Quantum impurities in a bosonic bath

Size: px
Start display at page:

Download "Quantum impurities in a bosonic bath"

Transcription

1 Ralf Bulla Institut für Theoretische Physik Universität zu Köln

2 contents introduction quantum impurity systems numerical renormalization group bosonic NRG spin-boson model bosonic single-impurity Anderson model summary

3 contents introduction quantum impurity systems numerical renormalization group bosonic NRG spin-boson model bosonic single-impurity Anderson model summary

4 contents introduction quantum impurity systems numerical renormalization group bosonic NRG spin-boson model bosonic single-impurity Anderson model summary

5 contents introduction quantum impurity systems numerical renormalization group bosonic NRG spin-boson model bosonic single-impurity Anderson model summary

6 contents introduction quantum impurity systems numerical renormalization group bosonic NRG spin-boson model bosonic single-impurity Anderson model summary

7 quantum impurity systems quantum impurity systems impurity bosonic bath fermionic bath small system large system - might have a complicated structure - small number of degrees of freedom - simple structure - continuous spectrum of degrees of freedom

8 quantum impurity systems impurities in a fermionic bath Kondo effect A.C. Hewson, The Kondo Problem to Heavy Fermions temperature dependence of resistivity ρ metal 0 T

9 quantum impurity systems impurities in a fermionic bath Kondo effect A.C. Hewson, The Kondo Problem to Heavy Fermions temperature dependence of resistivity scattering processes of conduction electrons at magnetic impurities ρ c V U V c f f f metal 0 T

10 quantum impurity systems impurities in a fermionic bath Kondo effect A.C. Hewson, The Kondo Problem to Heavy Fermions temperature dependence of resistivity scattering processes of conduction electrons at magnetic impurities ρ c V U V c f f f T K metal screening of magnetic moments due to singlet formation 0 T 1 ` f c f c 2

11 quantum impurity systems impurities in a bosonic bath example: spin-boson model D bosonic bath A H = 1 2 σx ɛσz + X i + 1 X 2 σz λ i (a i + a i ) i ω i a i a i [A.J. Leggett et al., Rev. Mod. Phys. 59, 1 (1987)] describes two-level systems in a dissipative environment (qubits, electron transfer systems, etc.) σ x oscillations σ z(a i + a i ) friction (dissipation)

12 quantum impurity systems impurities in a bosonic bath example: spin-boson model D bosonic bath A describes two-level systems in a dissipative environment (qubits, electron transfer systems, etc.) σ x oscillations σ z(a i + a i ) friction (dissipation) P(t) α=0.1 α=0.3 α=0.5 α=0.7 α= t [F.B. Anders, A. Schiller, Phys. Rev. B 74, (2006)]

13 quantum impurity systems electron transfer P(t) occupation at donor site D A P(t) e kt donor bridge acceptor t

14 quantum impurity systems electron transfer P(t) occupation at donor site D A P(t) e kt donor bridge acceptor quantum-mechanical description: tunneling t ψ D ψ A P 2 σ c Dσ c Aσ + c Aσ c Dσ

15 quantum impurity systems coupling to the environment [R.A. Marcus, J. Chem. Phys. 24, 966 (1956)] D A = dissipation of the energy modeled by the coupling to a bosonic bath [A. Garg, J.N. Onuchic, V. Ambegaokar, J. Chem. Phys. 83, 4491 (1985)] X ω nb nb n (n D n A ) X n n λ n b n + b n

16 quantum impurity systems coupling to the environment [R.A. Marcus, J. Chem. Phys. 24, 966 (1956)] D A = dissipation of the energy modeled by the coupling to a bosonic bath [A. Garg, J.N. Onuchic, V. Ambegaokar, J. Chem. Phys. 83, 4491 (1985)] X ω nb nb n (n D n A ) X n n λ n b n + b n

17 bosonic NRG numerical renormalization group (NRG) K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975) Kondo problem review: R. Bulla, T. Costi, and Th. Pruschke, Rev. Mod. Phys. 80, 395 (2008) (ω) conduction band ω impurity

18 0 E N (r) V ε 0 ε 0 1/2 Λ E N (r) 3 E N+1 (r) N ε N ε N ε N+1 after truncation bosonic NRG (ω) 2... ω Λ Λ 1 Λ 3 Λ 2 Λ Λ (ω) 1. NRG-discretization parameter Λ > 1 (ω) 1 1 ω ε0 ε1 ε2 ε3 V t 0 t 1 t 2 1 Λ 1 Λ 2 Λ 3... Λ 3 Λ 2 Λ 1 1 ω H N : ε0 ε V t 0 t N 1 t 0 t N 1 r,s N+1 : r N s (N+1) H N+1: V t 0 t N 1 t N a) b) c) d)

19 0 E N (r) V ε 0 ε 0 1/2 Λ E N (r) 3 E N+1 (r) N ε N ε N ε N+1 after truncation bosonic NRG (ω) 2... ω Λ Λ 1 Λ 3 Λ 2 Λ Λ 2. logarithmic discretization (ω) (ω) 1 1 ω ε0 ε1 ε2 ε3 V t 0 t 1 t ω H N : ε0 ε V t 0 t N 1 t 0 t N 1 r,s N+1 : r N s (N+1) H N+1: V t 0 t N 1 t N a) b) c) d)

