Quantum criticality and the phase diagram of the cuprates

Size: px
Start display at page:

Download "Quantum criticality and the phase diagram of the cuprates"

Transcription

1 Quantum criticality and the phase diagram of the cuprates Talk online: sachdev.physics.harvard.edu HARVARD

2 Victor Galitski, Maryland Ribhu Kaul, Harvard Kentucky Max Metlitski, Harvard Eun Gook Moon, Harvard Cenke Xu, Harvard Santa Barbara HARVARD

3 Crossovers in transport properties of hole-doped cuprates * coh? (K) ( ) S-shaped + 2 or A F M upturns in ( ) -wave SC Hole doping (1 < < 2) 2 FL? N. E. Hussey, J. Phys: Condens. Matter 20, (2008)

4 Canonical quantum critical phase diagram of coupled-dimer antiferromagnet Classical spin waves Quantum critical Dilute triplon gas S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992). Neel order Pressure in TlCuCl3 Christian Ruegg et al., Phys. Rev. Lett. 100, (2008)

5 Crossovers in transport properties of hole-doped cuprates Strange metal S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992). T (K) A. J. Millis, Phys. Rev. B 48, 7183 (1993). A F M d-wave SC Hole doping x x m Strange metal: quantum criticality of optimal doping critical point at x = x m? C. M. Varma, Phys. Rev. Lett. 83, 3538 (1999).

6 Only candidate quantum critical point observed at low T Strange metal T (K) x s A F M d-wave SC Hole doping x Spin density wave order present below a quantum critical point at x = x s with x s 0.12 in the La series of cuprates

7 Central ingredients in cuprate phase diagram: antiferromagnetism, superconductivity, and change in Fermi surface Γ Γ

8 Theory of quantum criticality in the cuprates Fluctuating Fermi pockets Strange Metal Large Fermi surface Spin density wave () Underlying ordering quantum critical point in metal at x = x m

9 Large Fermi surfaces in cuprates Hole states occupied Γ Electron states occupied Γ H 0 = i<j t ij c iα c iα k ε k c kα c kα The area of the occupied electron/hole states: { 2π 2 (1 x) for hole-doping x A e = 2π 2 (1 + p) for electron-doping p A h = 4π 2 A e

10 Spin density wave theory The electron spin polarization obeys S(r, τ) = ϕ (r, τ)e ik r where ϕ is the spin density wave () order parameter, and K is the ordering wavevector. For simplicity, we consider K =(π, π).

11 Spin density wave theory Spin density wave Hamiltonian H sdw = ϕ c k,α σ αβc k+k,β k,α,β Diagonalize H 0 + H sdw for ϕ = (0, 0, ϕ) E k± = ε k + ε k+k 2 ± (εk ε k+k 2 ) + ϕ 2

12 Spin density wave theory Increasing order Γ Γ Γ Γ Hole pockets Electron pockets Large Fermi surface breaks up into electron and hole pockets S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). D. Senechal and A.-M. S. Tremblay, Phys. Rev. Lett. 92, (2004)

13 Spin density wave theory in hole-doped cuprates Γ Γ Incommensurate order in YBa2Cu3O6+x A. J. Millis and M. R. Norman, Physical Review B 76, (2007). N. Harrison, Physical Review Letters 102, (2009).

14 Evidence for connection between linear resistivity and stripe-ordering in a cuprate with a low Tc Magnetic field of upto 35 T used to suppress superconductivity Linear temperature dependence of resistivity and change in the Fermi surface at the pseudogap critical point of a high-tc superconductor R. Daou, Nicolas Doiron-Leyraud, David LeBoeuf, S. Y. Li, Francis Laliberté, Olivier Cyr-Choinière, Y. J. Jo, L. Balicas, J.-Q. Yan, J.-S. Zhou, J. B. Goodenough & Louis Taillefer, Nature Physics 5, (2009)

15 Theory of quantum criticality in the cuprates Fluctuating Fermi pockets Strange Metal Large Fermi surface ncreasing Spin density wave () Underlying ordering quantum critical point in metal at x = x m

16 Theory of quantum criticality in the cuprates Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface d-wave superconductor Spin density wave () Onset of d-wave superconductivity hides the critical point x = x m

17 Theory of quantum criticality in the cuprates Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface d-wave superconductor Spin density wave () Competition between order and superconductivity moves the actual quantum critical point to x = x s <x m.

18 Theory of quantum criticality in the cuprates Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface d-wave superconductor Spin density wave () Competition between order and superconductivity moves the actual quantum critical point to x = x s <x m.

19 Theory of quantum criticality in the cuprates Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface Thermally fluctuating Magnetic quantum criticality Spin gap d-wave superconductor Spin density wave () Competition between order and superconductivity moves the actual quantum critical point to x = x s <x m.

20 Theory of quantum criticality in the cuprates Small Fermi pockets with pairing fluctuations Strange Metal Classical spin waves Large Fermi surface Quantum critical Dilute triplon gas Thermally fluctuating Magnetic quantum criticality Spin gap d-wave superconductor Neel order Criticality of the coupled dimer antiferromagnet at x=xs Spin density wave () Competition between order and superconductivity moves the actual quantum critical point to x = x s <x m.

21 Theory of quantum criticality in the cuprates ncreasing Small Fermi pockets with pairing fluctuations Strange Metal Large Fermi surface Thermally fluctuating Magnetic quantum criticality Spin gap d-wave superconductor Criticality of the topological change in Fermi surface at x=xm Spin density wave () Competition between order and superconductivity moves the actual quantum critical point to x = x s <x m.

22 Outline 1. Phenomenological quantum theory of competition between superconductivity and order Survey of recent experiments 2. Overdoped vs. underdoped pairing Electronic theory of competing orders 3. Theory of quantum critical point Dominance of planar graphs

23 Outline 1. Phenomenological quantum theory of competition between superconductivity and order Survey of recent experiments 2. Overdoped vs. underdoped pairing Electronic theory of competing orders 3. Theory of quantum critical point Dominance of planar graphs

24 Phenomenological quantum theory of competition between superconductivity (SC) and spin-density wave () order Write down a Landau-Ginzburg action for the quantum fluctuations of the order ( ϕ ) and superconductivity (ψ): [ S = d 2 1 rdτ 2 ( τ ϕ ) 2 + c2 2 ( x ϕ ) 2 + r 2 ϕ 2 + u ( ϕ 2 ) 2 4 ] + κ ϕ 2 ψ 2 + d 2 r [ ( x i(2e/ c)a)ψ 2 ψ 2 + ψ 4 2 where κ > 0 is the repulsion between the two order parameters, and A = H is the applied magnetic field. E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, (2001). See also E. Demler, W. Hanke, and S.-C. Zhang, Rev. Mod. Phys. 76, 909 (2004); S. A. Kivelson, D.-H. Lee, E. Fradkin, and V. Oganesyan, Phys. Rev. B 66, (2002). B. Kyung, J.-S. Landry, and A.-M. S. Tremblay, Phys. Rev. B 68, (2003). ]

