Electronic quasiparticles and competing orders in the cuprate superconductors

Size: px
Start display at page:

Download "Electronic quasiparticles and competing orders in the cuprate superconductors"

Transcription

1 Electronic quasiparticles and competing orders in the cuprate superconductors Andrea Pelissetto Rome Subir Sachdev Ettore Vicari Pisa Yejin Huh Harvard Harvard

2 Gapless nodal quasiparticles in d-wave superconductors Brillouin zone

3 Photoemission spectra of La2-xSrxCuO4 EDC x=0.145 MDC J. Chang, M. Shi, S. Pailhes, M. Maansson, T. Claesson, O. Tjernberg, A. Bendounan, L. Patthey, N. Momono, M. Oda, M. Ido, C. Mudry, and J. Mesot, arxiv:

4 Photoemission spectra of La2-xSrxCuO4 x=0.145 J. Chang, M. Shi, S. Pailhes, M. Maansson, T. Claesson, O. Tjernberg, A. Bendounan, L. Patthey, N. Momono, M. Oda, M. Ido, C. Mudry, and J. Mesot, arxiv:

5 Scanning tunneling microscopy of BSCCO Good fit with!! "#$%&%"%#% J. W. Alldredge, Jinho Lee, K. McElroy, M. Wang, K. Fujita, Y. Kohsaka, C. Taylor, H. Eisaki, S. Uchida, P. J. Hirschfeld, and J. C. Davis Nature Physics 4, 319 (2008)

6 T c T QUANTUM T X superconducting CRITICAL d x 2-y2 superconductor 0 state X r c r Needed: Quantum critical point with nodal quasiparticles part of the critical theory

7 Outline 1. SDW order in LSCO Emergent O(4) symmetry 2. Nodal quasiparticles at the O(4) critical point Unique selection of quasiparticle coupling to (composite) nematic order 3. Nematic order in YBCO and BSCCO Broken lattice symmetry but no spin order 4. Theory of the onset of nematic order in a d-wave superconductor Infinite anisotropy fixed point

8 Outline 1. SDW order in LSCO Emergent O(4) symmetry 2. Nodal quasiparticles at the O(4) critical point Unique selection of quasiparticle coupling to (composite) nematic order 3. Nematic order in YBCO and BSCCO Broken lattice symmetry but no spin order 4. Theory of the onset of nematic order in a d-wave superconductor Infinite anisotropy fixed point

9 Neutron Scattering-LSCO K Brillouin zone Vignolle et al., Nature Phys. 07 Christensen et al., PRL 04 Hayden et al., Nature 04 Tranquada et al., Nature 04

10 T=0 SC to SC+SDW quantum critical point E. Demler, S. Sachdev, and Y. Zhang, Phys. Rev. Lett. 87, (2001).

11 J. Chang, Ch. Niedermayer, R. Gilardi, N.B. Christensen, H.M. Ronnow, D.F. McMorrow, M. Ay, J. Stahn, O. Sobolev, A. Hiess, S. Pailhes, C. Baines, N. Momono, M. Oda, M. Ido, and J. Mesot, arxiv: SC to SC+SDW quantum critical point

12 SDW order parameters K2 K1 Brillouin zone S i (r, τ) = Re [ e ik 1 r Φ 1i (r, τ)+e ik 2 r Φ 2i (r, τ) ]. ( 2π )( 1 ) ( 2π )( 1 ) K 1 = a 2 ϑ, 1 2, K 2 = a 2, 1 2 ϑ,

13 SDW field theory L Φ = τ Φ v 2 1 x Φ v 2 2 y Φ τ Φ v 2 2 x Φ v 2 1 y Φ r( Φ Φ 2 2 ) + u 1 2 ( Φ Φ 2 4 )+ u 2 2 ( Φ Φ ) +w 1 Φ 1 2 Φ w 2 Φ 1 Φ w 3 Φ 1 Φ 2 2 Most general theory invariant under spin rotation, square lattice space group, and time-reversal symmetries T x T y R I T Φ 1i e iϑ Φ 1i Φ 1i Φ 2i Φ 1i Φ 1i Φ 2i Φ 2i e iϑ Φ 2i Φ 1i Φ 2i Φ 2i

14 SDW field theory L Φ = τ Φ v 2 1 x Φ v 2 2 y Φ τ Φ v 2 2 x Φ v 2 1 y Φ r( Φ Φ 2 2 ) + u 1 2 ( Φ Φ 2 4 )+ u 2 2 ( Φ Φ ) +w 1 Φ 1 2 Φ w 2 Φ 1 Φ w 3 Φ 1 Φ 2 2 Symmetries: U(1) U(1) Z 4 O(3) x-translations y-translations lattice rotations spin rotations

15 SDW field theory Stable fixed point in a 6-loop RG analysis: w 1 = u 1 u 2, w 2 = w 3 = u 2, v 1 = v 2 O(4) O(3) invariant theory for ϕ ai, with a = an O(4) index, and i = an O(3) index, and Φ 1i = ϕ 1i + iϕ 2i, Φ 2i = ϕ 3i + iϕ 4i. M. De Prato, A. Pelissetto, and E. Vicari Phys. Rev. B 74, (2006).

