Superconductivity in Fe-based ladder compound BaFe 2 S 3

Size: px
Start display at page:

Download "Superconductivity in Fe-based ladder compound BaFe 2 S 3"

Transcription

1 02/24/16 Incheon Superconductivity in Fe-based ladder compound BaFe 2 S 3 Tohoku University Kenya OHGUSHI

2 Outline Introduction Fe-based ladder material BaFe 2 S 3 Basic physical properties High-pressure effect Substitution effect Other possible parent materials BaFe 2 Se 3, CsFe 2 Se 3 Summary

3 Collaborators Synthesis and Characterization: Y. Hirata, F. Du, Y. Ueda (ISSP) High-pressure (DAC): H. Takahashi (Nihon Univ.) High-pressure (Cubic): Y. Uwatoko, T. Yamauchi (ISSP) Neutron: T.J. Sato, Y. Nambu (Tohoku Univ.), M. Avdeev (ANSTO) Mossbauer: T. Kawakami (Nihon Univ.) NMR: M. Ito (Nagoya Univ.) PES: T. Mizokawa (Waseda Univ.) XRD: J. Yamaura (Tokyo Tech. ) Optics: H. Okamura (Tokushima Univ.) Theory: R. Arita (Riken)

4 T c (K) Superconducting transition temperature H 2 S 150 Cuprates HgBa 2 Ca 2 Cu 3 O x Phonon Magnon Intermetallics Hg Pb NbC NbN BiSrCaCu 2 O x YBa 2 Cu 3 O 7 La 2-x Ba x CuO 4 Nb 3 Sn Nb 3 Ge 1950 Organics Year SmFeAsO MgB 2 LaFeAsO LaFePO 2000 Fe-based

5 Cuprates and organics superconductors Cuprates Organics Keimer, et al. Nature (2015). Kurosaki, et al. PRL (2005). Insulator Metal Insulator Metal Filling Bandwidth SC appears in the vicinity of Mott transition. Strong electron correlation effect. U ~ 1eV.

6 Fe-based superconductors Hosono, JACS (2008), Paglione,and Greene, Nat. Phys. (2010). Square lattice of Fe atoms. Fe 2+ coordinated by As or Se tetrahedrally.

7 Fe-based superconductors Dai,Hu, Dagotto, Nat. Phys. (2012). Paglione,and Greene, Nat. Phys. (2010). Stripe order, ~0.8 m B s+- symmetry Spin or orbital fluctuations T c,max ~ 60 K Mechanisms? Nesting electron hole Q xy xz, yz Orbital ordering yz (xz) Pressure Chemical substitution Ba 1-x K x Fe 2 As 2 BaFe 2-y Co y As 2 All phases are metal.

8 Electron correlation in Fe-based SCs Material dependence Orbital dependence electron hole Q xy xz, yz Covalent Ionic Low T c High T c T. Miyake, et al., JPSJ 79, (2010). Renormalization factor z LaFeAsO FeSe z x 2 -y xy yz/zx M. Aichhorn, et al., PRB 80, (2009). PRB 82, (2010).

9 Fe-based ladder compound BaFe 2 S 3 What happens if we lower the dimensionality and reduce the bandwidth? We can see the strong correlation effect. BaFe 2 S 3 Fe 2+ : (3d) 6 Orthorhombic, Cmcm Earlier works: McQueen, Petrovic, Sefat, Dagotto

10 Basic physical properties

11 cm Resistivity BaFe 2 S 3 j // leg T N T* T (K) Mott insulator induced by strong correlation effect.

12 -1 cm -1 ) Optical conductivity K Mott BaFe 2 S 3 CT Leg Rung Layer Photon energy (ev) 3.0 Layer Leg Rung Quasi-one dimensional electronic state. Coherent Fe 3d bands below 0.2 ev even in Mott insulator.

13 c emu/mol 3x Magnetic susceptibility Leg Layer BaFe 2 S 3 H = 5 T T N T* 0 0 Rung 100 T (K) Layer Decrease in c on cooling due to quantum fluctuations in 1 D or itinerant nature close to Mott transition. Antiferromagnetic order with the rung direction as the easy axis. Leg Rung

14 Neutron diffraction BaFe 2 S 3

15 Magnetic structure of BaFe 2 S 3 b b c a c a Stripe-type magnetic ordering. Ordered moment is 1.3 m B. Much smaller than the highspin value, 4 m B. Inter-ladder coupling is ferromagnetic along one direction, and antiferromagnetic to the perpendicular direction.

16 High-pressure effect

17 BaFe 2 S 3 under high pressure Bandwidth-control type Mott transition around 11 GPa. Superconductivity with T c = 24 K. BaFe 2 S 3 0 GPa 13.4 GPa 0 GPa

18 BaFe 2 S 3 under high pressure T N T* On applying pressure, T N increases and merge to T*at 3 GPa. Afterwards, T N decreases monotonically and vanishes at 11 GPa. BaFe 2 S 3

19 BaFe 2 S 3 under high pressure BaFe 2 S 3 Fermi liquid behavior T 2 above Mott transition. Volume fraction, 80 % => Bulkness of superconductivity.

20 BaFe 2 S 3 under high pressure T* T N Similar to the organic superconductors.

21 Substitution effect

22 Hole doping: Ba 1-x K x Fe 2 S 3 Robust insulating state. Magnetic order is gradually destroyed. However, glassy state is present at large x value.

