A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra

Size: px
Start display at page:

Download "A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra"

Transcription

1 A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra M. Jarrell, A. Macridin, Th. Maier, D.J. Scalapino Thanks to T. Devereaux, A. Lanzara, W. Meevasana, B. Moritz, G. A. Sawatzky, and F. C. Zhang Dresden, April 07

2 Outline Graf HE kink Model + DCA Results for Spectra Possible Method to Analyze Cuprates Conclusion Σ= Ū χcs Ū

3 Some High Energy Kink References J. Graf, et al., preprint, cond-mat/ W. Meevasana, et al., preprint, cond-mat/ T. Valla, et al., preprint, cond-mat/ J. Chang, et al., preprint, cond-mat/ B. P. Xie, et al., preprint, cond-mat/ Z.-H. Pan, et al., preprint, cond-mat/ Q.-H. Wang, et al., preprint, cond-mat/ C. Grober, et al., Phys. Rev. B 62, 4336 (2000). S. Odashima, et al., Phys. Rev. B 72, (2005). F. Ronning, et al., Phys. Rev. B 71, (2005). E. Manousakis, preprint, cond-mat/ K. Byczuk, et al., Nature Physics, cond-mat/ A. Macridin, et al. preprint,cond-mat/ cond-mat/ J. Graf, et al., preprint, cond-mat/ [4] W. Meevasana, et al., preprint, cond-mat/ [5] T. Valla, et al., preprint, cond-mat/ [6] J. Chang, et al., preprint, cond-mat/ [7] B. P. Xie, et al., preprint, cond-mat/ [8] Z.-H. Pan, et al., preprint, cond-mat/

4 High-Energy Kink (overdoped Bi2201) HE kink beginning at about ev High energy band (bottom) falls below LDA Meevasana et al., cond-mat/

5 Modelling The Cuprates U t (Zhang and Rice, PRB 1988, P.W. Anderson) U=W=8t 2eV for the cuprates

6 Small Parameter? BCS (conventional) SC: Small parameter: Cuprate (unconventional) SC: No small energy scale: But in Cuprates: Electron-phonon vertex: Thurston et al. (1989) Neglect classes of diagrams: Short-ranged AF correlations

7 Dynamical Cluster Approximation Periodic Lattice DCA (M. Hettler, PRB) Short length scales, within the cluster, treated explicitly. Long length scales treated within a mean field. Effective Medium For a review of quantum cluster approaches: Th. Maier et al., Rev. Mod. Phys. 77, pp (2005).

8 QMC Cluster Solver Effective Medium procs. QMC in the Infinite Dimensional Limit, M. Jarrell, QMC Methods in CM Physics, Ed. M. Suzuki, (World Scientific, 1993), p The Hubbard Model in Infinite Dimensions: A QMC Study, Mark Jarrell, Phys. Rev. Lett. 69, (July 1992). A QMC Algorithm for Non-local Corrections to the Dynamical Mean-Field Approximation, M. Jarrell, PRB 64, /1-23 (2001). ORNL/CES X1e, Xt3

9 4-site cluster DCA - 2D Hubbard model U=8t MJ, EPL, 2001 Nc=4, U=W=2, t'=0

10 Inverse d-wave pairing susceptibility (U=4t; n=0.90) Cluster 4A Superconducting Transition Th. Maier, PRL Zd 0(MF) 8A 1 12A 16B A 20A 24A 26A

11 The Mechanism: Clues from the pairing matrix P = + P = (1 - ) 1 Γ Nc=24, U=4t, N=0.9 χs((p,p), m) ((,0), n) Th. Maier, PRL T/t n, m/t

12 Nonlocal corrections in spectra A(k, =0) U=8t, t=8 ( ) (0,0) DMF DCA (Nc=16) Non-local corrections to DMF distort the Fermi surface. Act like t' (t'') Phys. Rev. B 66, (2002).

13 High-Energy Kink in the 2D Hubbard Model Ekink -t (0,0) =(,0) (0,0) n=0.8, (, )U=8t, cluster 16B, Kink at Ekink -t (0,0) Dispersion below bare band A. Macridin unpublished

14 High Energy Kink in the Self Energy Features below kink energy Ekink depend weakly on K QP Peaks in A(k, ) when Re( + - E(k) - (k, ))=0 intersection of black and blue lines -Im (k, ) large for Ekink Abrupt change in slope of Re (k, ) for Ekink signals the start of the waterfall structure in spectra. Dispersion for large falls below bare result by causality. Here, Re (k, ) ~ a/, where a= d (-1/ Im (k, ) >0

15 Bandstructure (t') changes waterfall t'=-0.3t (0,0) (, ) dive more steep for h-doped (t'<0) less steep for e-doped (t'>0, but AF) t'=0 (0,0) (, ) A. Macridin, PRL (2006)

16 Origin of the HE Kink Σ= Ū χcs Ū n=0.8, U=8t, cluster 16B, Ekink = - t Spin, charge, and pair terms (different ). Spin dominates Ū<U due to QP renormalization. Spin RSO used for cuprates and Heavy Fermions Kampf & Schrieffer, RPB 42 (1990). M. Norman, PRL. 59, 232 (1987). Berk & Schrieffer, PRL (1966). (0,0) (, ) (0,0) (,0) Valla, ibid.