20 0 E N (r) V ε 0 ε 0 1/2 Λ E N (r) 3 E N+1 (r) N ε N ε N ε N+1 after truncation bosonic NRG (ω) 2... ω Λ Λ 1 Λ 3 Λ 2 Λ Λ 3. mapping on semi-infinite chain (ω) 1 1 ω ε ε ε ε ε0 ε1 ε2 ε3 V t 0 t 1 t 2 V t 0 t 1 t 2 H N : ε0 ε V t 0 t N 1 t 0 t N 1 r,s N+1 : r N s (N+1) H N+1: V t 0 t N 1 t N a) b) c) d)

21 0 E N (r) V ε 0 1/2 Λ E N (r) 3 E N+1 (r) N ε N after truncation bosonic NRG (ω) 2... ω Λ Λ 1 Λ 3 Λ 2 Λ Λ 4. iterative diagonalization (ω) ε 0 εn 1 1 ω H : N V t 0 t N 1 ε 0 ε N ε0 ε1 ε2 ε3 V t 0 t 1 t 2 V t 0 t N 1 H N : ε0 ε V t 0 t N 1 r,s N+1 : r N s (N+1) t 0 t N 1 r,s N+1 : r N s (N+1) ε 0 ε N ε N+1 ε 0 ε N ε N+1 H N+1: V t 0 t N 1 t N a) b) c) d) H N+1 : V t 0 t N 1 t N

22 0 E N (r) V ε 0 1/2 Λ E N (r) 3 E N+1 (r) N ε N after truncation bosonic NRG (ω) 2... ω Λ Λ 1 Λ 3 Λ 2 Λ Λ 5. truncation (ω) a) E N (r) b) c) d) 1/2 Λ E N (r) E N+1 (r) after truncation 1 1 ω ε ε ε ε V t 0 t 1 t 2 H N : ε0 ε V t 0 t N 1 t 0 t N 1 r,s : r s (N+1) N+1 N ε 0 ε N ε N+1 H N+1: V t 0 t N 1 t N 0 a) b) c) d)

23 bosonic NRG bosonic NRG bath spectral function J(ω) ε ε ε t t t t 0 1 ε 2 3 ε... 0 Λ 2 Λ 1 1 ω in contrast to fermionic case: keep only a finite number of boson states for each added site: N b 10 for details see: R. Bulla, H.-J. Lee, N.-H. Tong, M. Vojta, Phys. Rev. B 71, (2005)

24 bosonic NRG important: choice of the basis for the added site "standard" basis: s(n + 1) = { n N+1 } with b N+1 b N+1 n N+1 = n n N+1 n = 0, 1,... N b 1 works very well...

25 bosonic NRG important: choice of the basis for the added site "standard" basis: s(n + 1) = { n N+1 } with b N+1 b N+1 n N+1 = n n N+1 n = 0, 1,... N b 1 works very well except for displacement = general question: how to construct the optimal basis?

26 bosonic NRG applications of the bosonic NRG spin-boson model bosonic single-impurity Anderson model electron transfer systems - S. Tornow, N.-H. Tong, R. Bulla, Europhys. Lett. 73, 913 (2006) - S. Tornow, R. Bulla, F.B. Anders, A. Nitzan, Phys. Rev. B 78, (2008) Bose-Fermi Kondo model - M.T. Glossop, K. Ingersent, Phys. Rev. Lett. 95, (2005) Kondo lattice model within extended DMFT - M.T. Glossop, K. Ingersent, Phys. Rev. Lett. 99, (2007) - J.-X. Zhu, S. Kirchner, R. Bulla, Q. Si, Phys. Rev. Lett. 99, (2007)

27 T = 0 phase diagram of the spin-boson model J (ω) = 2παω s ω s < 1: sub-ohmic s = 1: ohmic s > 1: super-ohmic

28 T = 0 phase diagram of the spin-boson model J (ω) = 2παω s ω s < 1: sub-ohmic s = 1: ohmic s > 1: super-ohmic α A.J. Leggett et al., Rev. Mod. Phys. 59, 1 (1987) =10-1 =10-3 =10-5 localized delocalized s phase transition only in the ohmic case (s=1) calculations valid in the limit 0

29 T = 0 phase diagram of the spin-boson model J (ω) = 2παω s R. Bulla, N.-H. Tong, and M. Vojta Phys. Rev. Lett. 91, (2003) 1.5 ω s < 1: sub-ohmic s = 1: ohmic s > 1: super-ohmic α =10-1 =10-3 =10-5 localized delocalized s line of quantum critical points for 0 < s < 1 terminating at s = 1 α c 1 s, this means: α c( 0) = 0 for 0 < s < 1

30 T = 0 phase diagram of the spin-boson model J (ω) = 2παω s R. Bulla, N.-H. Tong, and M. Vojta Phys. Rev. Lett. 91, (2003) 1.5 ω s < 1: sub-ohmic s = 1: ohmic s > 1: super-ohmic α =10-1 =10-3 =10-5 localized delocalized s existence of a phase transition in the sub-ohmic case: S. Kehrein and A. Mielke, Phys. Lett. A 219, 313 (1996)

31 evidence for a line of critical points: structure of the fixed points calculation of physical properties example: entropy 0.80 s=0.8, =0.01 S imp α= α= α= α= α= α= α= α= α= α= critical exponents T M. Vojta, N.-H. Tong, and R. Bulla, Phys. Rev. Lett. 94, (2005)

32 Failure of quantum-classical mapping? spin-boson model one-dimensional Ising model H I = P ij J ijs z i S z j J(ω) ω s J ij = J/ i j 1+s (long range) Ising model: 0 < s < 1/2 : mean-field exponents, β = 1/2, ν = 1/s 1/2 < s < 1 : non-trivial exponents critical exponents defined by M loc (α > α c, T = 0, ε = 0) (α α c) β, T α α c ν

