutile U = 4 ev, J=0.68 ev β = 20 ev M ω[ev] Sharp peak below the gap DOS VO 2 M1 1.5 LDA (dashed) is NOT a Hubbard band! cluster DMFT 1.0 (solid) ω [ev] 2 4 New photoemission from Tjeng s group T. C. Koethe, et al. PRL (2006) S. Biermann, et al, PRL 94, (2005)

81 Conclusions Electronic Structure of correlated nano systems can be described in CT QMC scheme CT QMC is perfect for supercomputer applications

82 General Projection formalism for LDA+DMFT DELOCALIZED S,P-STATES L> G> CORRELATED D,F-STATES G. Trimarchi et al. JPCM 20, (2008) B. Amadon et al. PRB 77, (2008)

83 CT HYB example

Diagrammatic Monte Carlo methods for Fermions

Diagrammatic Monte Carlo methods for Fermions Diagrammatic Monte Carlo methods for Fermions Philipp Werner Department of Physics, Columbia University PRL 97, 7645 (26) PRB 74, 15517 (26) PRB 75, 8518 (27) PRB 76, 235123 (27) PRL 99, 12645 (27) PRL

More information

Electronic correlations in models and materials. Jan Kuneš

Electronic correlations in models and materials. Jan Kuneš Electronic correlations in models and materials Jan Kuneš Outline Dynamical-mean field theory Implementation (impurity problem) Single-band Hubbard model MnO under pressure moment collapse metal-insulator

More information

Magnetic Moment Collapse drives Mott transition in MnO

Magnetic Moment Collapse drives Mott transition in MnO Magnetic Moment Collapse drives Mott transition in MnO J. Kuneš Institute of Physics, Uni. Augsburg in collaboration with: V. I. Anisimov, A. V. Lukoyanov, W. E. Pickett, R. T. Scalettar, D. Vollhardt,

More information

Introduction to SDFunctional and C-DMFT

Introduction to SDFunctional and C-DMFT Introduction to SDFunctional and C-DMFT A. Lichtenstein University of Hamburg In collaborations with: M. Katsnelson, V. Savkin, L. Chioncel, L. Pourovskii (Nijmegen) A. Poteryaev, S. Biermann, M. Rozenberg,

More information

w2dynamics : operation and applications

w2dynamics : operation and applications w2dynamics : operation and applications Giorgio Sangiovanni ERC Kick-off Meeting, 2.9.2013 Hackers Nico Parragh (Uni Wü) Markus Wallerberger (TU) Patrik Gunacker (TU) Andreas Hausoel (Uni Wü) A solver

More information

Introduction to DMFT

Introduction to DMFT Introduction to DMFT Lecture 2 : DMFT formalism 1 Toulouse, May 25th 2007 O. Parcollet 1. Derivation of the DMFT equations 2. Impurity solvers. 1 Derivation of DMFT equations 2 Cavity method. Large dimension

More information

Diagrammatic Monte Carlo simulation of quantum impurity models

Diagrammatic Monte Carlo simulation of quantum impurity models Diagrammatic Monte Carlo simulation of quantum impurity models Philipp Werner ETH Zurich IPAM, UCLA, Jan. 2009 Outline Continuous-time auxiliary field method (CT-AUX) Weak coupling expansion and auxiliary

More information

Applications: LDA+DMFT scheme - I

Applications: LDA+DMFT scheme - I Applications: LDA+DMFT scheme - I A. Lichtenstein niversity of Hamburg In collaborations with: A. Poteryaev (Ekaterinburg), M. Rozenberg, S. Biermann, A. Georges (Paris) L. Chioncel (Graz), I. di Marco,

More information

An efficient impurity-solver for the dynamical mean field theory algorithm

An efficient impurity-solver for the dynamical mean field theory algorithm Papers in Physics, vol. 9, art. 95 (217) www.papersinphysics.org Received: 31 March 217, Accepted: 6 June 217 Edited by: D. Domínguez Reviewed by: A. Feiguin, Northeastern University, Boston, United States.