25 Write down a Landau-Ginzburg action for the quantum fluctuations of the order ( ϕ ) and superconductivity (ψ): [ S = d 2 1 rdτ 2 ( τ ϕ ) 2 + c2 2 ( x ϕ ) 2 + r 2 ϕ 2 + u ( ϕ 2 ) 2 4 ] + κ ϕ 2 ψ 2 + d 2 r [ ( x i(2e/ c)a)ψ 2 ψ 2 + ψ 4 2 where κ > 0 is the repulsion between the two order parameters, and A = H is the applied magnetic field. Phenomenological quantum theory of competition between superconductivity (SC) and spin-density wave () order E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, (2001). See also E. Demler, W. Hanke, and S.-C. Zhang, Rev. Mod. Phys. 76, 909 (2004); S. A. Kivelson, D.-H. Lee, E. Fradkin, and V. Oganesyan, Phys. Rev. B 66, (2002). B. Kyung, J.-S. Landry, and A.-M. S. Tremblay, Phys. Rev. B 68, (2003). ]

26 Write down a Landau-Ginzburg action for the quantum fluctuations of the order ( ϕ ) and superconductivity (ψ): [ S = d 2 1 rdτ 2 ( τ ϕ ) 2 + c2 2 ( x ϕ ) 2 + r 2 ϕ 2 + u ( ϕ 2 ) 2 4 ] + κ ϕ 2 ψ 2 + d 2 r [ ( x i(2e/ c)a)ψ 2 ψ 2 + ψ 4 2 where κ > 0 is the repulsion between the two order parameters, and A = H is the applied magnetic field. Phenomenological quantum theory of competition between superconductivity (SC) and spin-density wave () order E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, (2001). See also E. Demler, W. Hanke, and S.-C. Zhang, Rev. Mod. Phys. 76, 909 (2004); S. A. Kivelson, D.-H. Lee, E. Fradkin, and V. Oganesyan, Phys. Rev. B 66, (2002). B. Kyung, J.-S. Landry, and A.-M. S. Tremblay, Phys. Rev. B 68, (2003). ]

27 Phenomenological quantum theory of competition between superconductivity (SC) and spin-density wave () order H "Normal" (Large Fermi surface) (Small Fermi pockets) H c2 M SC+ H sdw SC E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, (2001).

28 Phenomenological quantum theory of competition between superconductivity (SC) and spin-density wave () order H "Normal" (Large Fermi surface) (Small Fermi pockets) H c2 M SC+ H sdw SC order is more stable in the metal than in the superconductor: x m >x s. E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, (2001).

29 Phenomenological quantum theory of competition between superconductivity (SC) and spin-density wave () order H "Normal" (Large Fermi surface) (Small Fermi pockets) H c2 M SC+ H sdw SC order is more stable in the metal than in the superconductor: x m >x s. E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, (2001).

30 Phenomenological quantum theory of competition between superconductivity (SC) and spin-density wave () order H "Normal" (Large Fermi surface) (Small Fermi pockets) H c2 M SC+ H sdw SC For doping with x s < x < x m, order appears at a quantum phase transition at H = H sdw > 0. E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, (2001).

31 Phenomenological quantum theory of competition between superconductivity (SC) and spin-density wave () order H "Normal" (Large Fermi surface) (Small Fermi pockets) H c2 M SC+ H sdw SC Neutron scattering on La1.9Sr0.1CuO4 B. Lake et al., Nature 415, 299 (2002). E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, (2001).

32 B. Lake, H. M. Rønnow, N. B. Christensen, G. Aeppli, K. Lefmann, D. F. McMorrow, P. Vorderwisch, P. Smeibidl, N. Mangkorntong, T. Sasagawa, M. Nohara, H. Takagi, and T. E. Mason, Nature 415, 299 (2002) B. Lake, G. Aeppli, K. N. Clausen, D. F. McMorrow, K. Lefmann, N. E. Hussey, N. Mangkorntong, M. Nohara, H. Takagi, T. E. Mason, and A. Schröder Science 291, 1759 (2001).

33 Phenomenological quantum theory of competition between superconductivity (SC) and spin-density wave () order H "Normal" (Large Fermi surface) (Small Fermi pockets) H c2 M SC+ H sdw SC Neutron scattering on La1.855Sr0.145CuO4 J. Chang et al., Phys. Rev. Lett. 102, (2009). E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, (2001).

34 J. Chang, Ch. Niedermayer, R. Gilardi, N.B. Christensen, H.M. Ronnow, D.F. McMorrow, M. Ay, J. Stahn, O. Sobolev, A. Hiess, S. Pailhes, C. Baines, N. Momono, M. Oda, M. Ido, and J. Mesot, Physical Review B 78, (2008). J. Chang, N. B. Christensen, Ch. Niedermayer, K. Lefmann, H. M. Roennow, D. F. McMorrow, A. Schneidewind, P. Link, A. Hiess, M. Boehm, R. Mottl, S. Pailhes, N. Momono, M. Oda, M. Ido, and J. Mesot, Phys. Rev. Lett. 102, (2009).

35 Phenomenological quantum theory of competition between superconductivity (SC) and spin-density wave () order H "Normal" (Large Fermi surface) (Small Fermi pockets) H c2 M SC+ H sdw SC Neutron scattering on YBa2Cu3O6.45 D. Haug et al., Phys. Rev. Lett. 103, (2009). E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, (2001).

36 Intensity (counts / ~10 min) (a) H = 0T Q H (r.l.u.) (c) I(14.9T,2K)! I(0T,2K) Q H (r.l.u.) Intensity (counts / ~10 min) Intensity (counts / ~12 min) H = 0T (a) 100 H = 14.9T 80 T = 2K Q H (r.l.u.) Intensity (counts / ~10 min) (b) H = 14.9T Q H (r.l.u.) (d) Q H Q K H = 14.9T 2K 50K Q K (r.l.u.) Intensity (counts / ~1 min) Intensity (a.u.) (b) H = 0T H = 13.5T T = 2K Energy E (mev) D. Haug, V. Hinkov, A. Suchaneck, D. S. Inosov, N. B. Christensen, Ch. Niedermayer, P. Bourges, Y. Sidis, J. T. Park, A. Ivanov, C. T. Lin, J. Mesot, and B. Keimer, Phys. Rev. Lett. 103, (2009)

37 Phenomenological quantum theory of competition between superconductivity (SC) and spin-density wave () order H ncreasing "Normal" (Large Fermi surface) (Small Fermi pockets) H c2 M SC+ H sdw SC Quantum oscillations without Zeeman splitting N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J. Levallois, J.-B. Bonnemaison, R. Liang, D. A. Bonn, W. N. Hardy, and L. Taillefer, Nature 447, 565 (2007). S. E. Sebastian, N. Harrison, C. H. Mielke, Ruixing Liang, D. A. Bonn, W.~N.~Hardy, and G. G. Lonzarich, arxiv:

38 Quantum oscillations Nature 450, 533 (2007)

39 Phenomenological quantum theory of competition between superconductivity (SC) and spin-density wave () order H "Normal" (Large Fermi surface) ncreasing (Small Fermi pockets) H c2 M SC+ H sdw SC Change in frequency of quantum oscillations in electron-doped materials identifies xm = 0.165

40 Increasing order Nd 2 x Ce x CuO 4 T. Helm, M. V. Kartsovnik, M. Bartkowiak, N. Bittner, M. Lambacher, A. Erb, J. Wosnitza, and R. Gross, Phys. Rev. Lett. 103, (2009).