17 Origin of the Kink in RSO k magnon dispersion 2J k (0,0) (, ) (, ) (0,0) RSO and DCA/QMC self energies agree for <0. HE kink comes from QP scattering from high energy spin fluctuations. A. Macridin unpublished cm

18 HE Spin Excitations and doping

19 RSO Applied to Superconductivity Σ= Ū χcs Ū where now = ( Ū(T) About the same Ū obtained from A(k, ) T Φd((π,0),ωn) pp ωn )

20 Possible method to analyze experiment Extract spin S(q, ) from neutron scat. use to calculate (k, )= χcs Compare to ARPES to determine Ū Ū Ū χcs Use interaction in a DCA extension of Migdal Eliashberg (J. Hague) to calculate superconducting properties Σ= Ū χcs Ū Test 1-band model and spin-fluctuation mediated pairingfor the cuprates.

21 Conclusion DCA-QMC simulations of 1-band model captures many cuprate features HE kink in 2D HM due to coupling to HE spin fluctuations Features <0 are well described by coupling quasiparticle to spin fluctuations. Same approximation captures superconducting properties. Contributes to the method used to analyze experiment

22 Magnons in 214

Strength of the spin fluctuation mediated pairing interaction in YBCO 6.6

Strength of the spin fluctuation mediated pairing interaction in YBCO 6.6 Universität Tübingen Lehrstuhl für Theoretische Festkörperphysik Strength of the spin fluctuation mediated pairing interaction in YBCO 6.6 Thomas Dahm Institut für Theoretische Physik Universität Tübingen

More information

arxiv:cond-mat/ v2 [cond-mat.supr-con] 1 Dec 2005

arxiv:cond-mat/ v2 [cond-mat.supr-con] 1 Dec 2005 Systematic study of d-wave superconductivity in the 2D repulsive Hubbard model arxiv:cond-mat/0504529v2 [cond-mat.supr-con] 1 Dec 2005 T.A. Maier, 1 M. Jarrell, 2 T.C. Schulthess, 1 P. R. C. Kent, 3 and

More information

Cluster Extensions to the Dynamical Mean-Field Theory

Cluster Extensions to the Dynamical Mean-Field Theory Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods? Thomas Pruschke Institut für Theoretische Physik Universität

More information

Paramagnon-induced dispersion anomalies in the cuprates

Paramagnon-induced dispersion anomalies in the cuprates PHYSICAL REVIEW B 76, 7454 7 Paramagnon-induced dispersion anomalies in the cuprates R. S. Markiewicz, S. Sahrakorpi, and A. Bansil Physics Department, Northeastern University, Boston, Massachusetts 5,

More information

Quantum Cluster Simulations of Low D Systems

Quantum Cluster Simulations of Low D Systems Quantum Cluster Simulations of Low D Systems Electronic Correlations on Many Length Scales M. Jarrell, University of Cincinnati High Perf. QMC Hybrid Method SP Sep. in 1D NEW MEM SP Sep. in 1D 2-Chain

More information

Extreme scale simulations of high-temperature superconductivity. Thomas C. Schulthess

Extreme scale simulations of high-temperature superconductivity. Thomas C. Schulthess Extreme scale simulations of high-temperature superconductivity Thomas C. Schulthess T [K] Superconductivity: a state of matter with zero electrical resistivity Heike Kamerlingh Onnes (1853-1926) Discovery

More information

requires going beyond BCS theory to include inelastic scattering In conventional superconductors we use Eliashberg theory to include the electron-

requires going beyond BCS theory to include inelastic scattering In conventional superconductors we use Eliashberg theory to include the electron- MECHANISM requires going beyond BCS theory to include inelastic scattering In conventional superconductors we use Eliashberg theory to include the electron- A serious limitation of BCS theory is that it

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

How to model holes doped into a cuprate layer

How to model holes doped into a cuprate layer How to model holes doped into a cuprate layer Mona Berciu University of British Columbia With: George Sawatzky and Bayo Lau Hadi Ebrahimnejad, Mirko Moller, and Clemens Adolphs Stewart Blusson Institute

More information

Neutron scattering from quantum materials

Neutron scattering from quantum materials Neutron scattering from quantum materials Bernhard Keimer Max Planck Institute for Solid State Research Max Planck UBC UTokyo Center for Quantum Materials Detection of bosonic elementary excitations in

More information

O. Parcollet CEA-Saclay FRANCE

O. Parcollet CEA-Saclay FRANCE Cluster Dynamical Mean Field Analysis of the Mott transition O. Parcollet CEA-Saclay FRANCE Dynamical Breakup of the Fermi Surface in a doped Mott Insulator M. Civelli, M. Capone, S. S. Kancharla, O.P.,