16 SDW field theory Symmetries: U(1) U(1) Z 4 O(3) spin x-translations rotations y-translations lattice rotations

17 SDW field theory Symmetries: O(4) O(3) spin x-translations rotations y-translations lattice rotations

18 Properties of O(4) O(3) fixed point: The following 9 order parameters have divergent fluctuations at the spin-density wave ordering transition with the same exponent γ: The real nematic order parameter, φ ( i Φ1i 2 Φ 2i 2) which measures breaking of Z 4 symmetry Charge density waves at 2K 1 and 2K 2 : i Φ2 1i and i Φ2 2i Charge density waves at K 1 ± K 2 : i Φ 1iΦ 2i and i Φ 1i Φ 2i At the quantum critical point, the susceptibilities of these orders all diverge as χ T γ, with γ = { 0.90(36) MZM, 6 loops 0.80(54) d = 3MS, 5 loops A. Pelissetto, S. Sachdev and E. Vicari, arxiv:

19 Outline 1. SDW order in LSCO Emergent O(4) symmetry 2. Nodal quasiparticles at the O(4) critical point Unique selection of quasiparticle coupling to (composite) nematic order 3. Nematic order in YBCO and BSCCO Broken lattice symmetry but no spin order 4. Theory of the onset of nematic order in a d-wave superconductor Infinite anisotropy fixed point

20 Outline 1. SDW order in LSCO Emergent O(4) symmetry 2. Nodal quasiparticles at the O(4) critical point Unique selection of quasiparticle coupling to (composite) nematic order 3. Nematic order in YBCO and BSCCO Broken lattice symmetry but no spin order 4. Theory of the onset of nematic order in a d-wave superconductor Infinite anisotropy fixed point

21 Brillouin zone L Ψ = Ψ 1 ( τ i v F 2 ( x + y )τ z i v 2 ( x + y )τ x ) Ψ 1 +Ψ 2 ( τ i v F 2 ( x + y )τ z i v 2 ( x + y )τ x ) Ψ 2.

22 Coupling of quasiparticles to SDW order π Ψ h P Ψ 2 Ψ 1 0 Ψ h K Φ α Φ α Ψ h Ψ 1 K Ψ 2 π π Ψ h 0 π Wavevector mismatch suggests SDW order and nodal quasiparticles are decoupled

23 Coupling of quasiparticles to SDW order π Ψ h P Ψ 2 Ψ 1 0 Ψ h K Φ α Φ α Ψ h Ψ 1 K Ψ 2 π π Ψ h 0 π No Yukawa coupling ΦΨ Ψ

24 Coupling of quasiparticles to SDW order π Ψ h P Ψ 2 Ψ 1 0 Ψ h K Φ α Φ α Ψ h Ψ 1 K Ψ 2 π π Ψ h 0 π Possible higher order coupling ~ ΦΨ 2 Ψ

25 Coupling of quasiparticles to SDW order Higher - order couplings allowed by symmetry: L 1 = λ 1 ( Φ1 2 + Φ 2 2) ( Ψ 1 τ z Ψ 1 + Ψ 2 τ z Ψ 2 ) ( ) ( ) [ Energy-energy coupling A. Pelissetto, S. Sachdev and E. Vicari, arxiv:

26 Coupling of quasiparticles to SDW order Higher - order couplings allowed by symmetry: L ( ) ( ) ( L 2 = λ 2 Φ1 2 Φ 2 2) ( ) Ψ 1 τ x Ψ 1 + Ψ 2 τ x Ψ 2 [ L ( Nematic ) ( coupling A. Pelissetto, S. Sachdev and E. Vicari, arxiv:

27 Coupling of quasiparticles to SDW order L ( ) ( ) Higher - order couplings allowed by symmetry: ( ) ( ) [ L 3 = ɛ ijk ( Φ 1j Φ 1k + Φ ) ( ) 2jΦ 2k λ 3 Ψ 2 τ x σ i Ψ 2 + λ 3Ψ 1 τ z σ i Ψ 1 + ( Φ 1jΦ 1k Φ 2jΦ 2k ) ( λ 3 Ψ 1 τ x σ i Ψ 1 λ 3Ψ 2 τ z σ i Ψ 2 )]. Spiral spin order coupling A. Pelissetto, S. Sachdev and E. Vicari, arxiv:

28 Coupling of quasiparticles to SDW order Scaling dimensions of these couplings: dim[λ 1 ] = 1 ν 2= 0.9(2) dim[λ 2 ] = dim[λ 3, λ 3] = { (γ 1) 0.05(18) MZM, 6 loops = (27) d = 3MS, 5 loops { 0.84(8) MZM, 6 loops 0.76(8) d = 3MS, 5 loops A. Pelissetto, S. Sachdev and E. Vicari, arxiv:

29 Coupling of quasiparticles to SDW order Coupling of nematic order is nearly marginal: Quantum-critical features appear in fermion spectrum via coupling to nematic fluctuations of spin density wave order. A. Pelissetto, S. Sachdev and E. Vicari, arxiv:

30 Outline 1. SDW order in LSCO Emergent O(4) symmetry 2. Nodal quasiparticles at the O(4) critical point Unique selection of quasiparticle coupling to (composite) nematic order 3. Nematic order in YBCO and BSCCO Broken lattice symmetry but no spin order 4. Theory of the onset of nematic order in a d-wave superconductor Infinite anisotropy fixed point

31 Outline 1. SDW order in LSCO Emergent O(4) symmetry 2. Nodal quasiparticles at the O(4) critical point Unique selection of quasiparticle coupling to (composite) nematic order 3. Nematic order in YBCO and BSCCO Broken lattice symmetry but no spin order 4. Theory of the onset of nematic order in a d-wave superconductor Infinite anisotropy fixed point

32 Nematic order in YBCO V. Hinkov, D. Haug, B. Fauqué, P. Bourges, Y. Sidis, A. Ivanov, C. Bernhard, C. T. Lin, and B. Keimer, Science 319, 597 (2008)