41 Phenomenological quantum theory of competition between superconductivity (SC) and spin-density wave () order H "Normal" (Large Fermi surface) ncreasing (Small Fermi pockets) H c2 M SC+ H sdw SC Neutron scattering at H=0 in same material identifies xs = 0.14 < xm

42 Nd 2 x Ce x CuO 4 Spin correlation length!/a x=0.038 x=0.075 x=0.106 x=0.129 x=0.134 x=0.145 x=0.150 x= Temperature (K) E. M. Motoyama, G. Yu, I. M. Vishik, O. P. Vajk, P. K. Mang, and M. Greven, Nature 445, 186 (2007).

43 Phenomenological quantum theory of competition between superconductivity (SC) and spin-density wave () order H "Normal" (Large Fermi surface) ncreasing (Small Fermi pockets) H c2 M SC+ H sdw SC Experiments on Nd 2 x Ce x CuO 4 show that at low fields x s =0.14, while at high fields x m =0.165.

44 H "Normal" (Large Fermi surface) (Small Fermi pockets) H c2 M SC+ H sdw SC

45 SC+ SC (Small Fermi pockets) H M "Normal" (Large Fermi surface)

46 SC+ SC (Small Fermi pockets) H M "Normal" (Large Fermi surface)

47 T Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface Thermally fluctuating Magnetic quantum criticality Spin gap d-wave SC SC+ SC (Small Fermi pockets) H M "Normal" (Large Fermi surface)

48 Outline 1. Phenomenological quantum theory of competition between superconductivity and order Survey of recent experiments 2. Overdoped vs. underdoped pairing Electronic theory of competing orders 3. Theory of quantum critical point Dominance of planar graphs

49 Outline 1. Phenomenological quantum theory of competition between superconductivity and order Survey of recent experiments 2. Overdoped vs. underdoped pairing Electronic theory of competing orders 3. Theory of quantum critical point Dominance of planar graphs

50 T Fluctuating, Small Fermi pockets paired Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface Thermally fluctuating Magnetic quantum criticality Spin gap d-wave SC SC+ SC (Small Fermi pockets) H M "Normal" (Large Fermi surface)

51 T Fluctuating, Small Fermi pockets paired Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface Theory of the onset of d-wave superconductivity from a large Fermi surface Thermally fluctuating H Magnetic quantum criticality Spin gap SC+ (Small Fermi pockets) d-wave SC M SC "Normal" (Large Fermi surface)

52 Spin-fluctuation exchange theory of d-wave superconductivity in the cuprates Increasing order Γ Γ Γ ϕ Γ Fermions at the large Fermi surface exchange fluctuations of the order parameter ϕ. D. J. Scalapino, E. Loh, and J. E. Hirsch, Phys. Rev. B 34, 8190 (1986) K. Miyake, S. Schmitt-Rink, and C. M. Varma, Phys. Rev. B 34, 6554 (1986)

53 d-wave pairing of the large Fermi surface K ϕ _ + Γ _ + c k c k k = 0 (cos(k x ) cos(k y )) D. J. Scalapino, E. Loh, and J. E. Hirsch, Phys. Rev. B 34, 8190 (1986) K. Miyake, S. Schmitt-Rink, and C. M. Varma, Phys. Rev. B 34, 6554 (1986)

54 Approaching the onset of antiferromagnetism in the spin-fluctuation theory : T c increases upon approaching the transition. Pairing from fluctuations leads to κ < 0: and SC orders do not compete, but attract each other. No simple mechanism for nodal-anti-nodal dichotomy. Ar. Abanov, A. V. Chubukov and J. Schmalian, Advances in Physics 52, 119 (2003).

55 Approaching the onset of antiferromagnetism in the spin-fluctuation theory : T c increases upon approaching the transition. Pairing from fluctuations leads to κ < 0: and SC orders do not compete, but attract each other. No simple mechanism for nodal-anti-nodal dichotomy. Ar. Abanov, A. V. Chubukov and J. Schmalian, Advances in Physics 52, 119 (2003).

56 Approaching the onset of antiferromagnetism in the spin-fluctuation theory : T c increases upon approaching the transition. Pairing from fluctuations leads to κ < 0: and SC orders do not compete, but attract each other. No simple mechanism for nodal-anti-nodal dichotomy. Ar. Abanov, A. V. Chubukov and J. Schmalian, Advances in Physics 52, 119 (2003).

57 T Fluctuating, Small Fermi pockets paired Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface Thermally fluctuating Magnetic quantum criticality Spin gap d-wave SC SC+ SC (Small Fermi pockets) H M "Normal" (Large Fermi surface)

58 T Fluctuating, Small Fermi pockets paired Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface Theory of the onset of d-wave superconductivity from small Fermi pockets Thermally fluctuating (Small Fermi pockets) H Magnetic quantum criticality Spin gap SC+ d-wave SC M SC "Normal" (Large Fermi surface)

59 T Physics of competition: d-wave SC and eat up same pieces of the large Fermi surface. Fluctuating, Small Fermi pockets paired Fermi with pairing pockets fluctuations Thermally fluctuating Magnetic quantum criticality Spin gap SC+ Strange Metal d-wave SC Large Fermi surface SC B. Kyung, J.-S. Landry, and A.-M. S. Tremblay, Phys. Rev. B 68, (2003). (Small Fermi pockets) H M "Normal" (Large Fermi surface)

60 Theory of underdoped cuprates Increasing order Γ Γ Γ Γ Begin with ordered state, and rotate to a frame polarized along the local orientation of the order ˆ ϕ ) ) ( c c = R ( ψ+ ψ ; R ˆ ϕ σ R = σ z ; R R =1 H. J. Schulz, Physical Review Letters 65, 2462 (1990)

61 Theory of underdoped cuprates ) With R = ( z z z z the theory is invariant under z α e iθ z α ; ψ + e iθ ψ + ; ψ e iθ ψ. We obtain a U(1) gauge theory of bosonic neutral spinons z α ; spinless, charged fermions ψ ± ; an emergent U(1) gauge field A µ.

62 Features of superconductivity d-wave superconductivity. Nodal-anti-nodal dichotomy: strong pairing near (π, 0), (0, π), and weak pairing near zone diagonals. T c decreases as spin correlation increases (competing order effect). Shift in quantum critical point of ordering: gauge fluctuations are stronger in the superconductor. After onset of superconductivity, monopoles condense and lead to confinement and nematic and/or valence bond solid (VBS) order. V. Galitski and S. Sachdev, Physical Review B 79, (2009).

63 Features of superconductivity d-wave superconductivity. Nodal-anti-nodal dichotomy: strong pairing near (π, 0), (0, π), and weak pairing near zone diagonals. T c decreases as spin correlation increases (competing order effect). Shift in quantum critical point of ordering: gauge fluctuations are stronger in the superconductor. After onset of superconductivity, monopoles condense and lead to confinement and nematic and/or valence bond solid (VBS) order. Eun Gook Moon and S. Sachdev, Physical Review B 80, (2009).

64 Features of superconductivity d-wave superconductivity. Nodal-anti-nodal dichotomy: strong pairing near (π, 0), (0, π), and weak pairing near zone diagonals. T c decreases as spin correlation increases (competing order effect). Shift in quantum critical point of ordering: gauge fluctuations are stronger in the superconductor. After onset of superconductivity, monopoles condense and lead to confinement and nematic and/or valence bond solid (VBS) order. R. K. Kaul, M. Metlitksi, S. Sachdev, and Cenke Xu, Phys. Rev. B 78, (2008).