33 A. Winter, H. Rieger, M. Vojta, and R. Bulla The quantum phase transition in the sub-ohmic spin-boson model: Quantum Monte-Carlo study with a continuous imaginary time cluster algorithm arxiv:

34 Bose-Hubbard model µ /V H = X i V X i µb i b i J X <ij> b i b j b i b i b i b i 1 3 MI N=3 2 1 MI N=2 SF MI N=1 M. P. A. Fisher et al., Phys. Rev. B 40, 546 (1989) J/V

35 Is it possible to develop a dynamical mean-field theory for the Bose-Hubbard model? there are many open questions: limit of infinite dimensionality? proper treatment of the superfluid phase? selfconsistency equations? structure of the effective impurity model? K. Byczuk, D. Vollhardt, Phys. Rev. B 77, (2008)

36 bosonic single-impurity Anderson model H = ε 0 b b Ub b b b 1 + X k ε k b k b k + X k V k b k b + b b k (ω) = π X k Vk 2 δ(ω ε k ) = 2π α ωc 1 s ω s, 0 < ω < ω c H.-J. Lee and R. Bulla Quantum Phase Transitions in the Bosonic Single-Impurity Anderson Model Eur. Phys. J. B 56, 199 (2007)

37 phase diagram T = 0, s = 0.6, U = 0.5 Mott phases separated from BEC phase by lines of quantum critical points ε 0 /U BEC n imp =0 n imp =1 n imp =2 n imp =3 n imp = αω c /U

38 impurity occupation α=0 α=0.007 α=0.014 α=0.028 n imp (T=0) ε 0 /U symbols: Mott phase (non-integer values!) dashed lines: BEC phase

39 impurity spectral function V=0.01, U=0.5, ε=-0.7 (b=0.3) V=0.07, U=0.5, ε=-0.7 (b=0.4) V=0.15, U=0.5, ε=-0.7 (b=0.5) A(ω) ω

40 What do we expect for the spectral function in the Mott phase? Α(ω) µ ω spectral weight below the chemical potential A(ω) density of states of the non-interacting bosonic bath in DMFT = mapping on an effective impurity model does not work!

41 summary numerical renormalization group calculations for quantum impurities in a bosonic bath spin-boson model bosonic single-impurity Anderson model the next steps: How to construct the optimal basis? Bose-Hubbard model within DMFT generalized spin-boson models: - coupled spins - nonlinear coupling thanks to: F. Anders, T. Costi, H.-J. Lee, Th. Pruschke, N.-H. Tong, S. Tornow, M. Vojta

(r) 2.0 E N 1.0

(r) 2.0 E N 1.0 The Numerical Renormalization Group Ralf Bulla Institut für Theoretische Physik Universität zu Köln 4.0 3.0 Q=0, S=1/2 Q=1, S=0 Q=1, S=1 E N 2.0 1.0 Contents 1. introduction to basic rg concepts 2. introduction

More information

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach Frithjof B Anders Institut für theoretische Physik, Universität Bremen Concepts in Electron Correlation,

More information

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Frithjof B. Anders Institut für Theoretische Physik Universität Bremen Göttingen, December

More information

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Prof. Luis Gregório Dias DFMT PG5295 Muitos Corpos 1 Electronic Transport in Quantum

More information

Numerical renormalization group method for quantum impurity systems

Numerical renormalization group method for quantum impurity systems Numerical renormalization group method for quantum impurity systems Ralf Bulla* Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Institut für Physik, Universität Augsburg, 86135 Augsburg,

More information

Numerical renormalization group method for quantum impurity systems

Numerical renormalization group method for quantum impurity systems Numerical renormalization group method for quantum impurity systems Ralf Bulla Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Institut für Physik, Universität Augsburg, 86135 Augsburg,

More information

Curriculum Vitae. Ning-Hua Tong

Curriculum Vitae. Ning-Hua Tong Curriculum Vitae Ning-Hua Tong Department of Physics Zhongguancun street 59, 100872 Beijing,China Phone : 0086-10-62515587 Fax : 0086-10-62517887 E-mail: nhtong@ruc.edu.cn PERSONAL DATA: Gender: Male Place

More information

DMFT for correlated bosons and boson-fermion mixtures

DMFT for correlated bosons and boson-fermion mixtures DMFT for correlated bosons and boson-fermion mixtures Workshop on Recent developments in dynamical mean-field theory ETH ürich, September 29, 2009 Dieter Vollhardt Supported by Deutsche Forschungsgemeinschaft

More information

Dynamical mean field approach to correlated lattice systems in and out of equilibrium

Dynamical mean field approach to correlated lattice systems in and out of equilibrium Dynamical mean field approach to correlated lattice systems in and out of equilibrium Philipp Werner University of Fribourg, Switzerland Kyoto, December 2013 Overview Dynamical mean field approximation

More information

Local moment approach to multi-orbital Anderson and Hubbard models

Local moment approach to multi-orbital Anderson and Hubbard models Local moment approach to multi-orbital Anderson and Hubbard models Anna Kauch 1 and Krzysztof Byczuk,1 1 Institute of Theoretical Physics, Warsaw University, ul. Hoża 69, PL--681 Warszawa, Poland Theoretical

More information

arxiv: v2 [cond-mat.str-el] 7 Sep 2010

arxiv: v2 [cond-mat.str-el] 7 Sep 2010 Multiple-charge transfer and trapping in DNA dimers Sabine Tornow, 1 Ralf Bulla, 2 Frithjof B. Anders, 3 and Gertrud Zwicknagl 1 1 Institut für Mathematische Physik, TU Braunschweig, 38106 Braunschweig,

