Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals

Size: px
Start display at page:

Download "Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals"

Transcription

1 Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals Subir Sachdev sachdev.physics.harvard.edu HARVARD

2 Max Metlitski Erez Berg HARVARD

3 Max Metlitski Erez Berg Sean Hartnoll Diego Hofman Matthias Punk HARVARD

4 Increasing SDW order s Nd 2 x Ce x CuO 4 T. Helm, M. V. Kartsovnik, M. Bartkowiak, N. Bittner, M. Lambacher, A. Erb, J. Wosnitza, and R. Gross, Phys. Rev. Lett. 103, (2009).

5 Resistivity ρ 0 + AT n BaFe 2 (As 1 x P x ) 2 K. Hashimoto, K. Cho, T. Shibauchi, S. Kasahara, Y. Mizukami, R. Katsumata, Y. Tsuruhara, T. Terashima, H. Ikeda, M. A. Tanatar, H. Kitano, N. Salovich, R. W. Giannetta, P. Walmsley, A. Carrington, R. Prozorov, and Y. Matsuda, Science 336, 1554 (2012).

6 BaFe 2 (As 1 x P x ) 2 K. Hashimoto, K. Cho, T. Shibauchi, S. Kasahara, Y. Mizukami, R. Katsumata, Y. Tsuruhara, T. Terashima, H. Ikeda, M. A. Tanatar, H. Kitano, N. Salovich, R. W. Giannetta, P. Walmsley, A. Carrington, R. Prozorov, and Y. Matsuda, Science 336, 1554 (2012).

7 Lower Tc superconductivity in the heavy fermion compounds G. Knebel, D. Aoki, and J. Flouquet, arxiv: Tuson Park, F. Ronning, H. Q. Yuan, M. B. Salamon, R. Movshovich, J. L. Sarrao, and J. D. Thompson, Nature 440, 65 (2006)

8 Outline 1. Weak coupling theory 2. Universal critical theory 3. Quantum Monte Carlo without the sign problem 4. Features of strong coupling

9 Outline 1. Weak coupling theory 2. Universal critical theory 3. Quantum Monte Carlo without the sign problem 4. Features of strong coupling

10 The Hubbard Model H = i<j t ij c iα c jα + U i n i 1 n i µ i c iα c iα t ij hopping. U local repulsion, µ chemical potential Spin index α =, n iα = c iα c iα c iα c jβ + c jβ c iα = δ ijδ αβ c iα c jβ + c jβ c iα =0

11 Fermi surface+antiferromagnetism Metal with large Fermi surface + The electron spin polarization obeys S(r, τ) = ϕ (r, τ)e ik r where K is the ordering wavevector.

12 The Hubbard Model Decouple U term by a Hubbard-Stratanovich transformation S = d 2 rdτ [L c + L ϕ + L cϕ ] L c = c aε( i )c a ϕ 2 α 2 L ϕ = 1 2 ( ϕ α) 2 + r 2 ϕ2 α + u 4 L cϕ = λϕ α e ik r c a σ α ab c b. Yukawa coupling between fermions and antiferromagnetic order: λ 2 U, the Hubbard repulsion

13 The Hubbard Model Decouple U term by a Hubbard-Stratanovich transformation S = d 2 rdτ [L c + L ϕ + L cϕ ] L c = c aε( i )c a ϕ 2 α 2 L ϕ = 1 2 ( ϕ α) 2 + r 2 ϕ2 α + u 4 L cϕ = λϕ α e ik r c a σ α ab c b. Hertz, Moriya, Millis: integrate out fermions, and focus on effective theory of damped excitations of the order parameter ϕ α.methodfails in d = 2.

14 Fermi surface+antiferromagnetism Metal with large Fermi surface

15 Fermi surface+antiferromagnetism Fermi surfaces translated by K =(π, π).

16 Fermi surface+antiferromagnetism Hot spots

17 Fermi surface+antiferromagnetism Electron and hole pockets in antiferromagnetic phase with ϕ =0

18 Fermi surface+antiferromagnetism ncreasing SDW ϕ =0 ϕ =0 Metal with electron and hole pockets Metal with large Fermi surface Increasing interaction S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