More information

An introduction to the dynamical mean-field theory. L. V. Pourovskii

An introduction to the dynamical mean-field theory. L. V. Pourovskii An introduction to the dynamical mean-field theory L. V. Pourovskii Nordita school on Photon-Matter interaction, Stockholm, 06.10.2016 OUTLINE The standard density-functional-theory (DFT) framework An

More information

Continuous time QMC methods

Continuous time QMC methods Continuous time QMC methods Matthias Troyer (ETH Zürich) Philipp Werner (Columbia ETHZ) Emanuel Gull (ETHZ Columbia) Andy J. Millis (Columbia) Olivier Parcollet (Paris) Sebastian Fuchs, Thomas Pruschke

More information

Cluster Extensions to the Dynamical Mean-Field Theory

Cluster Extensions to the Dynamical Mean-Field Theory Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods? Thomas Pruschke Institut für Theoretische Physik Universität

More information

O. Parcollet CEA-Saclay FRANCE

O. Parcollet CEA-Saclay FRANCE Cluster Dynamical Mean Field Analysis of the Mott transition O. Parcollet CEA-Saclay FRANCE Dynamical Breakup of the Fermi Surface in a doped Mott Insulator M. Civelli, M. Capone, S. S. Kancharla, O.P.,

More information

Theory of magnetic interactions in real materials. Mikhail Katsnelson

Theory of magnetic interactions in real materials. Mikhail Katsnelson Theory of magnetic interactions in real materials Mikhail Katsnelson Outline 1. Introduction 2. Exchange interactions from first principles 3. Beyond DFT: correlated systems and LDA+DMFT 4. Applications:

More information

Dual fermion approach to unconventional superconductivity and spin/charge density wave

Dual fermion approach to unconventional superconductivity and spin/charge density wave June 24, 2014 (ISSP workshop) Dual fermion approach to unconventional superconductivity and spin/charge density wave Junya Otsuki (Tohoku U, Sendai) in collaboration with H. Hafermann (CEA Gif-sur-Yvette,

More information

Continuous-time quantum Monte Carlo algorithms for impurity problems

Continuous-time quantum Monte Carlo algorithms for impurity problems Continuous-time quantum Monte Carlo algorithms for impurity problems Michel Ferrero Centre de Physique Théorique Ecole Polytechnique, France Quantum Monte Carlo methods at work for novel phases of matter

More information

NiO - hole doping and bandstructure of charge transfer insulator

NiO - hole doping and bandstructure of charge transfer insulator NiO - hole doping and bandstructure of charge transfer insulator Jan Kuneš Institute for Physics, Uni. Augsburg Collaboration: V. I. Anisimov S. L. Skornyakov A. V. Lukoyanov D. Vollhardt Outline NiO -

More information

Mott transition : beyond Dynamical Mean Field Theory

Mott transition : beyond Dynamical Mean Field Theory Mott transition : beyond Dynamical Mean Field Theory O. Parcollet 1. Cluster methods. 2. CDMFT 3. Mott transition in frustrated systems : hot-cold spots. Coll: G. Biroli (SPhT), G. Kotliar (Rutgers) Ref:

More information

Role of Hund Coupling in Two-Orbital Systems

Role of Hund Coupling in Two-Orbital Systems Role of Hund Coupling in Two-Orbital Systems Gun Sang Jeon Ewha Womans University 2013-08-30 NCTS Workshop on Quantum Condensation (QC13) collaboration with A. J. Kim, M.Y. Choi (SNU) Mott-Hubbard Transition

More information

Spectral Density Functional Theory

Spectral Density Functional Theory Spectral Density Functional Theory Sergej Savrasov Financial support NSF US DOE LANL Collaborators and Content Constructing New Functionals to Access Energetics and Spectra of Correlated Solids Phonons

More information

Realistic Materials Simulations Using Dynamical Mean Field Theory

Realistic Materials Simulations Using Dynamical Mean Field Theory Realistic Materials Simulations sing Dynamical Mean Field Theory Elias Assmann AG Held, Institut für Festkörperphysik, T Wien VSC ser Workshop, Feb 28 2012 Elias Assmann (IFP T Wien) LDA+DMFT VSC Workshop

More information

Orbital polarization in correlated electron systems. A. Lichtenstein University of Hamburg

Orbital polarization in correlated electron systems. A. Lichtenstein University of Hamburg Orbital polarizatio i correlated electro systems A. Lichtestei Uiversity of Hamburg I collaboratios with: S. Bierma, A. Poteryaev, A. Georges (ENS, Paris) E. Pavarii, O.K. Aderse, (MPI-Stuttgart) M. Katselso