33 Nematic order in YBCO V. Hinkov, D. Haug, B. Fauqué, P. Bourges, Y. Sidis, A. Ivanov, C. Bernhard, C. T. Lin, and B. Keimer, Science 319, 597 (2008)

34 STM studies of the underdoped superconductor Ca 1.90 Na 0.10 CuO 2 Cl 2 Bi 2.2 Sr 1.8 Ca 0.8 Dy 0.2 Cu 2 O y

35 di/dv Spectra Ca 1.90 Na 0.10 CuO 2 Cl 2 Bi 2.2 Sr 1.8 Ca 0.8 Dy 0.2 Cu 2 O y Intense Tunneling-Asymmetry (TA) variation are highly similar Y. Kohsaka et al. Science 315, 1380 (2007)

36 TA Contrast is at oxygen site (Cu-O-Cu bond-centered) R map (150 mv) Ca 1.88 Na 0.12 CuO 2 Cl 2, 4 K 4a 0 12 nm Y. Kohsaka et al. Science 315, 1380 (2007)

37 TA Contrast is at oxygen site (Cu-O-Cu bond-centered) R map (150 mv) Ca 1.88 Na 0.12 CuO 2 Cl 2, 4 K 4a 0 12 nm Broken lattice translation and rotation symmetries: valence bond supersolid or supernematic S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991). S. A. Kivelson, E. Fradkin, V. J. Emery, Nature 393, 550 (1998). M. Vojta and S. Sachdev, Phys. Rev. Lett. 83, 3916 (1999).

38 Outline 1. SDW order in LSCO Emergent O(4) symmetry 2. Nodal quasiparticles at the O(4) critical point Unique selection of quasiparticle coupling to (composite) nematic order 3. Nematic order in YBCO and BSCCO Broken lattice symmetry but no spin order 4. Theory of the onset of nematic order in a d-wave superconductor Infinite anisotropy fixed point

39 Outline 1. SDW order in LSCO Emergent O(4) symmetry 2. Nodal quasiparticles at the O(4) critical point Unique selection of quasiparticle coupling to (composite) nematic order 3. Nematic order in YBCO and BSCCO Broken lattice symmetry but no spin order 4. Theory of the onset of nematic order in a d-wave superconductor Infinite anisotropy fixed point

40 T T c T n Quantum Critical φ/v 1/λ c 1/λ M. Vojta, Y. Zhang, and S. Sachdev, Phys. Rev. Lett. 85, 4940 (2000) E.-A. Kim, M. J. Lawler, P. Oreto, S. Sachdev, E. Fradkin, S.A. Kivelson, arxiv:

41 d x 2 y 2 superconductor + nematic order d x 2 y 2 superconductor r c r

42 d x 2 y 2 ± s superconductor d x 2 y 2 superconductor r c r Order parameter - s pairing amplitude φ Also φ Φ 1 2 Φ 2 2

43 Field theory for dsc to dsc+nematic transition S 0 φ = [ d 2 1 xdτ 2 ( τ φ) 2 + c2 2 ( φ)2 + r 2 φ2 + u 0 24 φ4] ; [ ( )] Ising theory for nematic ordering S Ψ = d 2 k (2π) 2 T ω n Ψ 1a ( iω n + v F k x τ z + v k y τ x ) Ψ 1a + d 2 k (2π) 2 T ω n Ψ 2a ( iω n + v F k y τ z + v k x τ x ) Ψ 2a. Free nodal quasiparticles [ ] M. Vojta, Y. Zhang, and S. Sachdev, Physical Review Letters 85, 4940 (2000)

44 [ Field theory for dsc to dsc+nematic transition ] S Ψφ = d 2 xdτ [ λ 0 φ (Ψ 1a τ x Ψ 1a + Ψ 2a τ x Ψ 2a )], Yukawa coupling is now permitted and is strongly relevant RG analysis close to 3 dimensions yields runaway flow to strong coupling M. Vojta, Y. Zhang, and S. Sachdev, Physical Review Letters 85, 4940 (2000)

45 Expansion in number of fermion spin components Nf Integrating out the fermions yields an effective action for the nematic order parameter S φ = N f v v F Γ [ + N f 2 λ 0 φ(x, τ); v v F d 2 xdτ + irrelevant terms ] ( ) rφ 2 (x, τ) where Γ is a non-local and non-analytic functional of φ. The theory has only 2 couplings constants: r and v /v F.

46 Expansion in number of fermion spin components Nf Integrating out the fermions yields an effective action for the nematic order parameter S φ = N f 2 k,ω + λ2 0 8v F v φ(k, ω) 2 [r ( ω 2 + vf 2 k2 x ω 2 + vf 2 k2 x + v 2 k2 y +(x y) )] +higher order terms which cannot be neglected E.-A. Kim, M. J. Lawler, P. Oreto, S. Sachdev, E. Fradkin, S.A. Kivelson, arxiv:

47 Renormalization group analysis Couplings are local in the fermion action, so perform RG on fermion self energy The 1/N f expansion has only one coupling constant at criticality: v /v F. The RG has the structure: dynamic critical exponent : z = F 1 (v /v F ) N f fermion anomalous dimension : η f = 1 F 2 (v /v F ) N f RG flow equation : d(v /v F ) dl = 1 N f F 3 (v /v F ) where we have computed the functions F 1,2,3 (v /v F ).

48 Renormalization group analysis The RG flow is to v /v F 0 with d(v /v F ) dl = 4 π 2 N f (v /v F ) 2 ln ( ) (v /v F ) This implies that at the critical point, as T 0 we have the asymptotic result v v F = π2 N f 4 ln ( Λ T ) ln [ N f ln ( Λ T ) ], and a more precise result is obtained by numerically integrating the RG equation.