23 Electron doping: BaFe 2-y Co y S 3 Robust insulating state. Magnetic order is also robust.

24 Phase diagram Electron-hole asymmetry. Opposite to 2 D Fe-based SCs. Robust insulating state due to small volume change, ~ 1%.

25 Charge: > Localized near MIT(, ) > Quasi 1D ( ) BaFe 2 S 3 MIT Charge: > Fermi liquid > Quasi 2D ( ) Orbital: > Ordered? ( ) Spin: > Stripe order (ND) > Reduced m, 1.3 m B (ND) > Quasi 1D (k) Questions Charge: >SC at 24 K Mott transition: Mott or Peierls? Magnetism: Localized or itinerant pictures? Role of orbitals? SC: Spin, orbital, and charge fluctuations? s+- or d wave? Substitution effect: Carrier dopant or scatter?

26 First principle calculation by Arita P = 0 a, b: electron xz, strong correlation g: hole z x Spin fluctuations => s+- between a and b xy and yz, irrelevant Arita, Ikeda, Sakai, Suzuki, PRB (2015); Suzuki, Arita, Ikeda, PRB (2015).

27 Outline Introduction Fe-based ladder material BaFe 2 S 3 Basic physical properties High-pressure effect Substitution effect Other possible parent materials BaFe 2 Se 3, CsFe 2 Se 3 Summary

28 cm Resistivity CsFe 2 Se BaFe 2 Se BaFe 2 S T (K) Ba-S < Ba-Se. Unusual chemical trend. Mixed valence materials (Cs) > Integer valence material (Ba).

29 Electronic structures BaFe 2 X 3 : (3d) 6 Ionic radius: Se > S Bandwidth: S > Se CsFe 2 Se 3 : (3d) 5.5 Localized ligand holes S, Se Fe u h leg nm Ba-S Ba-Se Rb-Se Cs-Se u w u/w w Ootsuki, PRB (2014). u Resistivity: BaFe 2 S 3 < BaFe 2 Se 3 < CsFe 2 Se 3.

30 c emu/mol c emu/mol Magnetic susceptibility Leg Layer Rung 4x10-3 4x Leg Layer 100 Leg Rung Layer T (K) 200 BaFe 2 Se 3 BaFe 2 S 3 Rung H = 5 T 300 Antiferromagnetic transition with variety of the easy axis. Decrease in c on cooling in A = Ba due to 1D or itinerant origin. Weak ferromagnetism in CsFe 2 Se Rung + Layer Leg 100 T (K) CsFe 2 Se 3 H = 5 T

31 Magnetic structure Moment (m B ) BaFe 2 S 3 BaFe 2 Se 3 CsFe 2 Se 3 Stripe Block Stripe Cmcm y 1 Pnma Y 4, 10, 16, m B 2.8 m B 1.8 m B 110 K 255 K 175 K Wide variety of magnetic order. 3 2 Cmcm y 9 + y 7, 8 Magnetic moment scales with T N T N (K) 300

32 Global phase diagram by Dagotto First-principle calculation for BaFe 2 Se 3 5-fold Hubbard model on the ladder Hartree-Fock approximation (moment of 4 m B ) (3d) 6 Ba-Se Luo, PRB (2013). (3d) 5.75 Ferro. Block Stripe G-type + Para Cs-Se Ba-S Intermediate coupling, U/W ~ 0.5. Parent materials for new high-t c superconductors.

33 Summary: BaFe 2 S 3 Mott physics 1 D ladder lattice Stripe magnetic order Orbital order? Mott transition with dimensional crossover Superconductivity with T c = 24 K Relevance to cuprates and organic SC Non-toxic Fe-based superconductors Nambu, KO, PRB (2012). Du, KO, PRB (2012). Du, KO, PRB (2014). Ootsuki, Mizokawa, KO, PRB (2015). Hawai, Sato, KO, PRB (2015). Takahashi, KO, Nat. Mater. (2015). Hirata, KO, PRB (2015). Yamauchi, KO, PRL (2015).

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates arxiv:0905.1096, To appear in New. J. Phys. Erez Berg 1, Steven A. Kivelson 1, Doug J. Scalapino 2 1 Stanford University, 2

More information

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) New perspectives in superconductors E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) E. Bascones leni@icmm.csic.es Outline Talk I: Correlations in iron superconductors Introduction

More information

Physics of iron-based high temperature superconductors. Abstract

Physics of iron-based high temperature superconductors. Abstract Physics of iron-based high temperature superconductors Yuji Matsuda Department of Physics, Kyoto University, Kyoto 606-8502, Japan Abstract The discovery of high-t c iron pnictide and chalcogenide superconductors

More information

ARPES studies of Fe pnictides: Nature of the antiferromagnetic-orthorhombic phase and the superconducting gap

ARPES studies of Fe pnictides: Nature of the antiferromagnetic-orthorhombic phase and the superconducting gap Novel Superconductors and Synchrotron Radiation: state of the art and perspective Adriatico Guest House, Trieste, December 10-11, 2014 ARPES studies of Fe pnictides: Nature of the antiferromagnetic-orthorhombic

More information

Neutron scattering from quantum materials

Neutron scattering from quantum materials Neutron scattering from quantum materials Bernhard Keimer Max Planck Institute for Solid State Research Max Planck UBC UTokyo Center for Quantum Materials Detection of bosonic elementary excitations in