More information

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Krzysztof Byczuk Institute of Physics, Augsburg University Institute of Theoretical Physics, Warsaw University October

More information

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models Local moment approach to the multi - orbital single impurity Anderson and Hubbard models Anna Kauch Institute of Theoretical Physics Warsaw University PIPT/Les Houches Summer School on Quantum Magnetism

More information

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a preprint version which may differ from the publisher's version. For additional information about this

More information

Spin and orbital freezing in unconventional superconductors

Spin and orbital freezing in unconventional superconductors Spin and orbital freezing in unconventional superconductors Philipp Werner University of Fribourg Kyoto, November 2017 Spin and orbital freezing in unconventional superconductors In collaboration with:

More information

De l atome au. supraconducteur à haute température critique. O. Parcollet Institut de Physique Théorique CEA-Saclay, France

De l atome au. supraconducteur à haute température critique. O. Parcollet Institut de Physique Théorique CEA-Saclay, France De l atome au 1 supraconducteur à haute température critique O. Parcollet Institut de Physique Théorique CEA-Saclay, France Quantum liquids Quantum many-body systems, fermions (or bosons), with interactions,

More information

Numerical Methods in Quantum Many-body Theory. Gun Sang Jeon Pyeong-chang Summer Institute 2014

Numerical Methods in Quantum Many-body Theory. Gun Sang Jeon Pyeong-chang Summer Institute 2014 Numerical Methods in Quantum Many-body Theory Gun Sang Jeon 2014-08-25 Pyeong-chang Summer Institute 2014 Contents Introduction to Computational Physics Monte Carlo Methods: Basics and Applications Numerical

More information

Diagrammatic extensions of (E)DMFT: Dual boson

Diagrammatic extensions of (E)DMFT: Dual boson Diagrammatic extensions of (E)DMFT: Dual boson IPhT, CEA Saclay, France ISSP, June 25, 2014 Collaborators Mikhail Katsnelson (University of Nijmegen, The Netherlands) Alexander Lichtenstein (University

More information

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory From utzwiller Wave Functions to Dynamical Mean-Field Theory Dieter Vollhardt Autumn School on Correlated Electrons DMFT at 25: Infinite Dimensions Forschungszentrum Jülich, September 15, 2014 Supported

More information

A continuous time algorithm for quantum impurity models

A continuous time algorithm for quantum impurity models ISSP, Aug. 6 p.1 A continuou time algorithm for quantum impurity model Philipp Werner Department of Phyic, Columbia Univerity cond-mat/512727 ISSP, Aug. 6 p.2 Outline Introduction Dynamical mean field

More information

Dynamical Mean-Field Theory for Correlated Electron Materials Dieter Vollhardt

Dynamical Mean-Field Theory for Correlated Electron Materials Dieter Vollhardt Center for Electronic Correlations and Magnetism University of Augsburg Dynamical Mean-Field Theory for Correlated Electron Materials Dieter Vollhardt XXIII Latin American Symposium on Solid State Physics

More information

Quantum Cluster Methods (CPT/CDMFT)

Quantum Cluster Methods (CPT/CDMFT) Quantum Cluster Methods (CPT/CDMFT) David Sénéchal Département de physique Université de Sherbrooke Sherbrooke (Québec) Canada Autumn School on Correlated Electrons Forschungszentrum Jülich, Sept. 24,

More information

Surprising Effects of the Interaction between Electrons in Solids. Dieter Vollhardt

Surprising Effects of the Interaction between Electrons in Solids. Dieter Vollhardt Surprising Effects of the Interaction between Electrons in Solids Dieter Vollhardt Shanghai Jiao Tong University; April 6, 2016 Augsburg: founded in 15 BC Roman Emperor Augustus 63 BC 14 AD Center founded

More information

Nano-DMFT : the electronic structure of small, strongly correlated, systems

Nano-DMFT : the electronic structure of small, strongly correlated, systems Nano-DMFT : the electronic structure of small, strongly correlated, systems Nanoscale Dynamical Mean-Field Theory for Molecules and Mesoscopic Devices in the Strong-Correlation Regime Author: S. Florens,