65 T Fluctuating, Small Fermi pockets paired Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface Thermally fluctuating Magnetic quantum criticality Spin gap d-wave SC SC+ SC (Small Fermi pockets) H M "Normal" (Large Fermi surface)

66 T Fluctuating, Small Fermi pockets paired Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface T sdw VBS and/or nematic d-wave SC SC+ SC R. K. Kaul, M. Metlitksi, S. Sachdev, and Cenke Xu, Physical Review B 78, (2008). (Small Fermi pockets) H M "Normal" (Large Fermi surface)

67 Outline 1. Phenomenological quantum theory of competition between superconductivity and order Survey of recent experiments 2. Overdoped vs. underdoped pairing Electronic theory of competing orders 3. Theory of quantum critical point Dominance of planar graphs

68 Outline 1. Phenomenological quantum theory of competition between superconductivity and order Survey of recent experiments 2. Overdoped vs. underdoped pairing Electronic theory of competing orders 3. Theory of quantum critical point Dominance of planar graphs

69 Max Metlitski M. Metlitski and S. Sachdev, to appear Ar. Abanov, A.V. Chubukov, and J. Schmalian, Advances in Physics 52, 119 (2003) Sung-Sik Lee, arxiv:

70 Theory of quantum criticality in the cuprates Fluctuating Fermi pockets Strange Metal Large Fermi surface ncreasing Spin density wave () Underlying ordering quantum critical point in metal at x = x m

71 Hertz-Millis-Moriya (HMM) theory: mean field theory + Gaussian fluctuations of overdamped paramagnons.

72 Theory for the onset of spin density wave order in metals is strongly coupled in two dimensions

73 Start from the spin-fermion model Z = Dc α D ϕ exp ( S) S = dτ k c kα ( τ ε k ) c kα λ dτ c iα ϕ i σ αβ c iβ e ik r i i + dτd 2 r [( r ϕ ) 2 + 1c 2 ( τ ϕ ) 2 ]

74 l =3 l =2 l =4 l =1 Low energy fermions ψ l 1α, ψ l 2α l =1,..., 4 L f = ψ l 1α ( ζ τ iv l 1 r ) ψ l 1α + ψ l 2α ( ζ τ iv l 2 r ) ψ l 2α v l=1 1 =(v x,v y ), v l=1 2 =( v x,v y )

75 L f = ψ l 1α ( ζ τ iv l 1 r ) ψ l 1α + ψ l 2α ( ζ τ iv l 2 r ) ψ l 2α v 1 v 2 ψ 1 fermions occupied ψ 2 fermions occupied

76 L f = ψ l 1α ( ζ τ iv l 1 r ) ψ l 1α + ψ l 2α ( ζ τ iv l 2 r ) ψ l 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4

77 L f = ψ l 1α ( ζ τ iv l 1 r ) ψ l 1α + ψ l 2α ( ζ τ iv l 2 r ) ψ l 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 Yukawa coupling: L c = ϕ ( ) ψ l 1α σ αβψ2β l + ψ l 2α σ αβψ1β l

78 L f = ψ l 1α ( ζ τ iv l 1 r ) ψ l 1α + ψ l 2α ( ζ τ iv l 2 r ) ψ l 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 Yukawa coupling: L c = ϕ ( ) ψ l 1α σ αβψ2β l + ψ l 2α σ αβψ1β l HMM theory Integrate out fermions and obtain non-local corrections to L ϕ L ϕ = 1 2 ϕ 2 [ q 2 ] + γ ω /2 ; γ = 2 πv x v y Exponent z = 2 and mean-field criticality (upto logarithms)

79 L f = ψ l 1α ( ζ τ iv l 1 r ) ψ l 1α + ψ l 2α ( ζ τ iv l 2 r ) ψ l 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 Yukawa coupling: L c = ϕ ( ) ψ l 1α σ αβψ2β l + ψ l 2α σ αβψ1β l HMM theory Integrate out fermions and obtain non-local corrections to L ϕ L ϕ = 1 2 ϕ 2 [ q 2 ] + γ ω /2 ; γ = 2 πv x v y Exponent z = 2 and mean-field criticality (upto logarithms) But, higher order terms contain an infinite number of marginal couplings Ar. Abanov and A.V. Chubukov, Phys. Rev. Lett. 93, (2004).

80 L f = ψ l 1α ( ζ τ iv l 1 r ) ψ l 1α + ψ l 2α ( ζ τ iv l 2 r ) ψ l 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 Yukawa coupling: L c = ϕ ( ) ψ l 1α σ αβψ2β l + ψ l 2α σ αβψ1β l Perform RG on both fermions and ϕ, using a local field theory.

81 L f = ψ l 1α ( ζ τ iv l 1 r ) ψ l 1α + ψ l 2α ( ζ τ iv l 2 r ) ψ l 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 Yukawa coupling: L c = ϕ ( ) ψ l 1α σ αβψ2β l + ψ l 2α σ αβψ1β l With z = 2 scaling, ζ is irrelevant. So we take ζ 0 ( watch for dangerous irrelevancy).

82 L f = ψ l 1α ( ζ τ iv l 1 r ) ψ l 1α + ψ l 2α ( ζ τ iv l 2 r ) ψ l 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 Yukawa coupling: L c = ϕ ( ) ψ l 1α σ αβψ2β l + ψ l 2α σ αβψ1β l Set ϕ wavefunction renormalization by keeping co-efficient of ( r ϕ ) 2 fixed (as usual).

83 L f = ψ l 1α ( ζ τ iv l 1 r ) ψ l 1α + ψ l 2α ( ζ τ iv l 2 r ) ψ l 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 Yukawa coupling: L c = ϕ ( ) ψ l 1α σ αβψ2β l + ψ l 2α σ αβψ1β l Set fermion wavefunction renormalization by keeping Yukawa coupling fixed. Y. Huh and S. Sachdev, Phys. Rev. B 78, (2008).

84 L f = ψ l 1α ( ζ τ iv l 1 r ) ψ l 1α + ψ l 2α ( ζ τ iv l 2 r ) ψ l 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 Yukawa coupling: L c = ϕ ( ) ψ l 1α σ αβψ2β l + ψ l 2α σ αβψ1β l We find consistent two-loop RG factors, as ζ 0, for the velocities v x, v y, and the wavefunction renormalizations. Consistency check: the expression for the boson damping constant, γ = 2 πv x v y, is preserved under RG.