19 Pairing glue from antiferromagnetic fluctuations V. J. Emery, J. Phys. (Paris) Colloq. 44, C3-977 (1983) D.J. Scalapino, E. Loh, and J.E. Hirsch, Phys. Rev. B 34, 8190 (1986) K. Miyake, S. Schmitt-Rink, and C. M. Varma, Phys. Rev. B 34, 6554 (1986) S. Raghu, S.A. Kivelson, and D.J. Scalapino, Phys. Rev. B 81, (2010)

20 c kα c kβ = ε αβ (cos k x cos k y ) Unconventional pairing at and near hot spots

21 Fermi surface+antiferromagnetism T * Fluctuating Fermi pockets Quantum Strange Critical Metal Large Fermi surface ncreasing SDW Spin density wave (SDW) Underlying SDW ordering quantum critical point in metal at x = x m

22 Fermi surface+antiferromagnetism Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Quantum Strange Critical Metal Large Fermi surface d-wave superconductor Spin density wave (SDW) QCP for the onset of SDW order is actually within a superconductor

23 Outline 1. Weak coupling theory 2. Universal critical theory 3. Quantum Monte Carlo without the sign problem 4. Features of strong coupling

24 Outline 1. Weak coupling theory 2. Universal critical theory 3. Quantum Monte Carlo without the sign problem 4. Features of strong coupling

25 Hot spots

26 Low energy theory for critical point near hot spots

27 Low energy theory for critical point near hot spots

28 Theory has fermions ψ 1,2 (with Fermi velocities v 1,2 ) and boson order parameter ϕ, interacting with coupling λ v 1 v 2 k y k x ψ 1 fermions occupied ψ 2 fermions occupied

29 Theory has fermions ψ 1,2 (with Fermi velocities v 1,2 ) and boson order parameter ϕ, interacting with coupling λ L = ψ 1α ( τ iv 1 r ) ψ 1α + ψ 2α ( τ iv 2 r ) ψ 2α ( r ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 ψ λϕ 1α σ αβψ 2β + ψ 2α σ αβψ 1β Ar. Abanov and A.V. Chubukov, Phys. Rev. Lett. 93, (2004).

30 Theory has fermions ψ 1,2 (with Fermi velocities v 1,2 ) and boson order parameter ϕ, interacting with coupling λ L = ψ 1α ( τ iv 1 r ) ψ 1α + ψ 2α ( τ iv 2 r ) ψ 2α ( r ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 ψ λϕ 1α σ αβψ 2β + ψ 2α σ αβψ 1β M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, (2010) S.A. Hartnoll, D.M. Hofman, M. A. Metlitski and S. Sachdev, Phys. Rev. B 84, (2011)

31 Theory has fermions ψ 1,2 (with Fermi velocities v 1,2 ) and boson order parameter ϕ, interacting with coupling λ L = ψ 1α ( τ iv 1 r ) ψ 1α + ψ 2α ( τ iv 2 r ) ψ 2α ( r ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 ψ λϕ 1α σ αβψ 2β + ψ 2α σ αβψ 1β Theory flows to strong-coupling in d = 2. M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, (2010) S.A. Hartnoll, D.M. Hofman, M. A. Metlitski and S. Sachdev, Phys. Rev. B 84, (2011)

32 Outline 1. Weak coupling theory 2. Universal critical theory 3. Quantum Monte Carlo without the sign problem 4. Features of strong coupling

33 Outline 1. Weak coupling theory 2. Universal critical theory 3. Quantum Monte Carlo without the sign problem 4. Features of strong coupling

34 Theory has fermions ψ 1,2 (with Fermi velocities v 1,2 ) and boson order parameter ϕ, interacting with coupling λ v 1 v 2 k y k x ψ 1 fermions occupied ψ 2 fermions occupied

35 Theory has fermions ψ 1,2 (with Fermi velocities v 1,2 ) and boson order parameter ϕ, interacting with coupling λ v 1 v 2 k y k x To faithfully realize low energy theory in quantum Monte Carlo, we need a UV completion in which Fermi lines don t end and all weights are positive.