More information

Microscopic structure of entanglement in the many-body environment of a qubit

Microscopic structure of entanglement in the many-body environment of a qubit Microscopic structure of entanglement in the many-body environment of a qubit Serge Florens, [Ne el Institute - CNRS/UJF Grenoble] displacements 0.4 0.2 0.0 0.2 fpol. fanti. fsh 0.4 10-7 : Microscopic

More information

Spatial and temporal propagation of Kondo correlations. Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund

Spatial and temporal propagation of Kondo correlations. Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund Spatial and temporal propagation of Kondo correlations Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund Collaborators Collaborators Benedikt Lechtenberg Collaborators

More information

Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh. Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu

Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh. Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu Introduction: The Kondo effect in metals de Haas, de Boer

More information

Quantum Criticality in Heavy Fermion Metals. Qimiao Si. Rice University

Quantum Criticality in Heavy Fermion Metals. Qimiao Si. Rice University Quantum Criticality in Heavy Fermion Metals Qimiao Si Rice University CM Seminar, Texas A&M U, College Station, Oct. 2, 2009 Pallab Goswami, Jed Pixley Seiji Yamamoto Stefan Kirchner Jian-Xin Zhu, Lijun

More information

Solution of the Anderson impurity model via the functional renormalization group

Solution of the Anderson impurity model via the functional renormalization group Solution of the Anderson impurity model via the functional renormalization group Simon Streib, Aldo Isidori, and Peter Kopietz Institut für Theoretische Physik, Goethe-Universität Frankfurt Meeting DFG-Forschergruppe

More information

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS http://www.staff.science.uu.nl/~mitch003/nrg.html March 2015 Anrew Mitchell Utrecht University Quantum impurity problems Part 1: Quantum impurity problems

More information

Electronic correlations in models and materials. Jan Kuneš

Electronic correlations in models and materials. Jan Kuneš Electronic correlations in models and materials Jan Kuneš Outline Dynamical-mean field theory Implementation (impurity problem) Single-band Hubbard model MnO under pressure moment collapse metal-insulator

More information

arxiv: v2 [cond-mat.str-el] 27 Feb 2013

arxiv: v2 [cond-mat.str-el] 27 Feb 2013 Spin-boson coupling in continuous-time quantum Monte Carlo Junya Otsuki 1,2 1 Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, D-86135

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 11 Aug 2003

arxiv:cond-mat/ v1 [cond-mat.str-el] 11 Aug 2003 Phase diagram of the frustrated Hubbard model R. Zitzler, N. ong, h. Pruschke, and R. Bulla Center for electronic correlations and magnetism, heoretical Physics III, Institute of Physics, University of

More information

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models Local moment approach to the multi - orbital single impurity Anderson and Hubbard models Anna Kauch Institute of Theoretical Physics Warsaw University PIPT/Les Houches Summer School on Quantum Magnetism

More information

Linearized dynamical mean-field theory for the Mott-Hubbard transition

Linearized dynamical mean-field theory for the Mott-Hubbard transition Eur. Phys. J. B 13, 257 264 (2000) THE EUROPEAN PHYSICAL JOURNAL B c EDP Sciences Società Italiana di Fisica Springer-Verlag 2000 Linearized dynamical mean-field theory for the Mott-Hubbard transition

More information

A theoretical study of the single-molecule transistor

A theoretical study of the single-molecule transistor A theoretical study of the single-molecule transistor B. C. Friesen Department of Physics, Oklahoma Baptist University, Shawnee, OK 74804 J. K. Ingersent Department of Physics, University of Florida, Gainesville,

More information

An efficient impurity-solver for the dynamical mean field theory algorithm

An efficient impurity-solver for the dynamical mean field theory algorithm Papers in Physics, vol. 9, art. 95 (217) www.papersinphysics.org Received: 31 March 217, Accepted: 6 June 217 Edited by: D. Domínguez Reviewed by: A. Feiguin, Northeastern University, Boston, United States.

More information

Entanglement spectra in the NRG

Entanglement spectra in the NRG PRB 84, 125130 (2011) Entanglement spectra in the NRG Andreas Weichselbaum Ludwig Maximilians Universität, München Arnold Sommerfeld Center (ASC) Acknowledgement Jan von Delft (LMU) Theo Costi (Jülich)

More information

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory From utzwiller Wave Functions to Dynamical Mean-Field Theory Dieter Vollhardt Autumn School on Correlated Electrons DMFT at 25: Infinite Dimensions Forschungszentrum Jülich, September 15, 2014 Supported

More information

Introduction to DMFT

Introduction to DMFT Introduction to DMFT Lecture 2 : DMFT formalism 1 Toulouse, May 25th 2007 O. Parcollet 1. Derivation of the DMFT equations 2. Impurity solvers. 1 Derivation of DMFT equations 2 Cavity method. Large dimension

More information

arxiv: v2 [cond-mat.str-el] 3 Sep 2012

arxiv: v2 [cond-mat.str-el] 3 Sep 2012 Full density matrix numerical renormalization group calculation of impurity susceptibility and specific heat of the Anderson impurity model arxiv:7.63v [cond-mat.str-el] 3 Sep L. Merker, A. Weichselbaum,

More information

Quantum critical Kondo destruction in the Bose-Fermi Kondo model with a local transverse field