85 RG-improved Migdal-Eliashberg theory RG flow can be computed a 1/N expansion (with N fermion species) in terms of a single dimensionless coupling α = v y /v x whose flow obeys dα dl = 3 πn α 2 1+α 2

86 RG-improved Migdal-Eliashberg theory RG flow can be computed a 1/N expansion (with N fermion species) in terms of a single dimensionless coupling α = v y /v x whose flow obeys dα dl = 3 πn α 2 1+α 2 The velocities flow as 1 dv x v x dl A(α) B(α) = A(α)+B(α) 2 3 α πn 1+α 2 ( )( 1 1 2πN α α 1+ ; 1 dv y v y dl = A(α)+B(α) 2 ( 1 α α ) tan 1 1 α )

87 RG-improved Migdal-Eliashberg theory RG flow can be computed a 1/N expansion (with N fermion species) in terms of a single dimensionless coupling α = v y /v x whose flow obeys dα dl = 3 πn α 2 1+α 2 The anomalous dimensions of ϕ and ψ are ( ( ) η ϕ = 2πN α α + α 2 + α2 tan 1 1 ) α η ψ = 1 ( )( ( ) 1 1 4πN α α 1+ α α tan 1 1 α )

88 RG-improved Migdal-Eliashberg theory α = v y /v x 0 logarithmically in the infrared. Dynamical Nesting v 1 v 2 Bare Fermi surface

89 RG-improved Migdal-Eliashberg theory α = v y /v x 0 logarithmically in the infrared. Dynamical Nesting Dressed Fermi surface

90 RG-improved Migdal-Eliashberg theory α = v y /v x 0 logarithmically in the infrared. Dynamical Nesting Bare Fermi surface

91 RG-improved Migdal-Eliashberg theory α = v y /v x 0 logarithmically in the infrared. Dynamical Nesting Dressed Fermi surface

92 RG-improved Migdal-Eliashberg theory α = v y /v x 0 logarithmically in the infrared. In ϕ fluctuations, characteristic q and ω scale as q ω 1/2 exp ( 3 64π 2 ( ln(1/ω) N ) 3 ) However, 1/N expansion cannot be trusted in the asymptotic regime..

93 New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg) ϕ propagator 1 N 1 (q 2 + γ ω ) fermion propagator v q + iζω + i 1 1 N γv ωf ( v 2 q 2 ω )

94 New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg) ϕ propagator 1 N 1 (q 2 + γ ω ) fermion propagator v q + iζω + i 1 1 N γv ωf ( v 2 q 2 ω ) Dangerous

95 New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg) Ignoring fermion self energy: 1 N 2 1 ζ 2 1 ω

96 New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg) Ignoring fermion self energy: 1 N 2 1 Actual order 1 N 0 ζ 2 1 ω

97 Double line representation A way to compute the order of a diagram. Extra powers of N come from the Fermi-surface What are the conditions for all propagators to be on the Fermi surface? Concentrate on diagrams involving a single pair of hot-spots Any bosonic momentum may be (uniquely) written as R. Shankar, Rev. Mod. Phys. 66, 129 (1994). S. W. Tsai, A. H. Castro Neto, R. Shankar, and D. K. Campbell, Phys. Rev. B 72, (2005).

98 New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg) = Singularities as ζ 0 appear when fermions in closed blue and red line loops are exactly on the Fermi surface Actual order 1 N 0

99 New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg) = Actual order 1 N 0 Graph is planar after turning fermion propagators also into double lines by drawing additional dotted single line loops for each fermion loop Sung-Sik Lee, arxiv:

100 New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg) = Actual order 1 N 0 A consistent analysis requires resummation of all planar graphs

101 T Fluctuating, paired Fermi pockets T* Strange Metal Large Fermi surface T c Fluctuating, paired Fermi pockets T sdw d-wave SC VBS and/or Ising nematic order SC+ SC H c2 H Insulator M (Small Fermi pockets) "Normal" (Large Fermi surface) 96

102 Conclusions Identified quantum criticality in cuprate superconductors with a critical point at optimal doping associated with onset of spin density wave order in a metal Elusive optimal doping quantum critical point has been hiding in plain sight. It is shifted to lower doping by the onset of superconductivity

103 Conclusions Theory for the onset of spin density wave order in metals is strongly coupled in two dimensions

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates HARVARD Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates Talk online: sachdev.physics.harvard.edu HARVARD Where is the quantum critical point

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu Quantum criticality in the cuprate superconductors Talk online: sachdev.physics.harvard.edu The cuprate superconductors Destruction of Neel order in the cuprates by electron doping, R. K. Kaul, M. Metlitksi,

More information

Quantum criticality of Fermi surfaces in two dimensions

Quantum criticality of Fermi surfaces in two dimensions Quantum criticality of Fermi surfaces in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Yejin Huh, Harvard Max Metlitski, Harvard HARVARD Outline 1. Quantum criticality of Fermi points:

More information

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions Niels Bohr Institute, Copenhagen, May 6, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski,

More information

AdS/CFT and condensed matter

AdS/CFT and condensed matter AdS/CFT and condensed matter Reviews: arxiv:0907.0008 arxiv:0901.4103 arxiv:0810.3005 (with Markus Mueller) Talk online: sachdev.physics.harvard.edu HARVARD Lars Fritz, Harvard Victor Galitski, Maryland

More information

Quantum disordering magnetic order in insulators, metals, and superconductors

Quantum disordering magnetic order in insulators, metals, and superconductors Quantum disordering magnetic order in insulators, metals, and superconductors Perimeter Institute, Waterloo, May 29, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Cenke Xu, Harvard arxiv:1004.5431

More information

Electronic quasiparticles and competing orders in the cuprate superconductors

Electronic quasiparticles and competing orders in the cuprate superconductors Electronic quasiparticles and competing orders in the cuprate superconductors Andrea Pelissetto Rome Subir Sachdev Ettore Vicari Pisa Yejin Huh Harvard Harvard Gapless nodal quasiparticles in d-wave superconductors

More information

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals Subir Sachdev sachdev.physics.harvard.edu HARVARD Max Metlitski Erez Berg HARVARD Max Metlitski Erez Berg Sean Hartnoll

More information

The phase diagrams of the high temperature superconductors

The phase diagrams of the high temperature superconductors The phase diagrams of the high temperature superconductors Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski, Harvard Eun Gook Moon, Harvard HARVARD The cuprate superconductors Square lattice

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

The underdoped cuprates as fractionalized Fermi liquids (FL*)

The underdoped cuprates as fractionalized Fermi liquids (FL*) The underdoped cuprates as fractionalized Fermi liquids (FL*) R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, Physical Review B 75, 235122 (2007) R. K. Kaul, Y. B. Kim, S. Sachdev, and T.

More information

Quantum criticality of Fermi surfaces

Quantum criticality of Fermi surfaces Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface

More information

Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors

Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors Talk online: sachdev.physics.harvard.edu HARVARD Frederik Denef, Harvard Max Metlitski, Harvard Sean Hartnoll, Harvard Christopher

More information

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds Twelfth Arnold Sommerfeld Lecture Series January 31 - February 3, 2012 sachdev.physics.harvard.edu HARVARD Max

More information

Quantum Melting of Stripes

Quantum Melting of Stripes Quantum Melting of Stripes David Mross and T. Senthil (MIT) D. Mross, TS, PRL 2012 D. Mross, TS, PR B (to appear) Varieties of Stripes Spin, Charge Néel 2π Q c 2π Q s ``Anti-phase stripes, common in La-based

More information

Quantum phase transitions and Fermi surface reconstruction

Quantum phase transitions and Fermi surface reconstruction Quantum phase transitions and Fermi surface reconstruction Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski Matthias Punk Erez Berg HARVARD 1. Fate of the Fermi surface: reconstruction or

More information

Metals without quasiparticles

Metals without quasiparticles Metals without quasiparticles A. Review of Fermi liquid theory B. A non-fermi liquid: the Ising-nematic quantum critical point C. Fermi surfaces and gauge fields Metals without quasiparticles A. Review

More information

Strong coupling problems in condensed matter and the AdS/CFT correspondence

Strong coupling problems in condensed matter and the AdS/CFT correspondence Strong coupling problems in condensed matter and the AdS/CFT correspondence Reviews: arxiv:0910.1139 arxiv:0901.4103 Talk online: sachdev.physics.harvard.edu HARVARD Frederik Denef, Harvard Yejin Huh,

More information

A quantum dimer model for the pseudogap metal

A quantum dimer model for the pseudogap metal A quantum dimer model for the pseudogap metal College de France, Paris March 27, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Andrea Allais Matthias Punk Debanjan Chowdhury (Innsbruck)

More information

Saturday, April 3, 2010

Saturday, April 3, 2010 Phys. Rev. Lett. 1990 Superfluid-insulator transition Ultracold 87 Rb atoms - bosons M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). T σ = 4e2 h Σ Quantum Σ, auniversalnumber.