More information

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Phase diagram

More information

arxiv: v1 [cond-mat.supr-con] 28 May 2018

arxiv: v1 [cond-mat.supr-con] 28 May 2018 Evidence for Multiple Underlying Fermi Surface and Isotropic Energy Gap in the Cuprate Parent Compound Ca 2 CuO 2 Cl 2 Cheng Hu 1,2, Jian-Fa Zhao 1,2, Ying Ding 1,2, Jing Liu 1,2, Qiang arxiv:1805.10991v1

More information

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli Department of Physics & Astronomy University of British Columbia Vancouver, B.C. Outline: Part I State-of-the-Art

More information

Dual fermion approach to unconventional superconductivity and spin/charge density wave

Dual fermion approach to unconventional superconductivity and spin/charge density wave June 24, 2014 (ISSP workshop) Dual fermion approach to unconventional superconductivity and spin/charge density wave Junya Otsuki (Tohoku U, Sendai) in collaboration with H. Hafermann (CEA Gif-sur-Yvette,

More information

Can superconductivity emerge out of a non Fermi liquid.

Can superconductivity emerge out of a non Fermi liquid. Can superconductivity emerge out of a non Fermi liquid. Andrey Chubukov University of Wisconsin Washington University, January 29, 2003 Superconductivity Kamerling Onnes, 1911 Ideal diamagnetism High Tc

More information

arxiv: v1 [cond-mat.supr-con] 5 Dec 2017

arxiv: v1 [cond-mat.supr-con] 5 Dec 2017 International Journal of Modern Physics B c World Scientific Publishing Company arxiv:1712.01624v1 [cond-mat.supr-con] 5 Dec 2017 How to pin down the pairing interaction for high T c superconductivity

More information

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES N.M.Plakida Joint Institute for Nuclear Research, Dubna, Russia CORPES, Dresden, 26.05.2005 Publications and collaborators: N.M. Plakida,

More information

Metal-insulator transitions

Metal-insulator transitions Metal-insulator transitions Bandwidth control versus fillig control Strongly correlated Fermi liquids Spectral weight transfer and mass renormalization Bandwidth control Filling control Chemical potential

More information

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018 High Tc superconductivity in cuprates: Determination of pairing interaction Han-Yong Choi / SKKU SNU Colloquium May 30 018 It all began with Discovered in 1911 by K Onnes. Liquid He in 1908. Nobel prize

More information

André-Marie Tremblay

André-Marie Tremblay André-Marie Tremblay CENTRE DE RECHERCHE SUR LES PROPRIÉTÉS ÉLECTRONIQUES DE MATÉRIAUX AVANCÉS Sponsors: Pairing vs antiferromagnetism in the cuprates 1. Motivation, model 2. The standard approach : -

More information

Quantum dynamics in many body systems

Quantum dynamics in many body systems Quantum dynamics in many body systems Eugene Demler Harvard University Collaborators: David Benjamin (Harvard), Israel Klich (U. Virginia), D. Abanin (Perimeter), K. Agarwal (Harvard), E. Dalla Torre (Harvard)

More information

Fine Details of the Nodal Electronic Excitations in Bi 2 Sr 2 CaCu 2 O 8+δ

Fine Details of the Nodal Electronic Excitations in Bi 2 Sr 2 CaCu 2 O 8+δ Fine Details of the Nodal Electronic Excitations in Bi 2 Sr 2 CaCu 2 O 8+δ T. Valla, T. E. Kidd, J. D. Rameau, H.-J. Noh, G. D. Gu, and P. D. Johnson Condensed Matter and Materials Science Department,

More information

Superconductivity, antiferromagnetism and Mott critical point in the BEDT family

Superconductivity, antiferromagnetism and Mott critical point in the BEDT family Superconductivity, antiferromagnetism and Mott critical point in the BEDT family A.-M. Tremblay P. Sémon, G. Sordi, K. Haule, B. Kyung, D. Sénéchal ISCOM 2013, 14 19 July 2013 Half-filled band: Not always

More information

Spin-Charge Separation in 1-D. Spin-Charge Separation in 1-D. Spin-Charge Separation - Experiment. Spin-Charge Separation - Experiment

Spin-Charge Separation in 1-D. Spin-Charge Separation in 1-D. Spin-Charge Separation - Experiment. Spin-Charge Separation - Experiment Spin-Charge Separation in 1-D Lecture: Solvable 1D electron systems, Mott insulator and correlated electron systems in 2D Solid State Spectroscopy Course 25/2/2013 Spin : J Charge : t Decay of a photohole

More information

Predicting New BCS Superconductors. Marvin L. Cohen Department of Physics, University of. Lawrence Berkeley Laboratory Berkeley, CA

Predicting New BCS Superconductors. Marvin L. Cohen Department of Physics, University of. Lawrence Berkeley Laboratory Berkeley, CA Predicting New BCS Superconductors Marvin L. Cohen Department of Physics, University of California, and Materials Sciences Division, Lawrence Berkeley Laboratory Berkeley, CA CLASSES OF SUPERCONDUCTORS

More information

Many-body theory versus simulations for the pseudogap in the Hubbard model

Many-body theory versus simulations for the pseudogap in the Hubbard model PHYSICAL REVIEW B VOLUME 61, NUMBER 12 15 MARCH 2000-II Many-body theory versus simulations for the pseudogap in the Hubbard model S. Moukouri, * S. Allen, F. Lemay, B. Kyung, and D. Poulin Département

More information

Spin and orbital freezing in unconventional superconductors

Spin and orbital freezing in unconventional superconductors Spin and orbital freezing in unconventional superconductors Philipp Werner University of Fribourg Kyoto, November 2017 Spin and orbital freezing in unconventional superconductors In collaboration with:

More information

High Temperature Superconductivity - After 20 years, where are we at?