Quantum critical Kondo destruction in the Bose-Fermi Kondo model with a local transverse field PHYSICAL REVIEW B 88, 444 (3 Quantum critical Kondo destruction in the Bose-Fermi Kondo model with a local transverse field Emilian Marius Nica,,* Kevin Ingersent, Jian-Xin Zhu, 3 and Qimiao Si Department

More information

Part III: Impurities in Luttinger liquids

Part III: Impurities in Luttinger liquids Functional RG for interacting fermions... Part III: Impurities in Luttinger liquids 1. Luttinger liquids 2. Impurity effects 3. Microscopic model 4. Flow equations 5. Results S. Andergassen, T. Enss (Stuttgart)

More information

QUANTUM CRITICAL BEHAVIOR IN KONDO SYSTEMS

QUANTUM CRITICAL BEHAVIOR IN KONDO SYSTEMS International Journal of Modern Physics B, Vol. 13, No. 18 (1999) 2331 2342 c World Scientific Publishing Company QUANTUM CRITICAL BEHAVIOR IN KONDO SYSTEMS QIMIAO SI, J. LLEWEILUN SMITH and KEVIN INGERSENT

More information

Quantum phase transitions in a resonant-level model with dissipation: Renormalization-group studies

Quantum phase transitions in a resonant-level model with dissipation: Renormalization-group studies PHYSICAL REVIEW B 76, 353 7 Quantum phase transitions in a resonant-level model with dissipation: Renormalization-group studies Chung-Hou Chung, Matthew T. Glossop, Lars Fritz, 3,4 Marijana Kirćan, 5 Kevin

More information

Anomalous Behavior in an Anderston-Holstein Model. for a Single Molecule Transistor

Anomalous Behavior in an Anderston-Holstein Model. for a Single Molecule Transistor Anomalous Behavior in an Anderston-Holstein Model for a Single Molecule Transistor Alexander Davis Dr Kevin Ingersent August 3, 2011 Abstract This lab was designed to test whether Poisson statistics can

More information

Quantum phase transitions and the Luttinger theorem.

Quantum phase transitions and the Luttinger theorem. Quantum phase transitions and the Luttinger theorem. Leon Balents (UCSB) Matthew Fisher (UCSB) Stephen Powell (Yale) Subir Sachdev (Yale) T. Senthil (MIT) Ashvin Vishwanath (Berkeley) Matthias Vojta (Karlsruhe)

More information

w2dynamics : operation and applications

w2dynamics : operation and applications w2dynamics : operation and applications Giorgio Sangiovanni ERC Kick-off Meeting, 2.9.2013 Hackers Nico Parragh (Uni Wü) Markus Wallerberger (TU) Patrik Gunacker (TU) Andreas Hausoel (Uni Wü) A solver

More information

Present and future prospects of the (functional) renormalization group

Present and future prospects of the (functional) renormalization group Schladming Winter School 2011: Physics at all scales: the renormalization group Present and future prospects of the (functional) renormalization group Peter Kopietz, Universität Frankfurt panel discussion

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

An introduction to the dynamical mean-field theory. L. V. Pourovskii

An introduction to the dynamical mean-field theory. L. V. Pourovskii An introduction to the dynamical mean-field theory L. V. Pourovskii Nordita school on Photon-Matter interaction, Stockholm, 06.10.2016 OUTLINE The standard density-functional-theory (DFT) framework An

More information

Magnetic Moment Collapse drives Mott transition in MnO

Magnetic Moment Collapse drives Mott transition in MnO Magnetic Moment Collapse drives Mott transition in MnO J. Kuneš Institute of Physics, Uni. Augsburg in collaboration with: V. I. Anisimov, A. V. Lukoyanov, W. E. Pickett, R. T. Scalettar, D. Vollhardt,

More information

Dr. Andrew K. Mitchell

Dr. Andrew K. Mitchell Dr. Andrew K. Mitchell Contact Information Research Interests Institut für Theoretische Physik Nationality: British Universität zu Köln DOB: 16/11/1982 Zülpicher Str. 77 Tel: (+49) 221 4704208 50937 Köln

More information

Role of Hund Coupling in Two-Orbital Systems

Role of Hund Coupling in Two-Orbital Systems Role of Hund Coupling in Two-Orbital Systems Gun Sang Jeon Ewha Womans University 2013-08-30 NCTS Workshop on Quantum Condensation (QC13) collaboration with A. J. Kim, M.Y. Choi (SNU) Mott-Hubbard Transition

More information

Open and Reduced Wilson Chains for Quantum Impurity Models

Open and Reduced Wilson Chains for Quantum Impurity Models Open and Reduced Wilson Chains for Quantum Impurity Models Master s Thesis Nils-Oliver Linden Chair of Theoretical Solid State Physics Faculty of Physics Ludwig-Maximilians-University Munich Supervisors:

More information

A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID

A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID ABSTRACT--- I demonstrate a contradiction which arises if we assume that the Fermi surface in a heavy electron metal represents

More information

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models arxiv:1609.03760 Lode Pollet Dario Hügel Hugo Strand, Philipp Werner (Uni Fribourg) Algorithmic developments diagrammatic

More information

Cluster Extensions to the Dynamical Mean-Field Theory

Cluster Extensions to the Dynamical Mean-Field Theory Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods? Thomas Pruschke Institut für Theoretische Physik Universität

More information

The bosonic Kondo effect:

The bosonic Kondo effect: The bosonic Kondo effect: probing spin liquids and multicomponent cold gases Serge Florens Institut für Theorie der Kondensierten Materie (Karlsruhe) with: Lars Fritz, ITKM (Karlsruhe) Matthias Vojta,