49 Renormalization group analysis In the limit v /v F 0, the effective action becomes S φ = N f v v F Γ [ + N f 2 λ 0 φ(x, τ); v v F d 2 xdτ + irrelevant terms ] ( ) rφ 2 (x, τ)

50 Renormalization group analysis In the limit v /v F 0, the effective action becomes S φ N v [terms that have at most a divergence ] which is a power of ln(v F /v ) The theory is controlled by the expansion parameter v /N f, and so results are asymptotically exact even for N f = 2.

51 Fermion spectral functions φ fluctuations broaden the fermion spectral functions except in a wedge near the nodal points E.-A. Kim, M. J. Lawler, P. Oreto, S. Sachdev, E. Fradkin, S.A. Kivelson, arxiv:

52 Conclusions 1. Theories for damping of nodal quasiparticles in cuprates 2. SDW theory for LSCO yields (nearly) quantum critical spectral functions with arbitrary values of v /v F 3. Nematic theory for YBCO/BSCCO has a fixed point with v /v F = 0 which is approached logarithmically. The theory is expressed as an expansion in v /v F 4. Theories yield Fermi arc spectra.

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions Niels Bohr Institute, Copenhagen, May 6, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski,

More information

Quantum criticality of Fermi surfaces in two dimensions

Quantum criticality of Fermi surfaces in two dimensions Quantum criticality of Fermi surfaces in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Yejin Huh, Harvard Max Metlitski, Harvard HARVARD Outline 1. Quantum criticality of Fermi points:

More information

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu Quantum criticality in the cuprate superconductors Talk online: sachdev.physics.harvard.edu The cuprate superconductors Destruction of Neel order in the cuprates by electron doping, R. K. Kaul, M. Metlitksi,

More information

Strong coupling problems in condensed matter and the AdS/CFT correspondence

Strong coupling problems in condensed matter and the AdS/CFT correspondence Strong coupling problems in condensed matter and the AdS/CFT correspondence Reviews: arxiv:0910.1139 arxiv:0901.4103 Talk online: sachdev.physics.harvard.edu HARVARD Frederik Denef, Harvard Yejin Huh,

More information

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates HARVARD Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates Talk online: sachdev.physics.harvard.edu HARVARD Where is the quantum critical point

More information

Talk online at

Talk online at Talk online at http://sachdev.physics.harvard.edu Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic

More information

Quantum disordering magnetic order in insulators, metals, and superconductors

Quantum disordering magnetic order in insulators, metals, and superconductors Quantum disordering magnetic order in insulators, metals, and superconductors Perimeter Institute, Waterloo, May 29, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Cenke Xu, Harvard arxiv:1004.5431

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Quantum Melting of Stripes

Quantum Melting of Stripes Quantum Melting of Stripes David Mross and T. Senthil (MIT) D. Mross, TS, PRL 2012 D. Mross, TS, PR B (to appear) Varieties of Stripes Spin, Charge Néel 2π Q c 2π Q s ``Anti-phase stripes, common in La-based

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies on-line at http://pantheon.yale.edu/~subir

More information

Talk online: sachdev.physics.harvard.edu

Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Particle theorists Condensed matter theorists Quantum Entanglement Hydrogen atom: Hydrogen molecule: = _ = 1 2 ( ) Superposition of two electron states leads to

More information

Quantum criticality and the phase diagram of the cuprates

Quantum criticality and the phase diagram of the cuprates Quantum criticality and the phase diagram of the cuprates Talk online: sachdev.physics.harvard.edu HARVARD Victor Galitski, Maryland Ribhu Kaul, Harvard Kentucky Max Metlitski, Harvard Eun Gook Moon, Harvard

More information

Damping of collective modes and quasiparticles in d-wave superconductors. Subir Sachdev M. Vojta. Yale University. C. Buragohain

Damping of collective modes and quasiparticles in d-wave superconductors. Subir Sachdev M. Vojta. Yale University. C. Buragohain Damping of collective modes and quasiparticles in d-wave superconductors C. Buragohain Y. Zhang Subir Sachdev M. Vojta Transparencies on-line at http://pantheon.yale.edu/~subir Review article: cond-mat/000550

More information

Vortices in the cuprate superconductors

Vortices in the cuprate superconductors Vortices in the cuprate superconductors Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies online at http://pantheon.yale.edu/~subir

More information

The Role of Charge Order in the Mechanism of High Temperature Superconductivity

The Role of Charge Order in the Mechanism of High Temperature Superconductivity The Role of Charge Order in the Mechanism of High Temperature Superconductivity Eduardo Fradkin Department of Physics University of Illinois at Urbana-Champaign Steven Kivelson, UCLA/Stanford Enrico Arrigoni,

More information

Quantum transitions of d-wave superconductors in a magnetic field

Quantum transitions of d-wave superconductors in a magnetic field Quantum transitions of d-wave superconductors in a magnetic field Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 86, 479 (1999). Transparencies

More information

Spin correlations in YBa 2 Cu 3 O 6+x bulk vs. interface

Spin correlations in YBa 2 Cu 3 O 6+x bulk vs. interface Spin correlations in YBa 2 Cu 3 O 6+x bulk vs. interface B. Keimer Max-Planck-Institute for Solid State Research outline new quantum states in bulk? yes, good evidence for electronic nematic phase new

More information

Tuning order in the cuprate superconductors by a magnetic field

Tuning order in the cuprate superconductors by a magnetic field Tuning order in the cuprate superconductors by a magnetic field Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies

More information

A quantum dimer model for the pseudogap metal

A quantum dimer model for the pseudogap metal A quantum dimer model for the pseudogap metal College de France, Paris March 27, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Andrea Allais Matthias Punk Debanjan Chowdhury (Innsbruck)

More information

Saturday, April 3, 2010

Saturday, April 3, 2010 Phys. Rev. Lett. 1990 Superfluid-insulator transition Ultracold 87 Rb atoms - bosons M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). T σ = 4e2 h Σ Quantum Σ, auniversalnumber.