36 Low energy theory for critical point near hot spots

37 We have 4 copies of the hot spot theory...

38 and their Fermi lines are connected as shown:

39 Reconnect Fermi lines and eliminate the sign problem!

40 QMC for the onset of antiferromagnetism K Hot spots in a single band model

41 QMC for the onset of antiferromagnetism K E. Berg, M. Metlitski, and S. Sachdev, arxiv: Hot spots in a two band model

42 QMC for the onset of antiferromagnetism K E. Berg, M. Metlitski, and S. Sachdev, arxiv: Hot spots in a two band model

43 QMC for the onset of antiferromagnetism K E. Berg, M. Metlitski, and S. Sachdev, arxiv: No sign problem in fermion determinant Monte Carlo! Determinant is positive because of Kramer s degeneracy, and no additional symmetries are needed; holds for arbitrary band structure and band filling, provided K only Hot spots in a two band model connects hot spots in distinct bands

44 QMC for the onset of antiferromagnetism Electrons with dispersion ε k interacting with fluctuations of the antiferromagnetic order parameter ϕ. Z = S = + Dc α Dϕ exp ( S) dτ c kα τ ε k c kα k dτd 2 1 x 2 ( x ϕ ) 2 + r 2 ϕ λ dτ i ϕ i ( 1) x i c iα σ αβc iβ

45 QMC for the onset of antiferromagnetism Electrons with dispersions ε (x) and ε (y) k k interacting with fluctuations of the antiferromagnetic order parameter ϕ. Z = Dc (x) α Dc (y) α Dϕ exp ( S) S = dτ c (x) kα τ ε(x) c (x) k kα k + dτ c (y) kα τ ε(y) c (y) k kα k + dτd 2 1 x 2 ( x ϕ ) 2 + r 2 ϕ λ dτ ϕ i ( 1) x i c (x) iα σ αβc (y) iβ i + H.c. E. Berg, M. Metlitski, and S. Sachdev, arxiv:

46 QMC for the onset of antiferromagnetism Electrons with dispersions ε (x) and ε (y) k k interacting with fluctuations of the antiferromagnetic order parameter ϕ. Z = Dc (x) α Dc (y) α Dϕ exp ( S) S = dτ c (x) kα τ ε(x) c (x) k kα k + dτ c (y) kα τ ε(y) c (y) k kα k + dτd 2 1 x 2 ( x ϕ ) 2 + r 2 ϕ λ dτ ϕ i ( 1) x i c (x) iα σ αβc (y) iβ i No sign problem! + H.c. E. Berg, M. Metlitski, and S. Sachdev, arxiv:

47 QMC for the onset of antiferromagnetism K E. Berg, M. Metlitski, and S. Sachdev, arxiv: Hot spots in a two band model

48 QMC for the onset of antiferromagnetism 1 a) k y /π K E. Berg, M. Metlitski, and S. Sachdev, arxiv: Center Brillouin zone at (π,π,)

49 QMC for the onset of antiferromagnetism 1 a) b) 0.5 E. Berg, M. Metlitski, and S. Sachdev, arxiv: k y /! 0 K k y /!!0.5!1!1 0 1 Move one of the Fermi surface by (π,π,)

50 QMC for the onset of antiferromagnetism 1 a) 0.5 E. Berg, M. Metlitski, and S. Sachdev, arxiv: k y /π Now hot spots are at Fermi surface intersections

51 QMC for the onset of antiferromagnetism 1 b) 0.5 E. Berg, M. Metlitski, and S. Sachdev, arxiv: k y /! 0!0.5!1!1 0 1 Expected Fermi surfaces in the AFM ordered phase

52 QMC for the onset of antiferromagnetism 1 r =!0.5 1 r = 0 1 r = k y /! !0.5!0.5! !1!1 0 1 k x /!!1!1 0 1 k x /!!1!1 0 1 k x /! Electron occupation number n k as a function of the tuning parameter r E. Berg, M. Metlitski, and S. Sachdev, arxiv:

53 QMC for the onset of antiferromagnetism! " /(L 2 #) a) b) L=8 L=10 L=12 L=14! r Binder cumulant ! r AF susceptibility, χ ϕ, and Binder cumulant as a function of the tuning parameter r E. Berg, M. Metlitski, and S. Sachdev, arxiv:

54 QMC for the onset of antiferromagnetism P ± (x max )! 10 x 10! _ P _ + P _ r c L = 14 L = 10 L = 12 0!2!2! r s/d pairing amplitudes P + /P as a function of the tuning parameter r E. Berg, M. Metlitski, and S. Sachdev, arxiv:

55 Outline 1. Weak coupling theory 2. Universal critical theory 3. Quantum Monte Carlo without the sign problem 4. Features of strong coupling

56 Outline 1. Weak coupling theory 2. Universal critical theory 3. Quantum Monte Carlo without the sign problem 4. Features of strong coupling

57 Features of strong coupling Shift in QCP due to superconductivity: backbending of SDW order. Pairing instability is (log) 2 with universal co-efficient. Leading subdominant instability is bond-modulated charge order. Intermediate fractionalized Fermi liquid (FL*) state with hole pockets and no broken symmetry.