High Temperature Superconductivity - After 20 years, where are we at? High Temperature Superconductivity - After 20 years, where are we at? Michael Norman Materials Science Division Argonne National Laboratory Norman and Pepin, Rep. Prog. Phys. (2003) Norman, Pines, and

More information

The High T c Superconductors: BCS or Not BCS?

The High T c Superconductors: BCS or Not BCS? The University of Illinois at Chicago The High T c Superconductors: BCS or Not BCS? Does BCS theory work for the high temperature superconductors? We take a look at the electronic excitations using angle

More information

Polaronic Effects in the Lightly Doped Cuprates. Kyle M. Shen Stanford University

Polaronic Effects in the Lightly Doped Cuprates. Kyle M. Shen Stanford University Polaronic Effects in the Lightly Doped Cuprates Kyle M. Shen Stanford University April 6, 2005 ARPES Studies of the Cuprates Temperature (K) AFI Bi 2 Sr 2 CaCu 2 O 8+δ Bi 2 Sr 2 CuO 6+δ YBa 2 Cu 3 O 7-δ

More information

Introduction to Angle-Resolved Photoelectron Spectroscopy Andrea Damascelli

Introduction to Angle-Resolved Photoelectron Spectroscopy Andrea Damascelli Introduction to Angle-Resolved Photoelectron Spectroscopy Andrea Damascelli Department of Physics & Astronomy University of British Columbia Vancouver, B.C. Group: Electronic Structure of Solids AMPEL

More information

High-T c superconductors

High-T c superconductors High-T c superconductors Parent insulators Carrier doping Band structure and Fermi surface Pseudogap, superconducting gap, superfluid Nodal states Bilayer, trilayer Stripes High-T c superconductors Parent

More information

Key words: High Temperature Superconductors, ARPES, coherent quasiparticle, incoherent quasiparticle, isotope substitution.

Key words: High Temperature Superconductors, ARPES, coherent quasiparticle, incoherent quasiparticle, isotope substitution. Lattice Dynamics and Electron Pairing in High Temperature Superconductors A. Lanzara 1,2, G.-H. Gweon 3, S. Y. Zhou 1 1 Department of Physics, University of California, Berkeley, CA 94720, U.S.A. 2 Materials

More information

Anisotropic Magnetic Structures in Iron-Based Superconductors

Anisotropic Magnetic Structures in Iron-Based Superconductors Anisotropic Magnetic Structures in Iron-Based Superconductors Chi-Cheng Lee, Weiguo Yin & Wei Ku CM-Theory, CMPMSD, Brookhaven National Lab Department of Physics, SUNY Stony Brook Another example of SC

More information

Angle Resolved Photoemission Spectroscopy. Dan Dessau University of Colorado, Boulder

Angle Resolved Photoemission Spectroscopy. Dan Dessau University of Colorado, Boulder Angle Resolved Photoemission Spectroscopy Dan Dessau University of Colorado, Boulder Dessau@Colorado.edu Photoemission Spectroscopy sample hn Energy High K.E. Low B.E. e - analyzer E F e- hν Density of

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies on-line at http://pantheon.yale.edu/~subir

More information

Heavy Fermion systems

Heavy Fermion systems Heavy Fermion systems Satellite structures in core-level and valence-band spectra Kondo peak Kondo insulator Band structure and Fermi surface d-electron heavy Fermion and Kondo insulators Heavy Fermion

More information

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy Computational strongly correlated materials R. Torsten Clay Physics & Astronomy Current/recent students Saurabh Dayal (current PhD student) Wasanthi De Silva (new grad student 212) Jeong-Pil Song (finished

More information

Quantum Cluster Methods (CPT/CDMFT)

Quantum Cluster Methods (CPT/CDMFT) Quantum Cluster Methods (CPT/CDMFT) David Sénéchal Département de physique Université de Sherbrooke Sherbrooke (Québec) Canada Autumn School on Correlated Electrons Forschungszentrum Jülich, Sept. 24,

More information

NiO - hole doping and bandstructure of charge transfer insulator

NiO - hole doping and bandstructure of charge transfer insulator NiO - hole doping and bandstructure of charge transfer insulator Jan Kuneš Institute for Physics, Uni. Augsburg Collaboration: V. I. Anisimov S. L. Skornyakov A. V. Lukoyanov D. Vollhardt Outline NiO -

More information

De l atome au. supraconducteur à haute température critique. O. Parcollet Institut de Physique Théorique CEA-Saclay, France