More information

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Frithjof B. Anders Institut für Theoretische Physik Universität Bremen Göttingen, December

More information

Many-body effects in iron pnictides and chalcogenides

Many-body effects in iron pnictides and chalcogenides Many-body effects in iron pnictides and chalcogenides separability of non-local and dynamical correlation effects Jan M. Tomczak Vienna University of Technology jan.tomczak@tuwien.ac.at Emergent Quantum

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Mar 2006

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Mar 2006 Non-Fermi-liquid phases in the two-band Hubbard model: Finite-temperature exact diagonalization study of Hund s rule coupling A. Liebsch and T. A. Costi Institut für Festkörperforschung, Forschungszentrum

More information

From Materials to Models and Back. Dieter Vollhardt

From Materials to Models and Back. Dieter Vollhardt From Materials to Models and Back Dieter Vollhardt 28 th Edgar Lüscher Seminar, Klosters; February 8, 2017 From Materials to Models and Back - The Need for Models in Condensed Matter Physics - Outline:

More information

/21. Tsuneya Yoshida. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami 2013/6/07 (EQPCM) 1. Kyoto Univ.

/21. Tsuneya Yoshida. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami 2013/6/07 (EQPCM) 1. Kyoto Univ. 2013/6/07 (EQPCM) 1 /21 Tsuneya Yoshida Kyoto Univ. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami T.Y., Satoshi Fujimoto, and Norio Kawakami Phys. Rev. B 85, 125113 (2012) Outline 2 /21

More information

An introduction to Dynamical Mean Field Theory (DMFT) and DFT+DMFT

An introduction to Dynamical Mean Field Theory (DMFT) and DFT+DMFT An introduction to Dynamical Mean Field Theory (DMFT) and DFT+DMFT B. Amadon CEA, DAM, DIF, F-9297 Arpajon, France International summer School in electronic structure Theory: electron correlation in Physics

More information

DMFT and beyond : IPAM, Los Angeles, Jan. 26th 2009 O. Parcollet Institut de Physique Théorique CEA-Saclay, France

DMFT and beyond : IPAM, Los Angeles, Jan. 26th 2009 O. Parcollet Institut de Physique Théorique CEA-Saclay, France DMFT and beyond : From quantum impurities to high temperature superconductors 1 IPAM, Los Angeles, Jan. 26th 29 O. Parcollet Institut de Physique Théorique CEA-Saclay, France Coll : M. Ferrero (IPhT),

More information

Fluctuating exchange theory of dynamical electron correlations and magnetism

Fluctuating exchange theory of dynamical electron correlations and magnetism Fluctuating exchange theory of dynamical electron correlations and magnetism Václav Drchal Institute of Physics ASCR, Praha, Czech Republic Grant Agency of ASCR: project IAA11616 Workshop Frontiers in

More information

Dynamical mean field approach to correlated lattice systems in and out of equilibrium

Dynamical mean field approach to correlated lattice systems in and out of equilibrium Dynamical mean field approach to correlated lattice systems in and out of equilibrium Philipp Werner University of Fribourg, Switzerland Kyoto, December 2013 Overview Dynamical mean field approximation

More information

4 Development of the LDA+DMFT Approach

4 Development of the LDA+DMFT Approach 4 Development of the LDA+DMFT Approach Alexander Lichtenstein I. Institut für Theoretische Physik Universität Hamburg Contents 1 Introduction 2 2 Functional approach: from DFT to DMFT 4 3 Local correlations:

More information

Band calculations: Theory and Applications

Band calculations: Theory and Applications Band calculations: Theory and Applications Lecture 2: Different approximations for the exchange-correlation correlation functional in DFT Local density approximation () Generalized gradient approximation

More information

Quantum impurity models Algorithms and applications

Quantum impurity models Algorithms and applications 1 Quantum impurity models Algorithms and applications Collège de France, 5 Mai 21 O. Parcollet Institut de Physique Théorique CEA-Saclay, France Motivations : why do we need specific algorithms? A few

More information

Double exchange in double perovskites: Ferromagnetism and Antiferromagnetism

Double exchange in double perovskites: Ferromagnetism and Antiferromagnetism Double exchange in double perovskites: Ferromagnetism and Antiferromagnetism Prabuddha Sanyal University of Hyderabad with H. Das, T. Saha Dasgupta, P. Majumdar, S. Ray, D.D. Sarma H. Das, P. Sanyal, D.D.