More information

Anisotropic Magnetic Structures in Iron-Based Superconductors

Anisotropic Magnetic Structures in Iron-Based Superconductors Anisotropic Magnetic Structures in Iron-Based Superconductors Chi-Cheng Lee, Weiguo Yin & Wei Ku CM-Theory, CMPMSD, Brookhaven National Lab Department of Physics, SUNY Stony Brook Another example of SC

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

Mott physics: from basic concepts to iron superconductors

Mott physics: from basic concepts to iron superconductors Mott physics: from basic concepts to iron superconductors E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Outline Mott physics: Basic concepts (single orbital & half filling) - Mott

More information

Dao-Xin Yao and Chun Loong

Dao-Xin Yao and Chun Loong Magnetism and multi-orbital l models in the iron-based superconductors Dao-Xin Yao and Chun Loong Sun Yat-sen University Guangzhou China City of Guangzhou Indiana Guangzhou Hong Kong Sun Yat-sen University

More information

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering DE-FG02-08ER46544 Overview

More information

Superconducting Single-photon Detectors

Superconducting Single-photon Detectors : Quantum Cryptography Superconducting Single-photon Detectors Hiroyuki Shibata Abstract This article describes the fabrication and properties of a single-photon detector made of a superconducting NbN

More information

Magnetism in correlated-electron materials

Magnetism in correlated-electron materials Magnetism in correlated-electron materials B. Keimer Max-Planck-Institute for Solid State Research focus on delocalized electrons in metals and superconductors localized electrons: Hinkov talk outline

More information

Pressure-induced magnetic quantum critical point and unconventional

Pressure-induced magnetic quantum critical point and unconventional Institute of Physics, CAS Pressure-induced magnetic quantum critical point and unconventional superconductivity in CrAs and MnP Jinguang Cheng jgcheng@iphy.ac.cn SchoolandWorkshoponStronglyCorrelatedElectronicSystems-

More information

Correlatd electrons: the case of high T c cuprates

Correlatd electrons: the case of high T c cuprates Correlatd electrons: the case of high T c cuprates Introduction: Hubbard U - Mott transition, The cuprates: Band structure and phase diagram NMR as a local magnetic probe Magnetic susceptibilities NMR

More information

Material Science II. d Electron systems

Material Science II. d Electron systems Material Science II. d Electron systems 1. Electronic structure of transition-metal ions (June 12) 2. Crystal structure and band structure (June 19) 3. Mott insulators (June 26) 4. Metal-insulator transition

More information

One-dimensional systems. Spin-charge separation in insulators Tomonaga-Luttinger liquid behavior Stripes: one-dimensional metal?

One-dimensional systems. Spin-charge separation in insulators Tomonaga-Luttinger liquid behavior Stripes: one-dimensional metal? One-dimensional systems Spin-charge separation in insulators Tomonaga-Luttinger liquid behavior Stripes: one-dimensional metal? One-dimensional systems Spin-charge separation in insulators Spin-charge

More information

arxiv: v1 [cond-mat.supr-con] 29 Jun 2016

arxiv: v1 [cond-mat.supr-con] 29 Jun 2016 The magnetic precursor of the pressure-induced superconductivity in Fe-ladder compound arxiv:1606.09223v1 [cond-mat.supr-con] 29 Jun 2016 Songxue Chi, 1 Yoshiya Uwatoko, 2 Huibo Cao, 1 Yasuyuki Hirata,

More information

Supplementary Information for Superconductivity in an electron band just above the Fermi level: possible route to BCS-BEC superconductivity

Supplementary Information for Superconductivity in an electron band just above the Fermi level: possible route to BCS-BEC superconductivity Supplementary Information for Superconductivity in an electron band just above the Fermi level: possible route to BCS-BEC superconductivity K. Okazaki 1, Y. Ito 1, Y. Ota 1, Y. Kotani 1, T. Shimojima 1,

More information

Theoretical Study of High Temperature Superconductivity

Theoretical Study of High Temperature Superconductivity Theoretical Study of High Temperature Superconductivity T. Yanagisawa 1, M. Miyazaki 2, K. Yamaji 1 1 National Institute of Advanced Industrial Science and Technology (AIST) 2 Hakodate National College

More information

Physics of iron-based high-t c superconductors

Physics of iron-based high-t c superconductors Physics of iron-based high-t c superconductors Y. Matsuda Department of Physics Kyoto University, Kyoto, Japan Physics of iron-based high-t c superconductors 1) Why are Fe-based superconductors important?