More information

Fate of the Kondo impurity in a superconducting medium

Fate of the Kondo impurity in a superconducting medium Karpacz, 2 8 March 214 Fate of the Kondo impurity in a superconducting medium T. Domański M. Curie Skłodowska University Lublin, Poland http://kft.umcs.lublin.pl/doman/lectures Motivation Physical dilemma

More information

arxiv: v2 [cond-mat.str-el] 24 Oct 2008

arxiv: v2 [cond-mat.str-el] 24 Oct 2008 Localized Spins on Graphene P. S. Cornaglia, Gonzalo Usaj, and C. A. Balseiro Centro Atómico Bariloche and Instituto Balseiro, CNEA, 84 Bariloche, Argentina and Consejo Nacional de Investigaciones Científicas

More information

An introduction to Dynamical Mean Field Theory (DMFT) and DFT+DMFT

An introduction to Dynamical Mean Field Theory (DMFT) and DFT+DMFT An introduction to Dynamical Mean Field Theory (DMFT) and DFT+DMFT B. Amadon CEA, DAM, DIF, F-9297 Arpajon, France International summer School in electronic structure Theory: electron correlation in Physics

More information

Quantum Impurities In and Out of Equilibrium. Natan Andrei

Quantum Impurities In and Out of Equilibrium. Natan Andrei Quantum Impurities In and Out of Equilibrium Natan Andrei HRI 1- Feb 2008 Quantum Impurity Quantum Impurity - a system with a few degrees of freedom interacting with a large (macroscopic) system. Often

More information

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl Magnetism, Bad Metals and Superconductivity: Iron Pnictides and Beyond September 11, 2014 Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises Gertrud Zwicknagl Institut

More information

Time Evolving Block Decimation Algorithm

Time Evolving Block Decimation Algorithm Time Evolving Block Decimation Algorithm Application to bosons on a lattice Jakub Zakrzewski Marian Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Center, Jagiellonian University,

More information

Coherence by elevated temperature

Coherence by elevated temperature Coherence by elevated temperature Volker Meden with Dante Kennes, Alex Kashuba, Mikhail Pletyukhov, Herbert Schoeller Institut für Theorie der Statistischen Physik Goal dynamics of dissipative quantum

More information

Numerical Renormalization Group for Quantum Impurities 1

Numerical Renormalization Group for Quantum Impurities 1 B 3 Numerical Renormalization Group for Quantum Impurities 1 T. A. Costi Institute for Advanced Simulation (IAS-3) Forschungszentrum Jülich GmbH Contents 1 Introduction 2 2 Quantum impurity models 3 3

More information

Numerical renormalization group and multi-orbital Kondo physics

Numerical renormalization group and multi-orbital Kondo physics Numerical renormalization group and multi-orbital Kondo physics Theo Costi Institute for Advanced Simulation (IAS-3) and Institute for Theoretical Nanoelectronics (PGI-2) Research Centre Jülich 25th September

More information

5 Numerical renormalization group and multiorbital

5 Numerical renormalization group and multiorbital 5 Numerical renormalization group and multiorbital Kondo physics T. A. Costi Institute for Advanced Simulation (IAS-3) Forschungszentrum Jülich GmbH Contents 1 Introduction 2 2 Quantum impurity models

More information

Phase Diagram of the Multi-Orbital Hubbard Model

Phase Diagram of the Multi-Orbital Hubbard Model Phase Diagram of the Multi-Orbital Hubbard Model Submitted by Bence Temesi BACHELOR THESIS Faculty of Physics at Ludwig-Maximilians-Universität München Supervisor: Prof. Dr. Jan von Delft Munich, August

More information

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 Kondo Effect in Metals and Quantum Dots Jan von Delft

More information

Disordered Ultracold Gases

Disordered Ultracold Gases Disordered Ultracold Gases 1. Ultracold Gases: basic physics 2. Methods: disorder 3. Localization and Related Measurements Brian DeMarco, University of Illinois bdemarco@illinois.edu Localization & Related

More information

Diagrammatic Monte Carlo simulation of quantum impurity models

Diagrammatic Monte Carlo simulation of quantum impurity models Diagrammatic Monte Carlo simulation of quantum impurity models Philipp Werner ETH Zurich IPAM, UCLA, Jan. 2009 Outline Continuous-time auxiliary field method (CT-AUX) Weak coupling expansion and auxiliary

More information

Preface. Preface to the Third Edition. Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Preface. Preface to the Third Edition. Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1 xi Contents Preface Preface to the Third Edition Preface to the Second Edition Preface to the First Edition v vii viii ix 1 Introduction 1 I GENERAL THEORY OF OPEN QUANTUM SYSTEMS 5 Diverse limited approaches:

More information

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Krzysztof Byczuk Institute of Physics, Augsburg University Institute of Theoretical Physics, Warsaw University October

More information

Realistic Materials Simulations Using Dynamical Mean Field Theory

Realistic Materials Simulations Using Dynamical Mean Field Theory Realistic Materials Simulations sing Dynamical Mean Field Theory Elias Assmann AG Held, Institut für Festkörperphysik, T Wien VSC ser Workshop, Feb 28 2012 Elias Assmann (IFP T Wien) LDA+DMFT VSC Workshop

More information

Anderson impurity model at finite Coulomb interaction U: Generalized noncrossing approximation

Anderson impurity model at finite Coulomb interaction U: Generalized noncrossing approximation PHYSICAL REVIEW B, VOLUME 64, 155111 Anderson impurity model at finite Coulomb interaction U: Generalized noncrossing approximation K. Haule, 1,2 S. Kirchner, 2 J. Kroha, 2 and P. Wölfle 2 1 J. Stefan