58 Features of strong coupling Shift in QCP due to superconductivity: backbending of SDW order. Pairing instability is (log) 2 with universal co-efficient. Leading subdominant instability is bond-modulated charge order. Intermediate fractionalized Fermi liquid (FL*) state with hole pockets and no broken symmetry.

59 Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Quantum Strange Critical Metal Large Fermi surface d-wave superconductor Spin density wave (SDW) QCP for the onset of SDW order is actually within a superconductor

60 Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Quantum Strange Critical Metal Large Fermi surface d-wave superconductor x s Spin density wave (SDW) Competition between SDW order and superconductivity moves the actual quantum critical point to x = x s <x m.

61 E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, (2001). S. Sachdev, arxiv: T T * Fluctuating, Small Fermi pockets paired Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface E. G. Moon and S. Sachdev, Phy. Rev. B 80, (2009) T sdw d-wave SC SC+ SDW SC SDW (Small Fermi pockets) H M "Normal" (Large Fermi surface)

62 QMC for the onset of antiferromagnetism P ± (x max )! 10 x 10! _ P _ + P _ r c L = 14 L = 10 L = 12 0!2!2! r s/d pairing amplitudes P + /P as a function of the tuning parameter r E. Berg, M. Metlitski, and S. Sachdev, arxiv:

63 QMC for the onset of antiferromagnetism P ± (x max )! 10 x 10! _ P _ + P _ r c L = 14 L = 10 L = 12 0!2!2! r Notice shift between the position of the QCP in the superconductor, and the position of maximum pairing. This is found in numerous experiments. E. Berg, M. Metlitski, and S. Sachdev, arxiv:

64 Features of strong coupling Shift in QCP due to superconductivity: backbending of SDW order. Pairing instability is (log) 2 with universal co-efficient. Leading subdominant instability is bond-modulated charge order. Intermediate fractionalized Fermi liquid (FL*) state with hole pockets and no broken symmetry.

65 Two loop results: Non-Fermi liquid spectrum at hot spots v 1 v 2 G fermion 1 iω v.k k y k x A. J. Millis, Phys. Rev. B 45, (1992) Ar. Abanov and A.V. Chubukov, Phys. Rev. Lett. 93, (2004)

66 Two loop results: Quasiparticle weight vanishes upon approaching hot spots k k y k k x G fermion = Z(k ) ω v F (k )k, Z(k ) v F (k ) k M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, (2010)

67 Pairing by SDW fluctuation exchange Weak-coupling theory Fermi EF energy 1+λ 2 ρ(e F ) log ω Density of states at Fermi energy

68 Pairing by SDW fluctuation exchange Antiferromagnetic critical point Fermi 1+ sin θ 2π log2 EF ω energy θ is the angle between Fermi lines. Independent of interaction strength U in 2 dimensions. (see also Ar. Abanov, A. V. Chubukov, and A. M. Finkel'stein, Europhys. Lett. 54, 488 (2001)) M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, (2010)

69 θ

70 Pairing by SDW fluctuation exchange Antiferromagnetic critical point 1+ sin θ 2π log2 EF ω Universal log 2 singularity arises from Fermi lines; singularity at hot spots is weaker. Interference between BCS and quantum-critical logs. Momentum dependence of self-energy is crucial. Not suppressed by 1/N factor in 1/N expansion. M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, (2010)

71 Features of strong coupling Shift in QCP due to superconductivity: backbending of SDW order. Pairing instability is (log) 2 with universal co-efficient. Leading subdominant instability is bond-modulated charge order. Intermediate fractionalized Fermi liquid (FL*) state with hole pockets and no broken symmetry.