More information

Order and quantum phase transitions in the cuprate superconductors

Order and quantum phase transitions in the cuprate superconductors Order and quantum phase transitions in the cuprate superconductors Subir Sachdev Department of Physics, Yale University, P.O. Box 208120, New Haven CT 06520-8120 March 26, 2003 Abstract This is a summary

More information

From the pseudogap to the strange metal

From the pseudogap to the strange metal HARVARD From the pseudogap to the strange metal S. Sachdev, E. Berg, S. Chatterjee, and Y. Schattner, PRB 94, 115147 (2016) S. Sachdev and S. Chatterjee, arxiv:1703.00014 APS March meeting March 13, 2017

More information

Tuning order in the cuprate superconductors

Tuning order in the cuprate superconductors Tuning order in the cuprate superconductors Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies online at http://pantheon.yale.edu/~subir

More information

Tuning order in the cuprate superconductors by a magnetic field

Tuning order in the cuprate superconductors by a magnetic field Tuning order in the cuprate superconductors by a magnetic field Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies

More information

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity Mike Norman Materials Science Division Argonne National Laboratory & Center for Emergent Superconductivity Physics 3, 86

More information

General relativity and the cuprates

General relativity and the cuprates General relativity and the cuprates Gary T. Horowitz and Jorge E. Santos Department of Physics, University of California, Santa Barbara, CA 93106, U.S.A. E-mail: gary@physics.ucsb.edu, jss55@physics.ucsb.edu

More information

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu Quantum phases of antiferromagnets and the underdoped cuprates Talk online: sachdev.physics.harvard.edu Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and

More information

Order and quantum phase transitions in the cuprate superconductors

Order and quantum phase transitions in the cuprate superconductors Order and quantum phase transitions in the cuprate superconductors Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Talk online:

More information

Understanding correlated electron systems by a classification of Mott insulators

Understanding correlated electron systems by a classification of Mott insulators Understanding correlated electron systems by a classification of Mott insulators Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe)

More information

Competition between spin density wave order and superconductivity in the underdoped cuprates. Abstract

Competition between spin density wave order and superconductivity in the underdoped cuprates. Abstract arxiv:0905.2608 Competition between spin density wave order and superconductivity in the underdoped cuprates Eun Gook Moon and Subir Sachdev Department of Physics, Harvard University, Cambridge MA 02138

More information

Quantum transitions of d-wave superconductors in a magnetic field

Quantum transitions of d-wave superconductors in a magnetic field Quantum transitions of d-wave superconductors in a magnetic field Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 86, 479 (1999). Transparencies

More information

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay I- Similarities between phase diagram and quantum critical points Quantum Criticality in 3 Families of Superconductors L. Taillefer,

More information

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST Laboratoire National des Champs Magnétiques Intenses Toulouse Collaborations D. Vignolles B. Vignolle C. Jaudet J.

More information

Can superconductivity emerge out of a non Fermi liquid.

Can superconductivity emerge out of a non Fermi liquid. Can superconductivity emerge out of a non Fermi liquid. Andrey Chubukov University of Wisconsin Washington University, January 29, 2003 Superconductivity Kamerling Onnes, 1911 Ideal diamagnetism High Tc

More information

Tuning order in cuprate superconductors

Tuning order in cuprate superconductors Tuning order in cuprate superconductors arxiv:cond-mat/0201401 v1 23 Jan 2002 Subir Sachdev 1 and Shou-Cheng Zhang 2 1 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120,

More information

Quantum Criticality. S. Sachdev and B. Keimer, Physics Today, February Talk online: sachdev.physics.harvard.edu HARVARD. Thursday, May 5, 2011

Quantum Criticality. S. Sachdev and B. Keimer, Physics Today, February Talk online: sachdev.physics.harvard.edu HARVARD. Thursday, May 5, 2011 Quantum Criticality S. Sachdev and B. Keimer, Physics Today, February 2011 Talk online: sachdev.physics.harvard.edu HARVARD What is a quantum phase transition? Non-analyticity in ground state properties

More information

Z 2 topological order near the Neel state on the square lattice

Z 2 topological order near the Neel state on the square lattice HARVARD Z 2 topological order near the Neel state on the square lattice Institut für Theoretische Physik Universität Heidelberg April 28, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu Shubhayu

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

Superconductivity due to massless boson exchange.

Superconductivity due to massless boson exchange. Superconductivity due to massless boson exchange. Andrey Chubukov University of Wisconsin Consultations Artem Abanov Mike Norman Joerg Schmalian Boris Altshuler Emil Yuzbashyan Texas A&M ANL ISU Columbia

More information

A New look at the Pseudogap Phase in the Cuprates.

A New look at the Pseudogap Phase in the Cuprates. A New look at the Pseudogap Phase in the Cuprates. Patrick Lee MIT Common themes: 1. Competing order. 2. superconducting fluctuations. 3. Spin gap: RVB. What is the elephant? My answer: All of the above!

More information

The Superfluid-Insulator transition

The Superfluid-Insulator transition The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989). Superfluid-insulator transition Ultracold 87 Rb atoms

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies on-line at http://pantheon.yale.edu/~subir

More information

Topological order in insulators and metals

Topological order in insulators and metals HARVARD Topological order in insulators and metals 34th Jerusalem Winter School in Theoretical Physics New Horizons in Quantum Matter December 27, 2016 - January 5, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu

More information

Quantum mechanics without particles

Quantum mechanics without particles Quantum mechanics without particles Institute Lecture, Indian Institute of Technology, Kanpur January 21, 2014 sachdev.physics.harvard.edu HARVARD Outline 1. Key ideas from quantum mechanics 2. Many-particle

More information

Spin liquids on the triangular lattice

Spin liquids on the triangular lattice Spin liquids on the triangular lattice ICFCM, Sendai, Japan, Jan 11-14, 2011 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Classification of spin liquids Quantum-disordering magnetic order

More information

Mean field theories of quantum spin glasses

Mean field theories of quantum spin glasses Mean field theories of quantum spin glasses Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Talk online: Sachdev Classical Sherrington-Kirkpatrick model H = JS S i j ij i j J ij : a

More information

The Nernst effect in high-temperature superconductors

The Nernst effect in high-temperature superconductors The Nernst effect in high-temperature superconductors Iddo Ussishkin (University of Minnesota) with Shivaji Sondhi David Huse Vadim Oganesyan Outline Introduction: - High-temperature superconductors: physics