More information

5 Projectors, Hubbard U, Charge Self-Consistency, and Double-Counting

5 Projectors, Hubbard U, Charge Self-Consistency, and Double-Counting 5 Projectors, Hubbard U, Charge Self-Consistency, and Double-Counting Tim Wehling Institute for Theoretical Physics Bremen Center for Computational Material Sciences University of Bremen Contents 1 Introduction

More information

Topological Kondo Insulators!

Topological Kondo Insulators! Topological Kondo Insulators! Maxim Dzero, University of Maryland Collaborators: Kai Sun, University of Maryland Victor Galitski, University of Maryland Piers Coleman, Rutgers University Main idea Kondo

More information

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, U.S.A. http://wiki.physics.udel.edu/phys824

More information

Mikhail Katsnelson. Theory of Condensed Matter Institute for Molecules and Materials RU

Mikhail Katsnelson. Theory of Condensed Matter Institute for Molecules and Materials RU Theory of carbon-based based magnetism Mikhail Katsnelson Theory of Condensed Matter Institute for Molecules and Materials RU Outline sp magnetism in general: why it is interesting? Defect-induced magnetism

More information

Heavy Fermion systems

Heavy Fermion systems Heavy Fermion systems Satellite structures in core-level and valence-band spectra Kondo peak Kondo insulator Band structure and Fermi surface d-electron heavy Fermion and Kondo insulators Heavy Fermion

More information

Dynamical mean-field theory and strong correlations in solids and molecules

Dynamical mean-field theory and strong correlations in solids and molecules Dynamical mean-field theory and strong correlations in solids and molecules Collaborators: Cedric Weber Peter B. Littlewood Mike C. Payne Gabriel Kotliar David D. O Regan Nicholas D. M. Hine 1 Outlines

More information

Surprising Effects of Electronic Correlations in Solids

Surprising Effects of Electronic Correlations in Solids Center for Electronic Correlations and Magnetism University of Augsburg Surprising Effects of Electronic Correlations in Solids Dieter Vollhardt Supported by TRR 80 FOR 1346 University of Florida, Gainesville;

More information

6. Auxiliary field continuous time quantum Monte Carlo

6. Auxiliary field continuous time quantum Monte Carlo 6. Auxiliary field continuous time quantum Monte Carlo The purpose of the auxiliary field continuous time quantum Monte Carlo method 1 is to calculate the full Greens function of the Anderson impurity

More information

Superconductivity, antiferromagnetism and Mott critical point in the BEDT family

Superconductivity, antiferromagnetism and Mott critical point in the BEDT family Superconductivity, antiferromagnetism and Mott critical point in the BEDT family A.-M. Tremblay P. Sémon, G. Sordi, K. Haule, B. Kyung, D. Sénéchal ISCOM 2013, 14 19 July 2013 Half-filled band: Not always

More information

Kevin Driver 1 Shuai Zhang 1 Burkhard Militzer 1 R. E. Cohen 2.

Kevin Driver 1 Shuai Zhang 1 Burkhard Militzer 1 R. E. Cohen 2. Quantum Monte Carlo Simulations of a Single Iron Impurity in MgO Kevin Driver 1 Shuai Zhang 1 Burkhard Militzer 1 R. E. Cohen 2 1 Department of Earth & Planetary Science University of California, Berkeley

More information

College of Chemistry, Peking University, Beijing, China. Fritz-Haber-Institut der MPG, Berlin, Germany

College of Chemistry, Peking University, Beijing, China. Fritz-Haber-Institut der MPG, Berlin, Germany KITP Program Excitations in Condensed Matter Localized and Itinerant States in a Unified Picture beyond Density Functional Theory Hong Jiang 1, Patrick Rinke 2 and Matthias Scheffler 2 1 College of Chemistry,

More information

Many-body excitations in undoped Graphene

Many-body excitations in undoped Graphene Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran M. Ebrahimkhas: Tehran, Iran E. Ghorbani: Isfahan, Iran A. Gruneis: Vienna, Austria Oct. 20, 2011 Phase diagram of correlations