De l atome au. supraconducteur à haute température critique. O. Parcollet Institut de Physique Théorique CEA-Saclay, France De l atome au 1 supraconducteur à haute température critique O. Parcollet Institut de Physique Théorique CEA-Saclay, France Quantum liquids Quantum many-body systems, fermions (or bosons), with interactions,

More information

A brief Introduction of Fe-based SC

A brief Introduction of Fe-based SC Part I: Introduction A brief Introduction of Fe-based SC Yunkyu Bang (Chonnam National Univ., Kwangju, Korea) Lecture 1: Introduction 1. Overview 2. What is sign-changing s-wave gap : +/-s-wave gap Lecture

More information

Vertex-corrected perturbation theory for the electron-phonon problem with nonconstant density of states

Vertex-corrected perturbation theory for the electron-phonon problem with nonconstant density of states PHYSICAL REVIEW B VOLUME 58, NUMBER 17 1 NOVEMBER 1998-I Vertex-corrected perturbation theory for the electron-phonon problem with nonconstant density of states J. K. Freericks Department of Physics, Georgetown

More information

Low energy excitations in cuprates: an ARPES perspective. Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan.

Low energy excitations in cuprates: an ARPES perspective. Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan. Low energy excitations in cuprates: an ARPES perspectie Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan. 15, 2014 Acknowledgements Shen Group Professor Zhi-Xun Shen Dr.

More information

Electron spectroscopy on high temperature superconductors and other novel materials. Gey Hong Gweon

Electron spectroscopy on high temperature superconductors and other novel materials. Gey Hong Gweon Electron spectroscopy on high temperature superconductors and other novel materials Gey Hong Gweon Credits Simon Bell Gregory Kaminsky Ahram Kim Jianqiao Meng Matthew Brunner Brandon McGuire James Hinton

More information

One-dimensional systems. Spin-charge separation in insulators Tomonaga-Luttinger liquid behavior Stripes: one-dimensional metal?

One-dimensional systems. Spin-charge separation in insulators Tomonaga-Luttinger liquid behavior Stripes: one-dimensional metal? One-dimensional systems Spin-charge separation in insulators Tomonaga-Luttinger liquid behavior Stripes: one-dimensional metal? One-dimensional systems Spin-charge separation in insulators Spin-charge

More information

Optical conductivity and kinetic energy of the superconducting state: A cluster dynamical mean field study

Optical conductivity and kinetic energy of the superconducting state: A cluster dynamical mean field study January 27 EPL, 77 (27) 277 doi: 1.129/295-575/77/277 www.epljournal.org Optical conductivity and kinetic energy of the superconducting state: A cluster dynamical mean field study K. Haule and G. Kotliar

More information

Effect of the magnetic resonance on the electronic spectra of high-t c superconductors

Effect of the magnetic resonance on the electronic spectra of high-t c superconductors Effect of the magnetic resonance on the electronic spectra of high- c superconductors M. Eschrig 1, and M.. Norman 1 1 Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 Institut

More information

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) New perspectives in superconductors E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) E. Bascones leni@icmm.csic.es Outline Talk I: Correlations in iron superconductors Introduction

More information

Seconde partie: Quelques questions liées au transport dans les matériaux à fortes corrélations électroniques

Seconde partie: Quelques questions liées au transport dans les matériaux à fortes corrélations électroniques ``Enseigner la recherche en train de se faire Chaire de Physique de la Matière Condensée Seconde partie: Quelques questions liées au transport dans les matériaux à fortes corrélations électroniques Antoine

More information

arxiv:cond-mat/ v1 8 May 1997

arxiv:cond-mat/ v1 8 May 1997 Topological asymmetry in the damping-pairing contribution of electron-boson scattering arxiv:cond-mat/9705071v1 8 May 1997 G. Varelogiannis Institute of Electronic Structure and Laser Foundation for Research

More information

A typical medium approach to Anderson localization in correlated systems.

A typical medium approach to Anderson localization in correlated systems. A typical medium approach to Anderson localization in correlated systems. N.S.Vidhyadhiraja Theoretical Sciences Unit Jawaharlal Nehru center for Advanced Scientific Research Bangalore, India Outline Models

More information

Angle-Resolved Two-Photon Photoemission of Mott Insulator

Angle-Resolved Two-Photon Photoemission of Mott Insulator Angle-Resolved Two-Photon Photoemission of Mott Insulator Takami Tohyama Institute for Materials Research (IMR) Tohoku University, Sendai Collaborators IMR: H. Onodera, K. Tsutsui, S. Maekawa H. Onodera

More information

Anomalous Scaling Relations & Pairing Mechanism of Fe-based SC

Anomalous Scaling Relations & Pairing Mechanism of Fe-based SC Part III: SH jump & CE Anomalous Scaling Relations & Pairing Mechanism of Fe-based SC Yunkyu Bang (Chonnam National Univ., Kwangju, S Korea) G R Stewart (Univ. of Florida, Gainesville, USA) Refs: New J