More information

Foundations of Condensed Matter Physics

Foundations of Condensed Matter Physics Foundations of Condensed Matter Physics PHY1850F 2005 www.physics.utoronto.ca/~wei/phy1850f.html Physics 1850F Foundations of Condensed Matter Physics Webpage: www.physics.utoronto.ca/~wei/phy1850f.html

More information

Nodal and nodeless superconductivity in Iron-based superconductors

Nodal and nodeless superconductivity in Iron-based superconductors Nodal and nodeless superconductivity in Iron-based superconductors B. Andrei Bernevig Department of Physics Princeton University Minneapolis, 2011 Collaborators: R. Thomale, Yangle Wu (Princeton) J. Hu

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies on-line at http://pantheon.yale.edu/~subir

More information

New insights into high-temperature superconductivity

New insights into high-temperature superconductivity New insights into high-temperature superconductivity B. Keimer Max-Planck-Institute for Solid State Research introduction to conventional and unconventional superconductivity empirical approach to quantitative

More information

Metal-insulator transitions

Metal-insulator transitions Metal-insulator transitions Bandwidth control versus fillig control Strongly correlated Fermi liquids Spectral weight transfer and mass renormalization Bandwidth control Filling control Chemical potential

More information

Electronic structure calculations results from LDA+U method

Electronic structure calculations results from LDA+U method Electronic structure calculations results from LDA+U method Vladimir I. Anisimov Institute of Metal Physics Ekaterinburg, Russia LDA+U method applications Mott insulators Polarons and stripes in cuprates

More information

The Oxford Solid State Basics

The Oxford Solid State Basics The Oxford Solid State Basics Steven H. Simon University of Oxford OXFORD UNIVERSITY PRESS Contents 1 About Condensed Matter Physics 1 1.1 What Is Condensed Matter Physics 1 1.2 Why Do We Study Condensed

More information

Магнетизм в железосодержащих сверхпроводниках: взаимодействие магнитных, орбитальных и решеточных степеней свободы

Магнетизм в железосодержащих сверхпроводниках: взаимодействие магнитных, орбитальных и решеточных степеней свободы Магнетизм в железосодержащих сверхпроводниках: взаимодействие магнитных, орбитальных и решеточных степеней свободы Ilya Eremin Theoretische Physik III, Ruhr-Uni Bochum Work done in collaboration with:

More information

A brief Introduction of Fe-based SC

A brief Introduction of Fe-based SC Part I: Introduction A brief Introduction of Fe-based SC Yunkyu Bang (Chonnam National Univ., Kwangju, Korea) Lecture 1: Introduction 1. Overview 2. What is sign-changing s-wave gap : +/-s-wave gap Lecture

More information

Understanding the complete temperature-pressure phase diagrams of organic charge-transfer solids

Understanding the complete temperature-pressure phase diagrams of organic charge-transfer solids Understanding the complete temperature-pressure phase diagrams of organic charge-transfer solids Collaborators: R. Torsten Clay Department of Physics & Astronomy HPC 2 Center for Computational Sciences

More information

More a progress report than a talk

More a progress report than a talk Superconductivity and Magnetism in novel Fe-based superconductors Ilya Eremin 1,2 and Maxim Korshunov 1 1 - Max-Planck Institut für Physik komplexer Systeme, Dresden, 2- Institut für Theoretische Physik,

More information

Resistivity studies in magnetic materials. Makariy A. Tanatar

Resistivity studies in magnetic materials. Makariy A. Tanatar Resistivity studies in magnetic materials 590B Makariy A. Tanatar November 30, 2018 Classical examples Quantum criticality Nematicity Density waves: nesting Classics: resistivity anomaly at ferromagnetic

More information

Iron-based superconductor --- an overview. Hideo Aoki

Iron-based superconductor --- an overview. Hideo Aoki Thermal Quantum Field Theory Workshop, Yukawa Institute, Kyoto, 31 August 2010 Iron-based superconductor --- an overview Hideo Aoki Dept Physics, Univ Tokyo http://cms.phys.s.u-tokyo.ac.jp/ My talk today

More information

How to model holes doped into a cuprate layer

How to model holes doped into a cuprate layer How to model holes doped into a cuprate layer Mona Berciu University of British Columbia With: George Sawatzky and Bayo Lau Hadi Ebrahimnejad, Mirko Moller, and Clemens Adolphs Stewart Blusson Institute

More information

Material Science II. d Electron systems

Material Science II. d Electron systems Material Science II. d Electron systems 1. Electronic structure of transition-metal ions (May 23) 2. Crystal structure and band structure (June 13) 3. Mott s (June 20) 4. Metal- transition (June 27) 5.

More information

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors?

More information

Electronic Noise Due to Thermal Stripe Switching

Electronic Noise Due to Thermal Stripe Switching Electronic Noise Due to Thermal Stripe Switching E. W. Carlson B. Phillabaum Y. L. Loh D. X. Yao Research Corporation Solid Liquid Gas www.stonecropgallery.com/artists/caleb/01-solidliquidgas.jpg Crystals

More information

Strongly Correlated Systems:

Strongly Correlated Systems: M.N.Kiselev Strongly Correlated Systems: High Temperature Superconductors Heavy Fermion Compounds Organic materials 1 Strongly Correlated Systems: High Temperature Superconductors 2 Superconductivity:

More information

Intermediate valence in Yb Intermetallic compounds

Intermediate valence in Yb Intermetallic compounds Intermediate valence in Yb Intermetallic compounds Jon Lawrence University of California, Irvine This talk concerns rare earth intermediate valence (IV) metals, with a primary focus on certain Yb-based

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS A11046W1 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2015 Wednesday, 17 June, 2.30

More information

Understanding the Tc trends in high Tc superconductors. Kazuhiko Kuroki

Understanding the Tc trends in high Tc superconductors. Kazuhiko Kuroki NQS2014 2014.11.24-28 Yukawa Inst. Understanding the Tc trends in high Tc superconductors Dept. of Physics, Osaka University Kazuhiko Kuroki Collaborators cuprates : H. Sakakibara(RIKEN), K. Suzuki(Osaka),