More information

Theory of carbon-based magnetism

Theory of carbon-based magnetism Theory of carbon-based magnetism Mikhail Katsnelson Theory of Condensed Matter Institute for Molecules and Materials RU Outline sp magnetism in general: why it is interesting? Defect-induced magnetism

More information

Realistic many-body calculations with spatial correlations and for systems with molecular orbitals

Realistic many-body calculations with spatial correlations and for systems with molecular orbitals Realistic many-body calculations with spatial correlations and for systems with molecular orbitals Harald O. Jeschke Johannes Ferber, Hunpyo Lee, Kateryna Foyevtsova, Roser Valentí Institut für Theoretische

More information

Supplementary Information: Exact double-counting in combining the Dynamical Mean Field Theory and the Density Functional Theory

Supplementary Information: Exact double-counting in combining the Dynamical Mean Field Theory and the Density Functional Theory Supplementary Information: Exact double-counting in combining the Dynamical Mean Field Theory and the Density Functional Theory PACS numbers: THE CORRELATION ENERGY FIT The correlation energy of the electron

More information

FROM NODAL LIQUID TO NODAL INSULATOR

FROM NODAL LIQUID TO NODAL INSULATOR FROM NODAL LIQUID TO NODAL INSULATOR Collaborators: Urs Ledermann and Maurice Rice John Hopkinson (Toronto) GORDON, 2004, Oxford Doped Mott insulator? Mott physics: U Antiferro fluctuations: J SC fluctuations

More information

Exotic phases of the Kondo lattice, and holography

Exotic phases of the Kondo lattice, and holography Exotic phases of the Kondo lattice, and holography Stanford, July 15, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. The Anderson/Kondo lattice models Luttinger s theorem 2. Fractionalized

More information

Electronic structure of correlated electron systems. Lecture 2

Electronic structure of correlated electron systems. Lecture 2 Electronic structure of correlated electron systems Lecture 2 Band Structure approach vs atomic Band structure Delocalized Bloch states Fill up states with electrons starting from the lowest energy No

More information

Strong Correlation Effects in Fullerene Molecules and Solids

Strong Correlation Effects in Fullerene Molecules and Solids Strong Correlation Effects in Fullerene Molecules and Solids Fei Lin Physics Department, Virginia Tech, Blacksburg, VA 2461 Fei Lin (Virginia Tech) Correlations in Fullerene SESAPS 211, Roanoke, VA 1 /

More information

DMFT for correlated bosons and boson-fermion mixtures

DMFT for correlated bosons and boson-fermion mixtures DMFT for correlated bosons and boson-fermion mixtures Workshop on Recent developments in dynamical mean-field theory ETH ürich, September 29, 2009 Dieter Vollhardt Supported by Deutsche Forschungsgemeinschaft

More information

Small and large Fermi surfaces in metals with local moments

Small and large Fermi surfaces in metals with local moments Small and large Fermi surfaces in metals with local moments T. Senthil (MIT) Subir Sachdev Matthias Vojta (Augsburg) cond-mat/0209144 Transparencies online at http://pantheon.yale.edu/~subir Luttinger

More information

The Gutzwiller Density Functional Theory

The Gutzwiller Density Functional Theory The Gutzwiller Density Functional Theory Jörg Bünemann, BTU Cottbus I) Introduction 1. Model for an H 2 -molecule 2. Transition metals and their compounds II) Gutzwiller variational theory 1. Gutzwiller

More information

A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra

A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra M. Jarrell, A. Macridin, Th. Maier, D.J. Scalapino Thanks to T. Devereaux, A. Lanzara, W. Meevasana, B. Moritz, G. A. Sawatzky,

More information

The Hubbard model out of equilibrium - Insights from DMFT -

The Hubbard model out of equilibrium - Insights from DMFT - The Hubbard model out of equilibrium - Insights from DMFT - t U Philipp Werner University of Fribourg, Switzerland KITP, October 212 The Hubbard model out of equilibrium - Insights from DMFT - In collaboration

More information

Mott physics: from basic concepts to iron superconductors

Mott physics: from basic concepts to iron superconductors Mott physics: from basic concepts to iron superconductors E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Outline Mott physics: Basic concepts (single orbital & half filling) - Mott