More information

Iron-based superconductor --- an overview. Hideo Aoki

Iron-based superconductor --- an overview. Hideo Aoki Thermal Quantum Field Theory Workshop, Yukawa Institute, Kyoto, 31 August 2010 Iron-based superconductor --- an overview Hideo Aoki Dept Physics, Univ Tokyo http://cms.phys.s.u-tokyo.ac.jp/ My talk today

More information

Superconductivity and spin excitations in orbitally ordered FeSe

Superconductivity and spin excitations in orbitally ordered FeSe Superconductivity and spin excitations in orbitally ordered FeSe Andreas Kreisel, Brian M. Andersen Niels Bohr Institute, University of Copenhagen, 2100 København, Denmark Peter J. Hirschfeld Department

More information

Workshop on Principles and Design of Strongly Correlated Electronic Systems August 2010

Workshop on Principles and Design of Strongly Correlated Electronic Systems August 2010 2157-5 Workshop on Principles and Design of Strongly Correlated Electronic Systems 2-13 August 2010 Accidental Order Parameter Nodes in Fe-pnictide Superconductors : Origins and Implications P. HIRSCHFELD

More information

Effect of next-nearest-neighbour interaction on d x 2 y2-wave superconducting phase in 2D t-j model

Effect of next-nearest-neighbour interaction on d x 2 y2-wave superconducting phase in 2D t-j model PRAMANA c Indian Academy of Sciences Vol. 74, No. 1 journal of January 2010 physics pp. 115 121 Effect of next-nearest-neighbour interaction on d x 2 y2-wave superconducting phase in 2D t-j model N S MONDAL

More information

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES studies of cuprates Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Goals of lecture Understand why gaps are important and various ways that gap

More information

Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering. Luuk Ament

Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering. Luuk Ament Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering Luuk Ament In collaboration with Jeroen van den Brink and Fiona Forte What is RIXS? Resonant Inelastic X-ray Scattering Synchrotron

More information

DT I JAN S S"= = 11111'11 I HtI IBlIIIt g ~II. Report: ONR Grant N J Unclassified: For General Distribution LECTF

DT I JAN S S= = 11111'11 I HtI IBlIIIt g ~II. Report: ONR Grant N J Unclassified: For General Distribution LECTF ' DT I,, Final Report: ONR Grant N00014-91-J-1143 Unclassified: For General Distribution LECTF JAN 2 8 1993 Steven R. White, UC Irvine c Summary Over the last two years, we have used several different

More information

Mott transition : beyond Dynamical Mean Field Theory

Mott transition : beyond Dynamical Mean Field Theory Mott transition : beyond Dynamical Mean Field Theory O. Parcollet 1. Cluster methods. 2. CDMFT 3. Mott transition in frustrated systems : hot-cold spots. Coll: G. Biroli (SPhT), G. Kotliar (Rutgers) Ref:

More information

An introduction to the dynamical mean-field theory. L. V. Pourovskii

An introduction to the dynamical mean-field theory. L. V. Pourovskii An introduction to the dynamical mean-field theory L. V. Pourovskii Nordita school on Photon-Matter interaction, Stockholm, 06.10.2016 OUTLINE The standard density-functional-theory (DFT) framework An

More information

New insights into high-temperature superconductivity

New insights into high-temperature superconductivity New insights into high-temperature superconductivity B. Keimer Max-Planck-Institute for Solid State Research introduction to conventional and unconventional superconductivity empirical approach to quantitative

More information

ARPES study of many-body effects and electronic reconstructions in misfit cobaltates

ARPES study of many-body effects and electronic reconstructions in misfit cobaltates ARPES study of many-body effects and electronic reconstructions in misfit cobaltates Véronique Brouet, Alessandro Nicolaou Laboratoire de Physique des Solides d Orsay M. Zacchigna (Elettra), A. Tejeda

More information

arxiv:cond-mat/ v3 [cond-mat.supr-con] 15 Jan 2001

arxiv:cond-mat/ v3 [cond-mat.supr-con] 15 Jan 2001 Europhysics Letters PREPRINT arxiv:cond-mat/000563v3 [cond-mat.supr-con] 5 Jan 200 Quantum-critical superconductivity in underdoped cuprates Ar. Abanov, Andrey V. Chubukov and Jörg Schmalian 2 Department

More information

Electron spectroscopy on high temperature superconductors and other novel materials. Gey Hong Gweon

Electron spectroscopy on high temperature superconductors and other novel materials. Gey Hong Gweon Electron spectroscopy on high temperature superconductors and other novel materials Gey Hong Gweon Jan 28, 2013 Kazue Mastuyama Jianqiao Meng Ahram Kim Greg Kaminsky Matthew Brunner Brandon McGuire James

More information

A BCS Bose-Einstein crossover theory and its application to the cuprates

A BCS Bose-Einstein crossover theory and its application to the cuprates A BCS Bose-Einstein crossover theory and its application to the cuprates Qijin Chen, Ioan Kosztin, Boldizsár Jankó, and K. Levin Citation: AIP Conf. Proc. 483, 22 (1999); doi: 10.1063/1.59579 View online:

More information

Electron-phonon calculations for metals, insulators, and superconductors

Electron-phonon calculations for metals, insulators, and superconductors Electron-phonon calculations for metals, insulators, and superconductors Feliciano Giustino Department of Materials, University of Oxford TALK OUTLINE Metals Insulators Superconductors THE WONDER ELEMENT

More information

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates arxiv:0905.1096, To appear in New. J. Phys. Erez Berg 1, Steven A. Kivelson 1, Doug J. Scalapino 2 1 Stanford University, 2

More information

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl Magnetism, Bad Metals and Superconductivity: Iron Pnictides and Beyond September 11, 2014 Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises Gertrud Zwicknagl Institut

More information

Visualization of atomic-scale phenomena in superconductors

Visualization of atomic-scale phenomena in superconductors Visualization of atomic-scale phenomena in superconductors Andreas Kreisel, Brian Andersen Niels Bohr Institute, University of Copenhagen, 2100 København, Denmark Peayush Choubey, Peter Hirschfeld Department

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

Hole dynamics in frustrated antiferromagnets: Coexistence of many-body and free-like excitations

Hole dynamics in frustrated antiferromagnets: Coexistence of many-body and free-like excitations Hole dynamics in frustrated antiferromagnets: Coexistence of many-body and free-like excitations Collaborators: Luis O. Manuel Instituto de Física Rosario Rosario, Argentina Adolfo E. Trumper (Rosario)

More information

Optical and transport properties of small polarons from Dynamical Mean-Field Theory

Optical and transport properties of small polarons from Dynamical Mean-Field Theory Optical and transport properties of small polarons from Dynamical Mean-Field Theory S. Fratini, S. Ciuchi Outline: Historical overview DMFT for Holstein polaron Optical conductivity Transport Polarons:

More information

doi: /PhysRevLett

doi: /PhysRevLett doi: 10.1103/PhysRevLett.79.3506 Unusual Dispersion and Line Shape of the Superconducting State Spectra of Bi 2 Sr 2 CaCu 2 O 81d M. R. Norman, 1 H. Ding, 1,2 J. C. Campuzano, 1,2 T. Takeuchi, 1,3 M. Randeria,

More information

Unusual magnetic excitations in a cuprate high-t c superconductor

Unusual magnetic excitations in a cuprate high-t c superconductor Unusual magnetic excitations in a cuprate high-t c superconductor Yuan Li Max Planck Institute for Solid State Research Stuttgart, Germany Collaborators University of Minnesota / Stanford University, USA

More information

Supraconductivité à haute température dans les cuprates et les organiques: Où en est-on?

Supraconductivité à haute température dans les cuprates et les organiques: Où en est-on? Supraconductivité à haute température dans les cuprates et les organiques: Où en est-on? André-Marie Tremblay Collège de France, 9, 16, 23 et 30 mars 2015 17h00 à 18h30 Two pillars of Condensed Matter

More information

An unusual isotope effect in a high-transition-temperature superconductor

An unusual isotope effect in a high-transition-temperature superconductor An unusual isotope effect in a high-transition-temperature superconductor G.-H. Gweon 1, T. Sasagawa 2,3, S. Y. Zhou 4, J. Graf 1, H. Takagi 2,3,5, D.-H. Lee 1,4 & A. Lanzara 1,4 1 Materials Sciences Division,

More information

Resonant Inelastic X-ray Scattering on elementary excitations

Resonant Inelastic X-ray Scattering on elementary excitations Resonant Inelastic X-ray Scattering on elementary excitations Jeroen van den Brink Ament, van Veenendaal, Devereaux, Hill & JvdB Rev. Mod. Phys. 83, 705 (2011) Autumn School in Correlated Electrons Jülich

More information

Strongly correlated systems: from electronic materials to cold atoms

Strongly correlated systems: from electronic materials to cold atoms Strongly correlated systems: from electronic materials to cold atoms Eugene Demler Harvard University Collaborators: E. Altman, R. Barnett, I. Cirac, L. Duan, V. Gritsev, W. Hofstetter, A. Imambekov, M.

More information

An efficient impurity-solver for the dynamical mean field theory algorithm

An efficient impurity-solver for the dynamical mean field theory algorithm Papers in Physics, vol. 9, art. 95 (217) www.papersinphysics.org Received: 31 March 217, Accepted: 6 June 217 Edited by: D. Domínguez Reviewed by: A. Feiguin, Northeastern University, Boston, United States.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 10.1038/nature06219 SUPPLEMENTARY INFORMATION Abrupt Onset of Second Energy Gap at Superconducting Transition of Underdoped Bi2212 Wei-Sheng Lee 1, I. M. Vishik 1, K. Tanaka 1,2, D. H. Lu 1, T. Sasagawa

More information

Superconductivity in Fe-based ladder compound BaFe 2 S 3

Superconductivity in Fe-based ladder compound BaFe 2 S 3 02/24/16 QMS2016 @ Incheon Superconductivity in Fe-based ladder compound BaFe 2 S 3 Tohoku University Kenya OHGUSHI Outline Introduction Fe-based ladder material BaFe 2 S 3 Basic physical properties High-pressure