More information

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu arxiv:0809.0694 Yang Qi Harvard Cenke Xu Harvard Max Metlitski Harvard Ribhu Kaul Microsoft Roger Melko

More information

3. Quantum matter without quasiparticles

3. Quantum matter without quasiparticles 1. Review of Fermi liquid theory Topological argument for the Luttinger theorem 2. Fractionalized Fermi liquid A Fermi liquid co-existing with topological order for the pseudogap metal 3. Quantum matter

More information

2. Spin liquids and valence bond solids

2. Spin liquids and valence bond solids Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence bond solids (a) Schwinger-boson mean-field theory - square lattice (b) Gauge theories of perturbative

More information

Emergent gauge fields and the high temperature superconductors

Emergent gauge fields and the high temperature superconductors HARVARD Emergent gauge fields and the high temperature superconductors Unifying physics and technology in light of Maxwell s equations The Royal Society, London November 16, 2015 Subir Sachdev Talk online:

More information

Quantum phase transitions in condensed matter physics, with connections to string theory

Quantum phase transitions in condensed matter physics, with connections to string theory Quantum phase transitions in condensed matter physics, with connections to string theory sachdev.physics.harvard.edu HARVARD High temperature superconductors Cuprates High temperature superconductors Pnictides

More information

Quantum phase transitions in antiferromagnets and d-wave superconductors

Quantum phase transitions in antiferromagnets and d-wave superconductors Quantum phase transitions in antiferromagnets and d-wave superconductors Chiranjeeb Buragohain Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science

More information

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012 Entanglement, holography, and strange metals Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum

More information

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability Subir Sachdev sachdev.physics.harvard.edu HARVARD y x Fermi surface with full square lattice symmetry y x Spontaneous

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter IISc, Bangalore January 23, 2012 sachdev.physics.harvard.edu HARVARD Outline 1. Conformal quantum matter Entanglement, emergent dimensions and string theory

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Emergent light and the high temperature superconductors

Emergent light and the high temperature superconductors HARVARD Emergent light and the high temperature superconductors Pennsylvania State University State College, January 21, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu Maxwell's equations:

More information

arxiv: v4 [cond-mat.str-el] 26 Oct 2011

arxiv: v4 [cond-mat.str-el] 26 Oct 2011 Quantum phase transitions of antiferromagnets and the cuprate superconductors Subir Sachdev arxiv:1002.3823v4 [cond-mat.str-el] 26 Oct 2011 Abstract I begin with a proposed global phase diagram of the

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Leon Balents T. Senthil, MIT A. Vishwanath, UCB S. Sachdev, Yale M.P.A. Fisher, UCSB Outline Introduction: what is a DQCP Disordered and VBS ground states and gauge theory

More information

Lecture 2: Deconfined quantum criticality

Lecture 2: Deconfined quantum criticality Lecture 2: Deconfined quantum criticality T. Senthil (MIT) General theoretical questions Fate of Landau-Ginzburg-Wilson ideas at quantum phase transitions? (More precise) Could Landau order parameters

More information

Nematic and Magnetic orders in Fe-based Superconductors

Nematic and Magnetic orders in Fe-based Superconductors Nematic and Magnetic orders in Fe-based Superconductors Cenke Xu Harvard University Collaborators: Markus Mueller, Yang Qi Subir Sachdev, Jiangping Hu Collaborators: Subir Sachdev Markus Mueller Yang Qi

More information

Impact of charge order on the electronic properties of underdoped cuprates Cyril PROUST

Impact of charge order on the electronic properties of underdoped cuprates Cyril PROUST Impact of charge order on the electronic properties of underdoped cuprates Cyril PROUST Laboratoire National des Champs Magnétiques Intenses Toulouse, France Collaborations F. Laliberté W. Tabis D. Vignolles

More information

Topological order in the pseudogap metal

Topological order in the pseudogap metal HARVARD Topological order in the pseudogap metal High Temperature Superconductivity Unifying Themes in Diverse Materials 2018 Aspen Winter Conference Aspen Center for Physics Subir Sachdev January 16,

More information

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 )

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 ) Revealing fermionic quantum criticality from new Monte Carlo techniques Zi Yang Meng ( 孟子杨 ) http://ziyangmeng.iphy.ac.cn Collaborators and References Xiao Yan Xu Zi Hong Liu Chuang Chen Gao Pei Pan Yang

More information

Quantum Monte Carlo investigations of correlated electron systems, present and future. Zi Yang Meng ( 孟子杨 )

Quantum Monte Carlo investigations of correlated electron systems, present and future. Zi Yang Meng ( 孟子杨 ) Quantum Monte Carlo investigations of correlated electron systems, present and future Zi Yang Meng ( 孟子杨 ) http://ziyangmeng.iphy.ac.cn Collaborators Xiao Yan Xu Yoni Schattner Zi Hong Liu Erez Berg Chuang

More information

Quantum phase transitions and the Luttinger theorem.

Quantum phase transitions and the Luttinger theorem. Quantum phase transitions and the Luttinger theorem. Leon Balents (UCSB) Matthew Fisher (UCSB) Stephen Powell (Yale) Subir Sachdev (Yale) T. Senthil (MIT) Ashvin Vishwanath (Berkeley) Matthias Vojta (Karlsruhe)

More information

Topology, quantum entanglement, and criticality in the high temperature superconductors

Topology, quantum entanglement, and criticality in the high temperature superconductors HARVARD Topology, quantum entanglement, and criticality in the high temperature superconductors Exploring quantum phenomena and quantum matter in ultrahigh magnetic fields, National Science Foundation,

More information

Supplementary Information for. Linear-T resistivity and change in Fermi surface at the pseudogap critical point of a high-t c superconductor

Supplementary Information for. Linear-T resistivity and change in Fermi surface at the pseudogap critical point of a high-t c superconductor NPHYS-2008-06-00736 Supplementary Information for Linear-T resistivity and change in Fermi surface at the pseudogap critical point of a high-t c superconductor R. Daou 1, Nicolas Doiron-Leyraud 1, David

More information

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford)

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford) Wilsonian and large N theories of quantum critical metals Srinivas Raghu (Stanford) Collaborators and References R. Mahajan, D. Ramirez, S. Kachru, and SR, PRB 88, 115116 (2013). A. Liam Fitzpatrick, S.