More information

arxiv: v2 [cond-mat.str-el] 27 Feb 2013

arxiv: v2 [cond-mat.str-el] 27 Feb 2013 Spin-boson coupling in continuous-time quantum Monte Carlo Junya Otsuki 1,2 1 Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, D-86135

More information

Spin liquid phases in strongly correlated lattice models

Spin liquid phases in strongly correlated lattice models Spin liquid phases in strongly correlated lattice models Sandro Sorella Wenjun Hu, F. Becca SISSA, IOM DEMOCRITOS, Trieste Seiji Yunoki, Y. Otsuka Riken, Kobe, Japan (K-computer) Williamsburg, 14 June

More information

Introduction to Density Functional Theory

Introduction to Density Functional Theory 1 Introduction to Density Functional Theory 21 February 2011; V172 P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 21 February 2011 Introduction to DFT 2 3 4 Ab initio Computational

More information

Kondo Effect in Nanostructures

Kondo Effect in Nanostructures Kondo Effect in Nanostructures Argonne National Laboratory May 7th 7 Enrico Rossi University of Illinois at Chicago Collaborators: Dirk K. Morr Argonne National Laboratory, May 7 The Kondo-effect R Metal

More information

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms Department of Physics, Hamburg University, Hamburg, Germany SPICE Workshop, Mainz Outline Tune magnetic

More information

Correlation in correlated materials (mostly transition metal oxides) Lucas K. Wagner University of Illinois at Urbana-Champaign

Correlation in correlated materials (mostly transition metal oxides) Lucas K. Wagner University of Illinois at Urbana-Champaign Correlation in correlated materials (mostly transition metal oxides) Lucas K. Wagner University of Illinois at Urbana-Champaign Understanding of correlated materials is mostly phenomenological FN- DMC

More information

Wannier Functions in the context of the Dynamical Mean-Field Approach to strongly correlated materials

Wannier Functions in the context of the Dynamical Mean-Field Approach to strongly correlated materials Wannier Functions in the context of the Dynamical Mean-Field Approach to strongly correlated materials Frank Lechermann I. Institute for Theoretical Physics, University of Hamburg, Germany Ab-initio Many-Body

More information

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models arxiv:1609.03760 Lode Pollet Dario Hügel Hugo Strand, Philipp Werner (Uni Fribourg) Algorithmic developments diagrammatic

More information

Bose-Hubbard Model (BHM) at Finite Temperature

Bose-Hubbard Model (BHM) at Finite Temperature Bose-Hubbard Model (BHM) at Finite Temperature - a Layman s (Sebastian Schmidt) proposal - pick up Diploma work at FU-Berlin with PD Dr. Axel Pelster (Uni Duisburg-Essen) ~ Diagrammatic techniques, high-order,

More information

Quantum impurities in a bosonic bath

Quantum impurities in a bosonic bath Ralf Bulla Institut für Theoretische Physik Universität zu Köln 27.11.2008 contents introduction quantum impurity systems numerical renormalization group bosonic NRG spin-boson model bosonic single-impurity

More information

The LDA+U method: a primer and implementation within SIESTA

The LDA+U method: a primer and implementation within SIESTA The LDA+U method: a primer and implementation within SIESTA Daniel Sánchez-Portal Thanks to Javier Junquera, Sampsa Riikonen and Eduardo Anglada Source of the failure of LDA to describe Mott insulators

More information

Impurities and graphene hybrid structures: insights from first-principles theory

Impurities and graphene hybrid structures: insights from first-principles theory Impurities and graphene hybrid structures: insights from first-principles theory Tim Wehling Institute for Theoretical Physics and Bremen Center for Computational Materials Science University of Bremen

More information

arxiv:cond-mat/ v2 [cond-mat.str-el] 16 Feb 2007

arxiv:cond-mat/ v2 [cond-mat.str-el] 16 Feb 2007 An dynamical-mean-field-theory investigation of specific heat and electronic structure of α and δ-plutonium arxiv:cond-mat/0702342v2 [cond-mat.str-el] 16 Feb 2007 L. V. Pourovskii 1, G. Kotliar 2, M. I.