More information

Nano-DMFT : the electronic structure of small, strongly correlated, systems

Nano-DMFT : the electronic structure of small, strongly correlated, systems Nano-DMFT : the electronic structure of small, strongly correlated, systems Nanoscale Dynamical Mean-Field Theory for Molecules and Mesoscopic Devices in the Strong-Correlation Regime Author: S. Florens,

More information

More a progress report than a talk

More a progress report than a talk Superconductivity and Magnetism in novel Fe-based superconductors Ilya Eremin 1,2 and Maxim Korshunov 1 1 - Max-Planck Institut für Physik komplexer Systeme, Dresden, 2- Institut für Theoretische Physik,

More information

Strongly Correlated Systems:

Strongly Correlated Systems: M.N.Kiselev Strongly Correlated Systems: High Temperature Superconductors Heavy Fermion Compounds Organic materials 1 Strongly Correlated Systems: High Temperature Superconductors 2 Superconductivity:

More information

Superconductivity by kinetic energy saving?

Superconductivity by kinetic energy saving? Superconductivity by kinetic energy saving? D. van der Marel, H. J. A. Molegraaf, C. Presura and I. Santoso Chapter in "Concepts in electron correlation", Edit e d by A. He ws on and V. Zlat ic, Kluwe

More information

Neutron resonance in high-t c superconductors is not the particle

Neutron resonance in high-t c superconductors is not the particle PHYSICAL REVIEW B, VOLUME 63, 14457 Neutron resonance in high-t c superconductors is not the particle O. Tchernyshyov, 1,2 M. R. Norman, 2 and A. V. Chubuov 2,3 1 School of Natural Sciences, Institute

More information

Dynamical mean field approach to correlated lattice systems in and out of equilibrium

Dynamical mean field approach to correlated lattice systems in and out of equilibrium Dynamical mean field approach to correlated lattice systems in and out of equilibrium Philipp Werner University of Fribourg, Switzerland Kyoto, December 2013 Overview Dynamical mean field approximation

More information

PHYSICAL REVIEW B 80,

PHYSICAL REVIEW B 80, PHYSICAL REVIEW B 8, 6526 29 Finite-temperature exact diagonalization cluster dynamical mean-field study of the two-dimensional Hubbard model: Pseudogap, non-fermi-liquid behavior, and particle-hole asymmetry

More information

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay I- Similarities between phase diagram and quantum critical points Quantum Criticality in 3 Families of Superconductors L. Taillefer,

More information

Electron State and Lattice Effects in Cuprate High Temperature Superconductors

Electron State and Lattice Effects in Cuprate High Temperature Superconductors Electron State and Lattice Effects in Cuprate High Temperature Superconductors - The True Story Revealed by Fermi Surface and Unconventional Lattice Effects- October 27-28, 2005 Headquarters and Information

More information

Quasiparticle dynamics and interactions in non uniformly polarizable solids

Quasiparticle dynamics and interactions in non uniformly polarizable solids Quasiparticle dynamics and interactions in non uniformly polarizable solids Mona Berciu University of British Columbia à beautiful physics that George Sawatzky has been pursuing for a long time à today,

More information

BSCCO Superconductors: Hole-Like Fermi Surface and Doping Dependence of the Gap Function

BSCCO Superconductors: Hole-Like Fermi Surface and Doping Dependence of the Gap Function Journal of Low Temperature Physics, Vol. 117, Nos. 314, 1999 BSCCO Superconductors: Hole-Like Fermi Surface and Doping Dependence of the Gap Function J. Mesot,1,2 M. R. Norman,1 H. Ding,3 M. Randeria,4

More information

Numerical Studies of the 2D Hubbard Model

Numerical Studies of the 2D Hubbard Model arxiv:cond-mat/0610710v1 [cond-mat.str-el] 25 Oct 2006 Numerical Studies of the 2D Hubbard Model D.J. Scalapino Department of Physics, University of California, Santa Barbara, CA 93106-9530, USA Abstract

More information

Electronic quasiparticles and competing orders in the cuprate superconductors

Electronic quasiparticles and competing orders in the cuprate superconductors Electronic quasiparticles and competing orders in the cuprate superconductors Andrea Pelissetto Rome Subir Sachdev Ettore Vicari Pisa Yejin Huh Harvard Harvard Gapless nodal quasiparticles in d-wave superconductors

More information

Effects of boson dispersion in fermion-boson coupled systems

Effects of boson dispersion in fermion-boson coupled systems PHYSICAL REVIEW B VOLUME 62, NUMBER 19 15 NOVEMBER 2000-I Effects of boson dispersion in fermion-boson coupled systems Yukitoshi Motome Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki

More information

Strong Correlation Effects in Fullerene Molecules and Solids

Strong Correlation Effects in Fullerene Molecules and Solids Strong Correlation Effects in Fullerene Molecules and Solids Fei Lin Physics Department, Virginia Tech, Blacksburg, VA 2461 Fei Lin (Virginia Tech) Correlations in Fullerene SESAPS 211, Roanoke, VA 1 /

More information