More information

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality Hans-Henning Klauss Institut für Festkörperphysik TU Dresden 1 References [1] Stephen Blundell, Magnetism in Condensed

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

High Pressure Effects on Superconductivity in the β-pyrochlore Oxides AOs 2 O 6 (A=K, Rb, Cs)

High Pressure Effects on Superconductivity in the β-pyrochlore Oxides AOs 2 O 6 (A=K, Rb, Cs) High Pressure Effects on Superconductivity in the β-pyrochlore Oxides AOs 2 O 6 (A=K, Rb, Cs) Takaki MURAMATSU, Shigeki YONEZAWA, Yuji MURAOKA and Zenji HIROI Institute for Solid States Physics, University

More information

μsr Studies on Magnetism and Superconductivity

μsr Studies on Magnetism and Superconductivity The 14 th International Conference on Muon Spin Rotation, Relaxation and Resonance (μsr217) School (June 25-3, 217, Sapporo) μsr Studies on Magnetism and Superconductivity Y. Koike Dept. of Applied Physics,

More information

Can superconductivity emerge out of a non Fermi liquid.

Can superconductivity emerge out of a non Fermi liquid. Can superconductivity emerge out of a non Fermi liquid. Andrey Chubukov University of Wisconsin Washington University, January 29, 2003 Superconductivity Kamerling Onnes, 1911 Ideal diamagnetism High Tc

More information

Understanding interlayer interaction in layered supercoducting materials. Eugenio Paris University La Sapienza of Rome

Understanding interlayer interaction in layered supercoducting materials. Eugenio Paris University La Sapienza of Rome Understanding interlayer interaction in layered supercoducting materials Eugenio Paris University La Sapienza of Rome My PhD Thesis project Study of local structure, local disorder and interlayer interaction

More information

Quasiparticle dynamics and interactions in non uniformly polarizable solids

Quasiparticle dynamics and interactions in non uniformly polarizable solids Quasiparticle dynamics and interactions in non uniformly polarizable solids Mona Berciu University of British Columbia à beautiful physics that George Sawatzky has been pursuing for a long time à today,

More information

Dynamical properties of strongly correlated electron systems studied by the density-matrix renormalization group (DMRG) Takami Tohyama

Dynamical properties of strongly correlated electron systems studied by the density-matrix renormalization group (DMRG) Takami Tohyama Dynamical properties of strongly correlated electron systems studied by the density-matrix renormalization group (DMRG) Takami Tohyama Tokyo University of Science Shigetoshi Sota AICS, RIKEN Outline Density-matrix

More information

Neutron and x-ray spectroscopy

Neutron and x-ray spectroscopy Neutron and x-ray spectroscopy B. Keimer Max-Planck-Institute for Solid State Research outline 1. self-contained introduction neutron scattering and spectroscopy x-ray scattering and spectroscopy 2. application

More information

arxiv: v2 [cond-mat.str-el] 12 May 2015

arxiv: v2 [cond-mat.str-el] 12 May 2015 Magnetic interactions in iron superconductors: A review E. Bascones, B. Valenzuela, and M.J. Calderón Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Cantoblanco, E-28049 Madrid (Spain). (Dated:

More information

What we have learned from Ba(Fe 1-x TM x ) 2 As 2 studies: empirical rules to inform theory

What we have learned from Ba(Fe 1-x TM x ) 2 As 2 studies: empirical rules to inform theory What we have learned from Ba(Fe 1-x TM x ) 2 As 2 studies: empirical rules to inform theory Paul C. Canfield Senior Physicist, Ames Laboratory Distinguished Professor, Dept. Physics Iowa State University

More information

Magnetism and Superconductivity in Decorated Lattices

Magnetism and Superconductivity in Decorated Lattices Magnetism and Superconductivity in Decorated Lattices Mott Insulators and Antiferromagnetism- The Hubbard Hamiltonian Illustration: The Square Lattice Bipartite doesn t mean N A = N B : The Lieb Lattice

More information

Spin correlations in YBa 2 Cu 3 O 6+x bulk vs. interface

Spin correlations in YBa 2 Cu 3 O 6+x bulk vs. interface Spin correlations in YBa 2 Cu 3 O 6+x bulk vs. interface B. Keimer Max-Planck-Institute for Solid State Research outline new quantum states in bulk? yes, good evidence for electronic nematic phase new

More information

Unusual magnetic excitations in a cuprate high-t c superconductor

Unusual magnetic excitations in a cuprate high-t c superconductor Unusual magnetic excitations in a cuprate high-t c superconductor Yuan Li Max Planck Institute for Solid State Research Stuttgart, Germany Collaborators University of Minnesota / Stanford University, USA

More information

edited by Nan-Lin Wang Hideo Hosono Pengcheng Dai MATERIALS, PROPERTIES, AND MECHANISMS IRON-BASED SUPERCONDUCTORS

edited by Nan-Lin Wang Hideo Hosono Pengcheng Dai MATERIALS, PROPERTIES, AND MECHANISMS IRON-BASED SUPERCONDUCTORS edited by " Nan-Lin Wang Hideo Hosono Pengcheng Dai MATERIALS, PROPERTIES, AND MECHANISMS IRON-BASED SUPERCONDUCTORS Pan Stanford Publishing Contents Preface xiii 1 Iron-Based Superconductors: Discovery