More information

Metal-Insulator Transitions and Realistic Modelling of Correlated Electron Systems

Metal-Insulator Transitions and Realistic Modelling of Correlated Electron Systems John von Neumann Institute for Computing Metal-Insulator Transitions and Realistic Modelling of Correlated Electron Systems N. Blümer, K. Held, G. Keller, D. Vollhardt published in NIC Symposium 2001,

More information

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES N.M.Plakida Joint Institute for Nuclear Research, Dubna, Russia CORPES, Dresden, 26.05.2005 Publications and collaborators: N.M. Plakida,

More information

Computational Approaches to Quantum Critical Phenomena ( ) ISSP. Fermion Simulations. July 31, Univ. Tokyo M. Imada.

Computational Approaches to Quantum Critical Phenomena ( ) ISSP. Fermion Simulations. July 31, Univ. Tokyo M. Imada. Computational Approaches to Quantum Critical Phenomena (2006.7.17-8.11) ISSP Fermion Simulations July 31, 2006 ISSP, Kashiwa Univ. Tokyo M. Imada collaboration T. Kashima, Y. Noda, H. Morita, T. Mizusaki,

More information

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) New perspectives in superconductors E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) E. Bascones leni@icmm.csic.es Outline Talk I: Correlations in iron superconductors Introduction

More information

Correlation Effects in Real Material

Correlation Effects in Real Material . p.1/55 Correlation Effects in Real Material Tanusri Saha-Dasgupta S.N. Bose National Centre for Basic Sciences Salt Lake, Calcutta, INDIA tanusri@bose.res.in . p.2/55 Outline Introduction: why strong

More information

Superconducting properties of carbon nanotubes

Superconducting properties of carbon nanotubes Superconducting properties of carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf A. De Martino, F. Siano Overview Superconductivity in ropes of nanotubes

More information

Second Lecture: Quantum Monte Carlo Techniques

Second Lecture: Quantum Monte Carlo Techniques Second Lecture: Quantum Monte Carlo Techniques Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden http://www.pks.mpg.de/~aml aml@pks.mpg.de Lecture Notes at http:www.pks.mpg.de/~aml/leshouches

More information

New Perspectives in ab initio Calculations. Semiconducting Oxides

New Perspectives in ab initio Calculations. Semiconducting Oxides for Semiconducting Oxides Volker Eyert Center for Electronic Correlations and Magnetism Institute of Physics, University of Augsburg October 28, 21 Outline LAOSTO 1 LAOSTO 2 Outline LAOSTO 1 LAOSTO 2 Calculated

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

Dynamical mean-field theory

Dynamical mean-field theory Dynamical mean-field theory Marcus Kollar Theoretical Physics III, University of Augsburg, Germany Autumn School: Hands-On DMFT DFG-Forschergruppe 1346 Forschungszentrum Jülich August 4-7, 2011 Outline

More information

Realistic Modeling of Materials with Strongly Correlated Electrons

Realistic Modeling of Materials with Strongly Correlated Electrons Realistic Modeling of Materials with Strongly Correlated Electrons G. Keller 1, K. Held 2, V. Eyert 1, V. I. Anisimov 3, K. Byczuk 1, M. Kollar 1, I. Leonov 1, X. Ren 1, and D. Vollhardt 1 1 Theoretical

More information

Mott insulators. Mott-Hubbard type vs charge-transfer type

Mott insulators. Mott-Hubbard type vs charge-transfer type Mott insulators Mott-Hubbard type vs charge-transfer type Cluster-model description Chemical trend Band theory Self-energy correction Electron-phonon interaction Mott insulators Mott-Hubbard type vs charge-transfer

More information

Mott metal-insulator transition on compressible lattices

Mott metal-insulator transition on compressible lattices Mott metal-insulator transition on compressible lattices Markus Garst Universität zu Köln T p in collaboration with : Mario Zacharias (Köln) Lorenz Bartosch (Frankfurt) T c Mott insulator p c T metal pressure

More information

Local moment approach to multi-orbital Anderson and Hubbard models

Local moment approach to multi-orbital Anderson and Hubbard models Local moment approach to multi-orbital Anderson and Hubbard models Anna Kauch 1 and Krzysztof Byczuk,1 1 Institute of Theoretical Physics, Warsaw University, ul. Hoża 69, PL--681 Warszawa, Poland Theoretical

More information