More information

Emergent gauge fields and the high temperature superconductors

Emergent gauge fields and the high temperature superconductors HARVARD Emergent gauge fields and the high temperature superconductors Unifying physics and technology in light of Maxwell s equations The Royal Society, London November 16, 2015 Subir Sachdev Talk online:

More information

Quantum phase transitions in antiferromagnets and d-wave superconductors

Quantum phase transitions in antiferromagnets and d-wave superconductors Quantum phase transitions in antiferromagnets and d-wave superconductors Chiranjeeb Buragohain Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science

More information

Tuning order in the cuprate superconductors

Tuning order in the cuprate superconductors Tuning order in the cuprate superconductors Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies online at http://pantheon.yale.edu/~subir

More information

Order and quantum phase transitions in the cuprate superconductors

Order and quantum phase transitions in the cuprate superconductors Order and quantum phase transitions in the cuprate superconductors Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Talk online:

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Origin and Implica.ons of Glassy Charge Order in Underdoped Cuprates

Origin and Implica.ons of Glassy Charge Order in Underdoped Cuprates Origin and Implica.ons of Glassy Charge Order in Underdoped Cuprates Q y Q x S y S x Eun-Ah Kim (Cornell) Origin and Implica.ons of Glassy Charge Order in Underdoped Cuprates Q y Q x S y S x Eun-Ah Kim

More information

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity Mike Norman Materials Science Division Argonne National Laboratory & Center for Emergent Superconductivity Physics 3, 86

More information

Emergent light and the high temperature superconductors

Emergent light and the high temperature superconductors HARVARD Emergent light and the high temperature superconductors Pennsylvania State University State College, January 21, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu Maxwell's equations:

More information

Understanding correlated electron systems by a classification of Mott insulators

Understanding correlated electron systems by a classification of Mott insulators Understanding correlated electron systems by a classification of Mott insulators Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe)

More information

Order and quantum phase transitions in the cuprate superconductors

Order and quantum phase transitions in the cuprate superconductors Order and quantum phase transitions in the cuprate superconductors Subir Sachdev Department of Physics, Yale University, P.O. Box 208120, New Haven CT 06520-8120 March 26, 2003 Abstract This is a summary

More information

Theory of the nodal nematic quantum phase transition in superconductors

Theory of the nodal nematic quantum phase transition in superconductors Theory of the nodal nematic quantum phase transition in superconductors Eun-Ah Kim, 1 Michael J. Lawler, 2 Paul Oreto, 1 Subir Sachdev, 3 Eduardo Fradkin, 3 and Steven A. Kivelson 1 1 Department of Physics,

More information

Dual vortex theory of doped antiferromagnets

Dual vortex theory of doped antiferromagnets Dual vortex theory of doped antiferromagnets Physical Review B 71, 144508 and 144509 (2005), cond-mat/0502002, cond-mat/0511298 Leon Balents (UCSB) Lorenz Bartosch (Harvard) Anton Burkov (Harvard) Predrag

More information

Quantum Criticality and Black Holes

Quantum Criticality and Black Holes Quantum Criticality and Black Holes ubir Sachde Talk online at http://sachdev.physics.harvard.edu Quantum Entanglement Hydrogen atom: Hydrogen molecule: = _ = 1 2 ( ) Superposition of two electron states

More information

Theory of the Nernst effect near the superfluid-insulator transition

Theory of the Nernst effect near the superfluid-insulator transition Theory of the Nernst effect near the superfluid-insulator transition Sean Hartnoll (KITP), Christopher Herzog (Washington), Pavel Kovtun (KITP), Marcus Mueller (Harvard), Subir Sachdev (Harvard), Dam Son

More information

Tuning order in cuprate superconductors

Tuning order in cuprate superconductors Tuning order in cuprate superconductors arxiv:cond-mat/0201401 v1 23 Jan 2002 Subir Sachdev 1 and Shou-Cheng Zhang 2 1 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120,

More information

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/0408329, cond-mat/0409470, and to appear Leon Balents (UCSB)

More information

General relativity and the cuprates

General relativity and the cuprates General relativity and the cuprates Gary T. Horowitz and Jorge E. Santos Department of Physics, University of California, Santa Barbara, CA 93106, U.S.A. E-mail: gary@physics.ucsb.edu, jss55@physics.ucsb.edu

More information

Theory of the Nodal Nematic Quantum Phase Transition in Superconductors

Theory of the Nodal Nematic Quantum Phase Transition in Superconductors Theory of the Nodal Nematic Quantum Phase Transition in Superconductors The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

Q=0 Magnetic order in the pseudogap state of cuprates superconductors

Q=0 Magnetic order in the pseudogap state of cuprates superconductors Q=0 Magnetic order in the pseudogap state of cuprates superconductors Philippe Bourges Laboratoire Léon Brillouin, CEA-Saclay Using polarized neutron diffraction: 4F1 (LLB-Saclay) & D7 (ILL-Grenoble) Magnetic

More information

Competing orders and quantum criticality in the high temperature superconductors

Competing orders and quantum criticality in the high temperature superconductors Competing orders and quantum criticality in the high temperature superconductors Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479

More information

Nematic and Magnetic orders in Fe-based Superconductors

Nematic and Magnetic orders in Fe-based Superconductors Nematic and Magnetic orders in Fe-based Superconductors Cenke Xu Harvard University Collaborators: Markus Mueller, Yang Qi Subir Sachdev, Jiangping Hu Collaborators: Subir Sachdev Markus Mueller Yang Qi

More information

Understanding correlated electron systems by a classification of Mott insulators

Understanding correlated electron systems by a classification of Mott insulators Understanding correlated electron systems by a classification of Mott insulators Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe)

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Can superconductivity emerge out of a non Fermi liquid.