More information

A New Electronic Orbital Order Identified in Parent Compound of Fe-Based High-Temperature Superconductors

A New Electronic Orbital Order Identified in Parent Compound of Fe-Based High-Temperature Superconductors A New Electronic Orbital Order Identified in Parent Compound of Fe-Based High-Temperature Superconductors Cooperative Research Team on Predictive Capability for Strongly Correlated Systems Summary: The

More information

YBCO. CuO 2. the CuO 2. planes is controlled. from deviation from. neutron. , blue star for. Hg12011 (this work) for T c = 72

YBCO. CuO 2. the CuO 2. planes is controlled. from deviation from. neutron. , blue star for. Hg12011 (this work) for T c = 72 Supplementary Figure 1 Crystal structures and joint phase diagram of Hg1201 and YBCO. (a) Hg1201 features tetragonal symmetry and one CuO 2 plane per primitive cell. In the superconducting (SC) doping

More information

c-axis Dimer Inducing Dome-like Superconductivity in Weakly Correlated RE 2 Cu 5 As 3 O 2 (RE=La, Pr)

c-axis Dimer Inducing Dome-like Superconductivity in Weakly Correlated RE 2 Cu 5 As 3 O 2 (RE=La, Pr) c-axis Dimer Inducing Dome-like Superconductivity in Weakly Correlated RE 2 Cu 5 As 3 O 2 (RE=La, Pr) Xu Chen 1,2,, Jiangang Guo 1,,*, Chunsheng Gong 1, Erjian Cheng 3, Congcong Le 4,1, Ning Liu 1,2, Tianping

More information

Workshop on Principles and Design of Strongly Correlated Electronic Systems August 2010

Workshop on Principles and Design of Strongly Correlated Electronic Systems August 2010 2157-5 Workshop on Principles and Design of Strongly Correlated Electronic Systems 2-13 August 2010 Accidental Order Parameter Nodes in Fe-pnictide Superconductors : Origins and Implications P. HIRSCHFELD

More information

FeSe a simple superconductor?

FeSe a simple superconductor? FeSe a simple superconductor? Claudia Felser Vadim Ksenofontov, Fred Casper, Shahab Naghavi T. M. McQueen, A. J. Williams, R. J. Cava S. Medvedev, I. Trojan, T. Palasyuk, Mikhail I. Eremets, G. Wortmann

More information

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators Nagoya University Masatoshi Sato In collaboration with Yukio Tanaka (Nagoya University) Keiji Yada (Nagoya University) Ai Yamakage

More information

A05: Quantum crystal and ring exchange. Novel magnetic states induced by ring exchange

A05: Quantum crystal and ring exchange. Novel magnetic states induced by ring exchange A05: Quantum crystal and ring exchange Novel magnetic states induced by ring exchange Members: Tsutomu Momoi (RIKEN) Kenn Kubo (Aoyama Gakuinn Univ.) Seiji Miyashita (Univ. of Tokyo) Hirokazu Tsunetsugu

More information

Nodal s-wave superconductivity in BaFe 2 (As,P) 2

Nodal s-wave superconductivity in BaFe 2 (As,P) 2 Nodal swave superconductivity in BaFe 2 (As,P) 2 Taka Shibauchi Department of Physics Kyoto University Collaborators K. Hashimoto M. Yamashita Y. Matsuda S. Kasahara T. Terashima H. Ikeda Y. Nakai K. Ishida

More information

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay I- Similarities between phase diagram and quantum critical points Quantum Criticality in 3 Families of Superconductors L. Taillefer,

More information

Superconductivity and spin excitations in orbitally ordered FeSe

Superconductivity and spin excitations in orbitally ordered FeSe Superconductivity and spin excitations in orbitally ordered FeSe Andreas Kreisel, Brian M. Andersen Niels Bohr Institute, University of Copenhagen, 2100 København, Denmark Peter J. Hirschfeld Department

More information

Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr 2 CuO 3 Splitting the electron

Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr 2 CuO 3 Splitting the electron Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr 2 CuO 3 Splitting the electron James Gloudemans, Suraj Hegde, Ian Gilbert, and Gregory Hart December 7, 2012 The paper We describe

More information

Oliver Portugall Laboratoire National des Champs Magnétiques Intenses (LNCMI) Toulouse & Grenoble, France

Oliver Portugall Laboratoire National des Champs Magnétiques Intenses (LNCMI) Toulouse & Grenoble, France Oliver Portugall Laboratoire National des Champs Magnétiques Intenses (LNCMI) Toulouse & Grenoble, France 1 Building & Infrastructure 2 3 Industrial building (steel panel construction) 6 explosion proof

More information

Non-cuprate exotics III: The ferropnictide (FeAs) superconductors 1

Non-cuprate exotics III: The ferropnictide (FeAs) superconductors 1 PHYS598/2 A.J.Leggett Lecture 13: Non-cuprate exotics III: The ferropnictide (FeAs) 1 Non-cuprate exotics III: The ferropnictide (FeAs) superconductors 1 Superconductivity in this group of materials was

More information

Electron State and Lattice Effects in Cuprate High Temperature Superconductors

Electron State and Lattice Effects in Cuprate High Temperature Superconductors Electron State and Lattice Effects in Cuprate High Temperature Superconductors - The True Story Revealed by Fermi Surface and Unconventional Lattice Effects- October 27-28, 2005 Headquarters and Information