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

Exact results concerning the phase diagram of the Hubbard Model

Exact results concerning the phase diagram of the Hubbard Model Steve Kivelson Apr 15, 2011 Freedman Symposium Exact results concerning the phase diagram of the Hubbard Model S.Raghu, D.J. Scalapino, Li Liu, E. Berg H. Yao, W-F. Tsai, A. Lauchli G. Karakonstantakis,

More information

Talk online at

Talk online at Talk online at http://sachdev.physics.harvard.edu Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic

More information

Quantum critical metals and their instabilities. Srinivas Raghu (Stanford)

Quantum critical metals and their instabilities. Srinivas Raghu (Stanford) Quantum critical metals and their instabilities Srinivas Raghu (Stanford) Collaborators and References R. Mahajan, D. Ramirez, S. Kachru, and SR, PRB 88, 115116 (2013). A. Liam Fitzpatrick, S. Kachru,

More information

Vortices in the cuprate superconductors

Vortices in the cuprate superconductors Vortices in the cuprate superconductors Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies online at http://pantheon.yale.edu/~subir

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter University of Toronto March 22, 2012 sachdev.physics.harvard.edu HARVARD Sommerfeld-Bloch theory of metals, insulators, and superconductors: many-electron

More information

Sign-problem-free quantum Monte Carlo of the onset of antiferromagnetism in metals

Sign-problem-free quantum Monte Carlo of the onset of antiferromagnetism in metals arxiv:1206.0742v2 [cond-mat.str-el] 8 Nov 2012 Sign-problem-free quantum Monte Carlo of the onset of antiferromagnetism in metals Erez Berg, 1,2 Max A. Metlitski, 3 Subir Sachdev 1,4 1 Department of Physics,

More information

Topological order in quantum matter

Topological order in quantum matter HARVARD Topological order in quantum matter Stanford University Subir Sachdev November 30, 2017 Talk online: sachdev.physics.harvard.edu Mathias Scheurer Wei Wu Shubhayu Chatterjee arxiv:1711.09925 Michel

More information

Phenomenology of High Tc Cuprates II. Pseudogap in Underdoped Cuprates

Phenomenology of High Tc Cuprates II. Pseudogap in Underdoped Cuprates Lecture # 2 1 Phenomenology of High Tc Cuprates II Pseudogap in Underdoped Cuprates Mohit Randeria Ohio State University 2014 Boulder School on Modern aspects of Superconductivity T T* Strange metal Mott

More information

arxiv: v1 [cond-mat.str-el] 7 Oct 2009

arxiv: v1 [cond-mat.str-el] 7 Oct 2009 Finite temperature dissipation and transport near quantum critical points Subir Sachdev Department of Physics, Harvard University, Cambridge MA 02138 (Dated: Oct 5, 2009) arxiv:0910.1139v1 [cond-mat.str-el]

More information

Understanding correlated electron systems by a classification of Mott insulators

Understanding correlated electron systems by a classification of Mott insulators Understanding correlated electron systems by a classification of Mott insulators Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe)

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals University of Cologne, June 8, 2012 Subir Sachdev Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World, chair D.J. Gross. arxiv:1203.4565

More information

Competing orders and quantum criticality in the high temperature superconductors

Competing orders and quantum criticality in the high temperature superconductors Competing orders and quantum criticality in the high temperature superconductors Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479

More information

Dual vortex theory of doped antiferromagnets

Dual vortex theory of doped antiferromagnets Dual vortex theory of doped antiferromagnets Physical Review B 71, 144508 and 144509 (2005), cond-mat/0502002, cond-mat/0511298 Leon Balents (UCSB) Lorenz Bartosch (Harvard) Anton Burkov (Harvard) Predrag

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter Stony Brook University February 14, 2012 sachdev.physics.harvard.edu HARVARD Quantum superposition and entanglement Quantum Superposition The double slit experiment

More information

arxiv: v2 [cond-mat.str-el] 22 Aug 2010

arxiv: v2 [cond-mat.str-el] 22 Aug 2010 Quantum phase transitions of metals in two spatial dimensions: II. Spin density wave order arxiv:005.88v [cond-mat.str-el] Aug 00 Max A. Metlitski and Subir Sachdev Department of Physics, Harvard University,

More information

Talk online: sachdev.physics.harvard.edu

Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Particle theorists Condensed matter theorists Quantum Entanglement Hydrogen atom: Hydrogen molecule: = _ = 1 2 ( ) Superposition of two electron states leads to

More information

Condensed Matter Physics in the City London, June 20, 2012

Condensed Matter Physics in the City London, June 20, 2012 Entanglement, holography, and the quantum phases of matter Condensed Matter Physics in the City London, June 20, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World arxiv:1203.4565

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter University of Cincinnati March 30, 2012 sachdev.physics.harvard.edu HARVARD Sommerfeld-Bloch theory of metals, insulators, and superconductors: many-electron

More information

arxiv: v3 [cond-mat.str-el] 15 Nov 2010

arxiv: v3 [cond-mat.str-el] 15 Nov 2010 The underdoped cuprates as fractionalized Fermi liquids: transition to superconductivity Eun Gook Moon and Subir Sachdev Department of Physics, Harvard University, Cambridge MA 2138 arxiv:11.4567v3 [cond-mat.str-el]

More information

Direct observation of competition between superconductivity and charge density wave order in YBa 2 Cu 3 O y

Direct observation of competition between superconductivity and charge density wave order in YBa 2 Cu 3 O y Direct observation of competition between superconductivity and charge density wave order in YBa 2 Cu 3 O y J. Chang 1,2, E. Blackburn 3, A. T. Holmes 3, N. B. Christensen 4, J. Larsen 4,5, J. Mesot 1,2,

More information

arxiv: v1 [cond-mat.str-el] 16 Dec 2011

arxiv: v1 [cond-mat.str-el] 16 Dec 2011 Competition between superconductivity and nematic order: anisotropy of superconducting coherence length Eun-Gook Moon 1, 2 and Subir Sachdev 1 1 Department of Physics, Harvard University, Cambridge MA

More information

Quantum Oscillations in underdoped cuprate superconductors

Quantum Oscillations in underdoped cuprate superconductors Quantum Oscillations in underdoped cuprate superconductors Aabhaas Vineet Mallik Journal Club Talk 4 April, 2013 Aabhaas Vineet Mallik (Journal Club Talk) Quantum Oscillations in underdoped cuprate superconductors

More information

High Tc cuprates: Recent insights from X-ray scattering

High Tc cuprates: Recent insights from X-ray scattering High Tc cuprates: Recent insights from X-ray scattering Mathieu Le Tacon Max Planck Institute for Solid State Research Stuttgart Collaborators B. Keimer, S. Blanco-Canosa, A. Fraño, M. Minola, H. Gretarsson,

More information

arxiv: v1 [cond-mat.str-el] 18 Sep 2014

arxiv: v1 [cond-mat.str-el] 18 Sep 2014 Density wave instabilities of fractionalized Fermi liquids Debanjan Chowdhury 1 and Subir Sachdev 1, 2 1 Department of Physics, Harvard University, Cambridge, Massachusetts-02138, U.S.A. 2 Perimeter Institute

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Talks online at http://sachdev.physics.harvard.edu What is a phase transition? A change in the collective properties of a macroscopic number of atoms What is a quantum

More information

Universal Features of the Mott-Metal Crossover in the Hole Doped J = 1/2 Insulator Sr 2 IrO 4

Universal Features of the Mott-Metal Crossover in the Hole Doped J = 1/2 Insulator Sr 2 IrO 4 Universal Features of the Mott-Metal Crossover in the Hole Doped J = 1/2 Insulator Sr 2 IrO 4 Umesh Kumar Yadav Centre for Condensed Matter Theory Department of Physics Indian Institute of Science August

More information

Let There Be Topological Superconductors

Let There Be Topological Superconductors Let There Be Topological Superconductors K K d Γ ~q c µ arxiv:1606.00857 arxiv:1603.02692 Eun-Ah Kim (Cornell) Boulder 7.21-22.2016 Q. Topological Superconductor material? Bulk 1D proximity 2D proximity?

More information