Can superconductivity emerge out of a non Fermi liquid. Can superconductivity emerge out of a non Fermi liquid. Andrey Chubukov University of Wisconsin Washington University, January 29, 2003 Superconductivity Kamerling Onnes, 1911 Ideal diamagnetism High Tc

More information

Metals without quasiparticles

Metals without quasiparticles Metals without quasiparticles A. Review of Fermi liquid theory B. A non-fermi liquid: the Ising-nematic quantum critical point C. Fermi surfaces and gauge fields Metals without quasiparticles A. Review

More information

Quantum theory of vortices and quasiparticles in d-wave superconductors

Quantum theory of vortices and quasiparticles in d-wave superconductors Quantum theory of vortices and quasiparticles in d-wave superconductors Quantum theory of vortices and quasiparticles in d-wave superconductors Physical Review B 73, 134511 (2006), Physical Review B 74,

More information

Low energy excitations in cuprates: an ARPES perspective. Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan.

Low energy excitations in cuprates: an ARPES perspective. Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan. Low energy excitations in cuprates: an ARPES perspectie Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan. 15, 2014 Acknowledgements Shen Group Professor Zhi-Xun Shen Dr.

More information

The underdoped cuprates as fractionalized Fermi liquids (FL*)

The underdoped cuprates as fractionalized Fermi liquids (FL*) The underdoped cuprates as fractionalized Fermi liquids (FL*) R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, Physical Review B 75, 235122 (2007) R. K. Kaul, Y. B. Kim, S. Sachdev, and T.

More information

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability Subir Sachdev sachdev.physics.harvard.edu HARVARD y x Fermi surface with full square lattice symmetry y x Spontaneous

More information

Quantum criticality of Fermi surfaces

Quantum criticality of Fermi surfaces Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface

More information

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES studies of cuprates Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Goals of lecture Understand why gaps are important and various ways that gap

More information

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay I- Similarities between phase diagram and quantum critical points Quantum Criticality in 3 Families of Superconductors L. Taillefer,

More information

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals Subir Sachdev sachdev.physics.harvard.edu HARVARD Max Metlitski Erez Berg HARVARD Max Metlitski Erez Berg Sean Hartnoll

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Science 286, 2479 (1999). Quantum Phase Transitions Cambridge University Press Transparencies on-line at http://pantheon.yale.edu/~subir

More information

Quantum theory of vortices in d-wave superconductors

Quantum theory of vortices in d-wave superconductors Quantum theory of vortices in d-wave superconductors Physical Review B 71, 144508 and 144509 (2005), Annals of Physics 321, 1528 (2006), Physical Review B 73, 134511 (2006), cond-mat/0606001. Leon Balents

More information

From the pseudogap to the strange metal

From the pseudogap to the strange metal HARVARD From the pseudogap to the strange metal S. Sachdev, E. Berg, S. Chatterjee, and Y. Schattner, PRB 94, 115147 (2016) S. Sachdev and S. Chatterjee, arxiv:1703.00014 APS March meeting March 13, 2017

More information

Direct observation of competition between superconductivity and charge density wave order in YBa 2 Cu 3 O y

Direct observation of competition between superconductivity and charge density wave order in YBa 2 Cu 3 O y Direct observation of competition between superconductivity and charge density wave order in YBa 2 Cu 3 O y J. Chang 1,2, E. Blackburn 3, A. T. Holmes 3, N. B. Christensen 4, J. Larsen 4,5, J. Mesot 1,2,

More information

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Jaeger, Orr, Goldman, Kuper (1986) Dissipation driven QCP s Haviland, Liu, and Goldman Phys. Rev.

More information

Perimeter Institute January 19, Subir Sachdev

Perimeter Institute January 19, Subir Sachdev HARVARD Emergent light and the high temperature superconductors Perimeter Institute January 19, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu Debanjan Chowdhury Andrea Allais Yang Qi Matthias

More information

The Remarkable Superconducting Stripe Phase of the High Tc Superconductor La2-xBaxCuO4 near x=1/8

The Remarkable Superconducting Stripe Phase of the High Tc Superconductor La2-xBaxCuO4 near x=1/8 The Remarkable Superconducting Stripe Phase of the High Tc Superconductor La2-xBaxCuO4 near x=1/8 Eduardo Fradkin University of Illinois at Urbana-Champaign Seminar at the Department of Physics Harvard

More information

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta C. Buragohain K. Damle M. Vojta Subir Sachdev Phys. Rev. Lett. 78, 943 (1997). Phys. Rev. B 57, 8307 (1998). Science 286, 2479 (1999). cond-mat/9912020 Quantum Phase Transitions, Cambridge University Press

More information

Topological order in the pseudogap metal

Topological order in the pseudogap metal HARVARD Topological order in the pseudogap metal High Temperature Superconductivity Unifying Themes in Diverse Materials 2018 Aspen Winter Conference Aspen Center for Physics Subir Sachdev January 16,