More information

Role of the Octahedra Rotation on the Electronic Structures of 4d Transition Metal Oxides

Role of the Octahedra Rotation on the Electronic Structures of 4d Transition Metal Oxides Role of the Octahedra Rotation on the Electronic Structures of 4d Transition Metal Oxides Changyoung Kim Dept. Physics, Yonsei University B. J. Kim 1, J. Yu 1, S. J. Oh 1, H. Koh 2, I. Nagai 3, S. I. Ikeda

More information

Magnon, Spinon and Phonon in spin caloritronics

Magnon, Spinon and Phonon in spin caloritronics Magnon, Spinon and Phonon in spin caloritronics Institute of materials research, Tohoku University, Japan WPI-AIMR Tohoku Univ., ASRC JAEA, ERATO - SQR, JST, Japan Eiji SATIOH Contents 1. Introduction

More information

Striping in Cuprates. Michael Bertolli. Solid State II Elbio Dagotto Spring 2008 Department of Physics, Univ. of Tennessee

Striping in Cuprates. Michael Bertolli. Solid State II Elbio Dagotto Spring 2008 Department of Physics, Univ. of Tennessee Striping in Cuprates Michael Bertolli Solid State II Elbio Dagotto Spring 2008 Department of Physics, Univ. of Tennessee Outline Introduction Basics of Striping Implications to Superconductivity Experimental

More information

The change in conductivity anisotropy due to 1 superconductivity onset in the form of rare isolated islands: the theory and its application to FeSe

The change in conductivity anisotropy due to 1 superconductivity onset in the form of rare isolated islands: the theory and its application to FeSe A.A. Sinchenko, PG et al., Phys.Rev. B 95,165120 (2017); PG et al., JETP Lett. 105 (12), 786 (2017) The change in conductivity anisotropy due to 1 superconductivity onset in the form of rare isolated islands:

More information

Superconductivity and Superfluidity

Superconductivity and Superfluidity Superconductivity and Superfluidity Contemporary physics, Spring 2015 Partially from: Kazimierz Conder Laboratory for Developments and Methods, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland Resistivity

More information

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Phase diagram

More information

Tuning order in cuprate superconductors

Tuning order in cuprate superconductors Tuning order in cuprate superconductors arxiv:cond-mat/0201401 v1 23 Jan 2002 Subir Sachdev 1 and Shou-Cheng Zhang 2 1 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120,

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS 2753 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2011 Wednesday, 22 June, 9.30 am 12.30

More information

The NMR Probe of High-T c Materials

The NMR Probe of High-T c Materials R.E. Walstedt The NMR Probe of High-T c Materials 4y Springer Contents Introduction 1 1.1 The Basic Phenomenology of High-T c. Materials 1 1.2 Carrier Doping and the Master Phase Diagram 2 1.3 The NMR

More information

Angle-resolved photoemission study of the iron-based superconductors PrFeAsO 1 y and BaFe 2 (As 1 x P x ) 2

Angle-resolved photoemission study of the iron-based superconductors PrFeAsO 1 y and BaFe 2 (As 1 x P x ) 2 Angle-resolved photoemission study of the iron-based superconductors PrFeAsO 1 y and BaFe (As 1 x P x ) Master Thesis Ichiro Nishi Department of Physics, Graduate School of Science, The University of Tokyo

More information

Polaronic Effects in the Lightly Doped Cuprates. Kyle M. Shen Stanford University

Polaronic Effects in the Lightly Doped Cuprates. Kyle M. Shen Stanford University Polaronic Effects in the Lightly Doped Cuprates Kyle M. Shen Stanford University April 6, 2005 ARPES Studies of the Cuprates Temperature (K) AFI Bi 2 Sr 2 CaCu 2 O 8+δ Bi 2 Sr 2 CuO 6+δ YBa 2 Cu 3 O 7-δ

More information

Electronic inhomogeneity, magnetic order & superconductivity probed by NMR in cuprates and pnictides

Electronic inhomogeneity, magnetic order & superconductivity probed by NMR in cuprates and pnictides Electronic inhomogeneity, magnetic order & superconductivity probed by NMR in cuprates and pnictides Marc-Henri Julien Laboratoire de Spectrométrie Physique Université J. Fourier Grenoble I Acknowledgments

More information

ANISOTROPIC TRANSPORT IN THE IRON PNICTIDES

ANISOTROPIC TRANSPORT IN THE IRON PNICTIDES ANISOTROPIC TRANSPORT IN THE IRON PNICTIDES JÖRG SCHMALIAN AMES LABORATORY AND IOWA STATE UNIVERSITY Collaborators theory Ames: Rafael Fernandes Rutgers: Premala Chandra UCLA: Elihu Abrahams experiment

More information

Workshop on Principles and Design of Strongly Correlated Electronic Systems August 2010

Workshop on Principles and Design of Strongly Correlated Electronic Systems August 2010 2157-6 Workshop on Principles and Design of Strongly Correlated Electronic Systems 2-13 August 2010 Selection of Magnetic Order and Magnetic Excitations in the SDW State of Iron-based Superconductors Ilya

More information

2 B B D (E) Paramagnetic Susceptibility. m s probability. A) Bound Electrons in Atoms

2 B B D (E) Paramagnetic Susceptibility. m s probability. A) Bound Electrons in Atoms Paramagnetic Susceptibility A) Bound Electrons in Atoms m s probability B +½ p ½e x Curie Law: 1/T s=½ + B ½ p + ½e +x With increasing temperature T the alignment of the magnetic moments in a B field is