More information

arxiv: v1 [cond-mat.str-el] 20 Mar 2008

arxiv: v1 [cond-mat.str-el] 20 Mar 2008 arxiv:83.34v1 [cond-mat.str-el] 2 Mar 28 A Numerical Renormalization Group approach to Non-Equilibrium Green s Functions for Quantum Impurity Models Frithjof B. Anders Institut für Theoretische Physik,

More information

Coulomb-Blockade and Quantum Critical Points in Quantum Dots

Coulomb-Blockade and Quantum Critical Points in Quantum Dots Coulomb-Blockade and Quantum Critical Points in Quantum Dots Frithjof B Anders Institut für theoretische Physik, Universität Bremen, Germany funded by the NIC Jülich Collaborators: Theory: Experiment:

More information

Effet Kondo dans les nanostructures: Morceaux choisis

Effet Kondo dans les nanostructures: Morceaux choisis Effet Kondo dans les nanostructures: Morceaux choisis Pascal SIMON Rencontre du GDR Méso: Aussois du 05 au 08 Octobre 2009 OUTLINE I. The traditional (old-fashioned?) Kondo effect II. Direct access to

More information

arxiv: v1 [cond-mat.str-el] 14 Jun 2011

arxiv: v1 [cond-mat.str-el] 14 Jun 2011 Quantum phase transition in the spin boson model S. Florens, D. Venturelli and R. Narayanan arxiv:116.2654v1 [cond-mat.str-el] 14 Jun 211 Abstract In this paper we give a general introduction to quantum

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Serge Florens. ITKM - Karlsruhe. with: Lars Fritz and Matthias Vojta

Serge Florens. ITKM - Karlsruhe. with: Lars Fritz and Matthias Vojta 0.5 setgray0 0.5 setgray1 Universal crossovers and critical dynamics for quantum phase transitions in impurity models Serge Florens ITKM - Karlsruhe with: Lars Fritz and Matthias Vojta p. 1 Summary The

More information

Numerical Methods in Quantum Many-body Theory. Gun Sang Jeon Pyeong-chang Summer Institute 2014

Numerical Methods in Quantum Many-body Theory. Gun Sang Jeon Pyeong-chang Summer Institute 2014 Numerical Methods in Quantum Many-body Theory Gun Sang Jeon 2014-08-25 Pyeong-chang Summer Institute 2014 Contents Introduction to Computational Physics Monte Carlo Methods: Basics and Applications Numerical

More information

Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005.

Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005. Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005. Q 1 (Balents) Are quantum effects important for physics of hexagonal

More information

Evidence for exhaustion in the conductivity of the infinite-dimensional periodic Anderson model

Evidence for exhaustion in the conductivity of the infinite-dimensional periodic Anderson model PHYSICAL REVIEW B VOLUME 60, NUMBER 15 15 OCTOBER 1999-I Evidence for exhaustion in the conductivity of the infinite-dimensional periodic Anderson model A. N. Tahvildar-Zadeh and M. Jarrell Department

More information

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346 Excitonic Condensation in Systems of Strongly Correlated Electrons Jan Kuneš and Pavel Augustinský DFG FOR1346 Motivation - unconventional long-range order incommensurate spin spirals complex order parameters

More information

Quantum gases in the unitary limit and...

Quantum gases in the unitary limit and... Quantum gases in the unitary limit and... Andre LeClair Cornell university Benasque July 2 2010 Outline The unitary limit of quantum gases S-matrix based approach to thermodynamics Application to the unitary

More information

Diagrammatic Monte Carlo methods for Fermions

Diagrammatic Monte Carlo methods for Fermions Diagrammatic Monte Carlo methods for Fermions Philipp Werner Department of Physics, Columbia University PRL 97, 7645 (26) PRB 74, 15517 (26) PRB 75, 8518 (27) PRB 76, 235123 (27) PRL 99, 12645 (27) PRL

More information

Lecture 2: Open quantum systems

Lecture 2: Open quantum systems Phys 769 Selected Topics in Condensed Matter Physics Summer 21 Lecture 2: Open quantum systems Lecturer: Anthony J. Leggett TA: Bill Coish 1. No (micro- or macro-) system is ever truly isolated U = S +

More information

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany)

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany) Phase Diagram of interacting Bose gases in one-dimensional disordered optical lattices R. Citro In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L.

More information

Can electron pairing promote the Kondo state?

Can electron pairing promote the Kondo state? Czech Acad. Scien. in Prague, 6 X 2015 Can electron pairing promote the Kondo state? Tadeusz Domański Marie Curie-Skłodowska University, Lublin, Poland http://kft.umcs.lublin.pl/doman/lectures Issues to

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS NUMERICAL METODS FOR QUANTUM IMPURITY MODELS http://www.staff.science.uu.nl/~mitch003/nrg.html March 2015 Andrew Mitchell, Utrecht University Quantum impurity problems Part 1: Quantum impurity problems

More information

Purely electronic transport in dirty boson insulators

Purely electronic transport in dirty boson insulators Purely electronic transport in dirty boson insulators Markus Müller Ann. Phys. (Berlin) 18, 849 (2009). Discussions with M. Feigel man, M.P.A. Fisher, L. Ioffe, V. Kravtsov, Abdus Salam International Center