More information

The Role of Charge Order in the Mechanism of High Temperature Superconductivity

The Role of Charge Order in the Mechanism of High Temperature Superconductivity The Role of Charge Order in the Mechanism of High Temperature Superconductivity Talk at the Oak Ridge National Laboratory, March 28, 2008 Eduardo Fradkin Department of Physics University of Illinois at

More information

Using Disorder to Detect Order: Hysteresis and Noise of Nematic Stripe Domains in High Temperature Superconductors

Using Disorder to Detect Order: Hysteresis and Noise of Nematic Stripe Domains in High Temperature Superconductors Using Disorder to Detect Order: Hysteresis and Noise of Nematic Stripe Domains in High Temperature Superconductors Erica Carlson Karin Dahmen Eduardo Fradkin Steven Kivelson Dale Van Harlingen Michael

More information

The Nernst effect in high-temperature superconductors

The Nernst effect in high-temperature superconductors The Nernst effect in high-temperature superconductors Iddo Ussishkin (University of Minnesota) with Shivaji Sondhi David Huse Vadim Oganesyan Outline Introduction: - High-temperature superconductors: physics

More information

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/0408329, cond-mat/0409470, and to appear Leon Balents (UCSB)

More information

Electronic Noise Due to Thermal Stripe Switching

Electronic Noise Due to Thermal Stripe Switching Electronic Noise Due to Thermal Stripe Switching E. W. Carlson B. Phillabaum Y. L. Loh D. X. Yao Research Corporation Solid Liquid Gas www.stonecropgallery.com/artists/caleb/01-solidliquidgas.jpg Crystals

More information

arxiv: v1 [cond-mat.str-el] 16 Dec 2011

arxiv: v1 [cond-mat.str-el] 16 Dec 2011 Competition between superconductivity and nematic order: anisotropy of superconducting coherence length Eun-Gook Moon 1, 2 and Subir Sachdev 1 1 Department of Physics, Harvard University, Cambridge MA

More information

Z 2 topological order near the Neel state on the square lattice

Z 2 topological order near the Neel state on the square lattice HARVARD Z 2 topological order near the Neel state on the square lattice Institut für Theoretische Physik Universität Heidelberg April 28, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu Shubhayu

More information

requires going beyond BCS theory to include inelastic scattering In conventional superconductors we use Eliashberg theory to include the electron-

requires going beyond BCS theory to include inelastic scattering In conventional superconductors we use Eliashberg theory to include the electron- MECHANISM requires going beyond BCS theory to include inelastic scattering In conventional superconductors we use Eliashberg theory to include the electron- A serious limitation of BCS theory is that it

More information

Phenomenology of High Tc Cuprates II. Pseudogap in Underdoped Cuprates

Phenomenology of High Tc Cuprates II. Pseudogap in Underdoped Cuprates Lecture # 2 1 Phenomenology of High Tc Cuprates II Pseudogap in Underdoped Cuprates Mohit Randeria Ohio State University 2014 Boulder School on Modern aspects of Superconductivity T T* Strange metal Mott

More information

Magnetism in correlated-electron materials

Magnetism in correlated-electron materials Magnetism in correlated-electron materials B. Keimer Max-Planck-Institute for Solid State Research focus on delocalized electrons in metals and superconductors localized electrons: Hinkov talk outline

More information

Visualization of atomic-scale phenomena in superconductors

Visualization of atomic-scale phenomena in superconductors Visualization of atomic-scale phenomena in superconductors Andreas Kreisel, Brian Andersen Niels Bohr Institute, University of Copenhagen, 2100 København, Denmark Peayush Choubey, Peter Hirschfeld Department

More information

Novel Magnetic Order and Excitations in the Pseudogap Phase of HgBa 2 CuO 4+

Novel Magnetic Order and Excitations in the Pseudogap Phase of HgBa 2 CuO 4+ Novel Magnetic Order and Excitations in the Pseudogap Phase of HgBa 2 CuO 4+ Martin Greven (University of Minnesota) FRM-II Our Group & Collaborators Dr. Neven Barišić (Stuttgart U.) Guillaume Chabot-Couture

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information

Neutron scattering from quantum materials

Neutron scattering from quantum materials Neutron scattering from quantum materials Bernhard Keimer Max Planck Institute for Solid State Research Max Planck UBC UTokyo Center for Quantum Materials Detection of bosonic elementary excitations in

More information

A New look at the Pseudogap Phase in the Cuprates.

A New look at the Pseudogap Phase in the Cuprates. A New look at the Pseudogap Phase in the Cuprates. Patrick Lee MIT Common themes: 1. Competing order. 2. superconducting fluctuations. 3. Spin gap: RVB. What is the elephant? My answer: All of the above!

More information

Quantum Entanglement and Superconductivity. Subir Sachdev, Perimeter Institute and Harvard University

Quantum Entanglement and Superconductivity. Subir Sachdev, Perimeter Institute and Harvard University Quantum Entanglement and Superconductivity Subir Sachdev, Perimeter Institute and Harvard University Quantum Entanglement and Superconductivity Superconductor, levitated by an unseen magnet, in which countless

More information

Strength of the spin fluctuation mediated pairing interaction in YBCO 6.6

Strength of the spin fluctuation mediated pairing interaction in YBCO 6.6 Universität Tübingen Lehrstuhl für Theoretische Festkörperphysik Strength of the spin fluctuation mediated pairing interaction in YBCO 6.6 Thomas Dahm Institut für Theoretische Physik Universität Tübingen

More information

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford)

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford) Wilsonian and large N theories of quantum critical metals Srinivas Raghu (Stanford) Collaborators and References R. Mahajan, D. Ramirez, S. Kachru, and SR, PRB 88, 115116 (2013). A. Liam Fitzpatrick, S.