More information

Spin-Charge Separation in 1-D. Spin-Charge Separation in 1-D. Spin-Charge Separation - Experiment. Spin-Charge Separation - Experiment

Spin-Charge Separation in 1-D. Spin-Charge Separation in 1-D. Spin-Charge Separation - Experiment. Spin-Charge Separation - Experiment Spin-Charge Separation in 1-D Lecture: Solvable 1D electron systems, Mott insulator and correlated electron systems in 2D Solid State Spectroscopy Course 25/2/2013 Spin : J Charge : t Decay of a photohole

More information

University of Bristol. 1 Naval Research Laboratory 2 II. Physikalisches Institut, Universität zu Köln

University of Bristol. 1 Naval Research Laboratory 2 II. Physikalisches Institut, Universität zu Köln Charge ordering as alternative to Jahn-Teller distortion In collaboration with Michelle Johannes 1, Daniel Khomskii 2 (theory) and Mohsen Abd-Elmeguid et al 2, Radu Coldea et al 3 (experiment) 1 Naval

More information

Mott insulators. Mott-Hubbard type vs charge-transfer type

Mott insulators. Mott-Hubbard type vs charge-transfer type Mott insulators Mott-Hubbard type vs charge-transfer type Cluster-model description Chemical trend Band theory Self-energy correction Electron-phonon interaction Mott insulators Mott-Hubbard type vs charge-transfer

More information

Neutron and x-ray spectroscopy

Neutron and x-ray spectroscopy Neutron and x-ray spectroscopy B. Keimer Max-Planck-Institute for Solid State Research outline 1. self-contained introduction neutron scattering and spectroscopy x-ray scattering and spectroscopy 2. application

More information

Seminar Iron Pnictide Superconductors

Seminar Iron Pnictide Superconductors University of Ljubljana Faculty of Mathematics and Physics Department of Physics Seminar Iron Pnictide Superconductors Gregor Šmit Supervisor: dr. Denis Arčon January 11, 2010 Abstract Superconductivity

More information

Magnetism and Superconductivity

Magnetism and Superconductivity Magnetism and Superconductivity David J. Singh Oak Ridge National Laboratory Oh, East is East, and West is West, and never the twain shall meet (Rudyard Kippling) Main co-worker: Igor I. Mazin Supported

More information

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy Computational strongly correlated materials R. Torsten Clay Physics & Astronomy Current/recent students Saurabh Dayal (current PhD student) Wasanthi De Silva (new grad student 212) Jeong-Pil Song (finished

More information

Materials 218/UCSB: Superconductivity and High T C copper oxide superconductors:

Materials 218/UCSB: Superconductivity and High T C copper oxide superconductors: Materials 218/UCSB: Superconductivity and High T C copper oxide superconductors: Ram Seshadri (seshadri@mrl.ucsb.edu) The Ruddlesden-Popper phases: Ruddlesden-Popper phases are intergrowths of perovskite

More information

Master s Thesis in Physics

Master s Thesis in Physics F A C U L T Y O F S C I E N C E U N I V E R S I T Y O F C O P E N H A G E N Master s Thesis in Physics Maria Chatzieleftheriou Iron-based Superconductors Electronic correlations and orbital selectivity

More information

Quantum Choreography: Exotica inside Crystals

Quantum Choreography: Exotica inside Crystals Quantum Choreography: Exotica inside Crystals U. Toronto - Colloquia 3/9/2006 J. Alicea, O. Motrunich, T. Senthil and MPAF Electrons inside crystals: Quantum Mechanics at room temperature Quantum Theory

More information

When Landau and Lifshitz meet

When Landau and Lifshitz meet Yukawa International Seminar 2007 "Interaction and Nanostructural Effects in Low-Dimensional Systems" November 5-30, 2007, Kyoto When Landau and Lifshitz meet Unconventional Quantum Criticalities November

More information

Many-body effects in iron pnictides and chalcogenides

Many-body effects in iron pnictides and chalcogenides Many-body effects in iron pnictides and chalcogenides separability of non-local and dynamical correlation effects Jan M. Tomczak Vienna University of Technology jan.tomczak@tuwien.ac.at Emergent Quantum

More information

Exact results concerning the phase diagram of the Hubbard Model

Exact results concerning the phase diagram of the Hubbard Model Steve Kivelson Apr 15, 2011 Freedman Symposium Exact results concerning the phase diagram of the Hubbard Model S.Raghu, D.J. Scalapino, Li Liu, E. Berg H. Yao, W-F. Tsai, A. Lauchli G. Karakonstantakis,

More information

Superconductivity and Magnetism in (Tl,K,Rb)Fe x Se 2. Minghu Fang ( 方明虎 ) Zhejiang University, Hangzhou , China

Superconductivity and Magnetism in (Tl,K,Rb)Fe x Se 2. Minghu Fang ( 方明虎 ) Zhejiang University, Hangzhou , China Superconductivity and Magnetism in (Tl,K,Rb)Fe x Se 2 Minghu Fang ( 方明虎 ) Zhejiang University, Hangzhou 310027, China Email: mhfang@zju.edu.cn Thanks to my Collaborators Zhejiang University, China Hangdong

More information