More information

Metal-Insulator Transitions at Surfaces

Metal-Insulator Transitions at Surfaces Metal-Insulator Transitions at Surfaces Michael Potthoff Lehrstuhl Festkörpertheorie, Institut für Physik, Humboldt-Universität zu Berlin, Germany Abstract. Various types of metal-insulator transitions

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

1 Wilson s Numerical Renormalization Group

1 Wilson s Numerical Renormalization Group 1 Wilson s Numerical Renormalization Group Theo Costi Theoretische Physik III, Universität Augsburg, D-86135 Augsburg, Germany The idea of the numerical renormalization group (NRG) for a quantummechanical

More information

Quantum Criticality and Emergent Phases in Heavy Fermion Metals

Quantum Criticality and Emergent Phases in Heavy Fermion Metals Quantum Criticality and Emergent Phases in Heavy Fermion Metals Qimiao Si Rice University Hangzhou Workshop on Quantum Matter, April 23, 2013 Jed Pixley, Jianda Wu, Emil Nica Rong Yu, Wenxin Ding (Rice

More information

Supersolids. Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin

Supersolids. Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin Supersolids Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin This is a lively controversy in condensed matter physics. Experiment says yes. Theory says no, or at best maybe.

More information

LECTURE 3 WORM ALGORITHM FOR QUANTUM STATISTICAL MODELS

LECTURE 3 WORM ALGORITHM FOR QUANTUM STATISTICAL MODELS LECTURE 3 WORM ALGORITHM FOR QUANTUM STATISTICAL MODELS LECTURE 3 WORM ALGORITHM FOR QUANTUM STATISTICAL MODELS Path-integral for lattice bosons*: oriented closed loops, of course LECTURE 3 WORM ALGORITHM

More information

Signatures of Superfluidity in Dilute Fermi Gases near a Feshbach Resonance

Signatures of Superfluidity in Dilute Fermi Gases near a Feshbach Resonance Signatures of Superfluidity in Dilute ermi Gases near a eshbach Resonance A. Bulgac (Seattle), Y. Yu (Seattle Lund) P.. Bedaque (Berkeley), G.. Bertsch (Seattle), R.A. Broglia (Milan), A.C. onseca (Lisbon)

More information

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA LCI -birthplace of liquid crystal display May, 4 1970 protests Fashion school is in top-3 in USA Clinical Psychology program is Top-5 in USA Topological insulators driven by electron spin Maxim Dzero Kent

More information

Quantum magnetism and the theory of strongly correlated electrons

Quantum magnetism and the theory of strongly correlated electrons Quantum magnetism and the theory of strongly correlated electrons Johannes Reuther Freie Universität Berlin Helmholtz Zentrum Berlin? Berlin, April 16, 2015 Johannes Reuther Quantum magnetism () Berlin,

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Mar 2006

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Mar 2006 Non-Fermi-liquid phases in the two-band Hubbard model: Finite-temperature exact diagonalization study of Hund s rule coupling A. Liebsch and T. A. Costi Institut für Festkörperforschung, Forschungszentrum

More information

Quantum phase transition and conductivity of parallel quantum dots with a moderate Coulomb interaction

Quantum phase transition and conductivity of parallel quantum dots with a moderate Coulomb interaction Journal of Physics: Conference Series PAPER OPEN ACCESS Quantum phase transition and conductivity of parallel quantum dots with a moderate Coulomb interaction To cite this article: V S Protsenko and A

More information

Dynamical Mean Field within Iterative Perturbation Theory

Dynamical Mean Field within Iterative Perturbation Theory Vol. 111 (2007) ACTA PHYSICA POLONICA A No. 5 Proceedings of the XII National School Correlated Electron Systems..., Ustroń 2006 Dynamical Mean Field within Iterative Perturbation Theory B. Radzimirski

More information

Orthogonality Catastrophe

Orthogonality Catastrophe Filiberto Ares Departamento de Física Teórica Universidad de Zaragoza Orthogonality Catastrophe Martes Cuantico, April 17 What is Orthogonality Catastrophe (OC)? 2 / 23 2 / 23 What is Orthogonality Catastrophe

More information

Quantum many-body systems and tensor networks: simulation methods and applications

Quantum many-body systems and tensor networks: simulation methods and applications Quantum many-body systems and tensor networks: simulation methods and applications Román Orús School of Physical Sciences, University of Queensland, Brisbane (Australia) Department of Physics and Astronomy,

More information

The Mott Metal-Insulator Transition

The Mott Metal-Insulator Transition Florian Gebhard The Mott Metal-Insulator Transition Models and Methods With 38 Figures Springer 1. Metal Insulator Transitions 1 1.1 Classification of Metals and Insulators 2 1.1.1 Definition of Metal

More information

Advanced Computation for Complex Materials

Advanced Computation for Complex Materials Advanced Computation for Complex Materials Computational Progress is brainpower limited, not machine limited Algorithms Physics Major progress in algorithms Quantum Monte Carlo Density Matrix Renormalization

More information

Kondo satellites in photoemission spectra of heavy fermion compounds

Kondo satellites in photoemission spectra of heavy fermion compounds Kondo satellites in photoemission spectra of heavy fermion compounds P. Wölfle, Universität Karlsruhe J. Kroha, Universität Bonn Outline Introduction: Kondo resonances in the photoemission spectra of Ce

More information

Metal - Insulator transitions: overview, classification, descriptions

Metal - Insulator transitions: overview, classification, descriptions Metal - Insulator transitions: overview, classification, descriptions Krzysztof Byczuk Institute of Physics, Augsburg University http://www.physik.uni-augsburg.de/theo3/kbyczuk/index.html January 19th,

More information