More information

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds Twelfth Arnold Sommerfeld Lecture Series January 31 - February 3, 2012 sachdev.physics.harvard.edu HARVARD Max

More information

Detecting boson-vortex duality in the cuprate superconductors

Detecting boson-vortex duality in the cuprate superconductors Detecting boson-vortex duality in the cuprate superconductors Physical Review B 71, 144508 and 144509 (2005), cond-mat/0602429 Leon Balents (UCSB) Lorenz Bartosch (Harvard) Anton Burkov (Harvard) Predrag

More information

Electronic Liquid Crystal Phases in Strongly Correlated Systems

Electronic Liquid Crystal Phases in Strongly Correlated Systems Electronic Liquid Crystal Phases in Strongly Correlated Systems Eduardo Fradkin University of Illinois at Urbana-Champaign Talk at the workshop Materials and the Imagination, Aspen Center of Physics, January

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 10.1038/nature06219 SUPPLEMENTARY INFORMATION Abrupt Onset of Second Energy Gap at Superconducting Transition of Underdoped Bi2212 Wei-Sheng Lee 1, I. M. Vishik 1, K. Tanaka 1,2, D. H. Lu 1, T. Sasagawa

More information

Liquid Crystal Phases in Strongly Correlated Systems. Eduardo Fradkin

Liquid Crystal Phases in Strongly Correlated Systems. Eduardo Fradkin Liquid Crystal Phases in Strongly Correlated Systems Eduardo Fradkin Department of Physics University of Illinois Collaborators Steven Kivelson (UCLA) Vadim Oganesyan (Princeton) In memory of Victor J.

More information

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Phase diagram

More information

What's so unusual about high temperature superconductors? UBC 2005

What's so unusual about high temperature superconductors? UBC 2005 What's so unusual about high temperature superconductors? UBC 2005 Everything... 1. Normal State - doped Mott insulator 2. Pairing Symmetry - d-wave 2. Short Coherence Length - superconducting fluctuations

More information

Subir Sachdev Research Accomplishments

Subir Sachdev Research Accomplishments Subir Sachdev Research Accomplishments Theory for the quantum phase transition involving loss of collinear antiferromagnetic order in twodimensional quantum antiferromagnets (N. Read and S. Sachdev, Phys.

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

High-T c superconductors

High-T c superconductors High-T c superconductors Parent insulators Carrier doping Band structure and Fermi surface Pseudogap, superconducting gap, superfluid Nodal states Bilayer, trilayer Stripes High-T c superconductors Parent

More information

Intertwined Orders in High Temperature Superconductors

Intertwined Orders in High Temperature Superconductors Intertwined Orders in High Temperature Superconductors! Eduardo Fradkin University of Illinois at Urbana-Champaign! Talk at SCES@60 Institute for Condensed Matter Theory University of Illinois at Urbana-Champaign

More information

arxiv: v4 [cond-mat.supr-con] 19 May 2009

arxiv: v4 [cond-mat.supr-con] 19 May 2009 arxiv:0901.4826v4 [cond-mat.supr-con] 19 May 2009 Striped superconductors: How the cuprates intertwine spin, charge and superconducting orders Erez Berg, 1 Eduardo Fradkin, 2 Steven A. Kivelson, 1 and

More information

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique Dynamics of fluctuations in high temperature superconductors far from equilibrium L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique Superconductors display amazing properties: Dissipation-less

More information

Mean field theories of quantum spin glasses

Mean field theories of quantum spin glasses Mean field theories of quantum spin glasses Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Talk online: Sachdev Classical Sherrington-Kirkpatrick model H = JS S i j ij i j J ij : a

More information

Quantum liquid crystals in strongly correlated materials and ultracold gases

Quantum liquid crystals in strongly correlated materials and ultracold gases Quantum liquid crystals in strongly correlated materials and ultracold gases Nathaniel Burdick December 13, 2010 Abstract Classical liquid crystal phases are characterized by broken symmetries. Phases

More information

Impurity Resonances and the Origin of the Pseudo-Gap

Impurity Resonances and the Origin of the Pseudo-Gap Brazilian Journal of Physics, vol. 33, no. 4, December, 2003 659 Impurity Resonances and the Origin of the Pseudo-Gap Brian Møller Andersen Ørsted Laboratory, Niels Bohr Institute, Universitetsparken 5,

More information

3. Quantum matter without quasiparticles

3. Quantum matter without quasiparticles 1. Review of Fermi liquid theory Topological argument for the Luttinger theorem 2. Fractionalized Fermi liquid A Fermi liquid co-existing with topological order for the pseudogap metal 3. Quantum matter

More information

Photoemission Studies of Strongly Correlated Systems

Photoemission Studies of Strongly Correlated Systems Photoemission Studies of Strongly Correlated Systems Peter D. Johnson Physics Dept., Brookhaven National Laboratory JLab March 2005 MgB2 High T c Superconductor - Phase Diagram Fermi Liquid:-Excitations

More information

Quantum phase transitions of correlated electrons in two dimensions

Quantum phase transitions of correlated electrons in two dimensions Quantum phase transitions of correlated electrons in two dimensions Subir Sachdev Science 86, 479 (1999). Quantum Phase Transitions Cambridge University Press Transparencies online at http://pantheon.yale.edu/~subir

More information

How spin, charge and superconducting orders intertwine in the cuprates

How spin, charge and superconducting orders intertwine in the cuprates How spin, charge and superconducting orders intertwine in the cuprates Eduardo Fradkin University of Illinois at Urbana-Champaign Talk at the Kavli Institute for Theoretical Physics Program on Higher temperature

More information