72 c kα c kβ = ε αβ (cos k x cos k y ) Log-squared instability to d-wave pairing

73 c k Q/2,α c k+q/2,α = Φ(cos k x cos k y ) Q is 2k F wavevector Φ Φ Similar log-squared instability in particle-hole channel to bond-modulated charge order

74 Bond-modulated charge order M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, (2010) Φ Φ c k Q/2,α c k+q/2,α = Φ(cos k x cos k y )

75 Bond-modulated charge order M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, (2010) Φ Φ Q c k Q/2,α c k+q/2,α = Φ(cos k x cos k y )

76 Bond-modulated charge order M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, (2010) Φ Φ Q Q c k Q/2,α c k+q/2,α = Φ(cos k x cos k y )

77 Bond-modulated charge order M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, (2010) 1 Bond density measures amplitude for electrons to be in spin-singlet valence bond. 1 No modulations on sites, c rαc sα is modulated only for r = s. c k Q/2,α c k+q/2,α = Φ(cos k x cos k y )

78 Features of strong coupling Shift in QCP due to superconductivity: backbending of SDW order. Pairing instability is (log) 2 with universal co-efficient. Leading subdominant instability is bond-modulated charge order. Intermediate fractionalized Fermi liquid (FL*) state with hole pockets and no broken symmetry.

79 Holedoped Electrondoped?

80 Quantum phase transition with Fermi surface reconstruction ncreasing SDW ϕ =0 ϕ =0 Metal with electron and hole pockets Metal with large Fermi surface

81 Separating onset of SDW order and Fermi surface reconstruction ncreasing SDW ϕ =0 ϕ =0 Metal with electron and hole pockets Metal with large Fermi surface

82 Separating onset of SDW order and Fermi surface reconstruction ncreasing SDW Electron and/or hole Fermi pockets form in local SDW order, but quantum fluctuations destroy long-range SDW order ϕ =0 ϕ =0 ϕ =0 Metal with electron and hole pockets Fractionalized Fermi liquid (FL*) phase with no symmetry breaking and small Fermi surface Metal with large Fermi surface T. Senthil, S. Sachdev, and M. Vojta, Phys. Rev. Lett. 90, (2003)

83 k_y 1.5 k_y k_x Hole pocket of a Z 2 -FL* phase in a single-band t-j model M. Punk and S. Sachdev, Phys. Rev. B 85, (2012)

84 Characteristics of FL* phase Fermi surface volume does not count all electrons. Such a phase must have neutral S =1/2 excitations ( spinons ), and collective spinless gauge excitations ( topological order). These topological excitations are needed to account for the deficit in the Fermi surface volume, in M. Oshikawa s proof of the Luttinger theorem. T. Senthil, S. Sachdev, and M. Vojta, Phys. Rev. Lett. 90, (2003)

85 Outline 1. Weak coupling theory 2. Universal critical theory 3. Quantum Monte Carlo without the sign problem 4. Features of strong coupling

86 QMC for the onset of antiferromagnetism K Hot spots in a single band model

87 QMC for the onset of antiferromagnetism Faithful realization of low energy theory. Sign problem is absent as long as K connects hotspots in distinct K E. Berg, M. Metlitski, and S. Sachdev, arxiv: Particle-hole or point-group symmetries or commensurate densities not required! bands Hot spots in a two band model

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds Twelfth Arnold Sommerfeld Lecture Series January 31 - February 3, 2012 sachdev.physics.harvard.edu HARVARD Max

More information

Quantum phase transitions and Fermi surface reconstruction

Quantum phase transitions and Fermi surface reconstruction Quantum phase transitions and Fermi surface reconstruction Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski Matthias Punk Erez Berg HARVARD 1. Fate of the Fermi surface: reconstruction or

More information

Quantum criticality of Fermi surfaces

Quantum criticality of Fermi surfaces Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface

More information

Quantum disordering magnetic order in insulators, metals, and superconductors

Quantum disordering magnetic order in insulators, metals, and superconductors Quantum disordering magnetic order in insulators, metals, and superconductors Perimeter Institute, Waterloo, May 29, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Cenke Xu, Harvard arxiv:1004.5431

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions Niels Bohr Institute, Copenhagen, May 6, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski,

More information

The underdoped cuprates as fractionalized Fermi liquids (FL*)

The underdoped cuprates as fractionalized Fermi liquids (FL*) The underdoped cuprates as fractionalized Fermi liquids (FL*) R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, Physical Review B 75, 235122 (2007) R. K. Kaul, Y. B. Kim, S. Sachdev, and T.

More information

A quantum dimer model for the pseudogap metal

A quantum dimer model for the pseudogap metal A quantum dimer model for the pseudogap metal College de France, Paris March 27, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Andrea Allais Matthias Punk Debanjan Chowdhury (Innsbruck)

More information

Quantum criticality of Fermi surfaces in two dimensions

Quantum criticality of Fermi surfaces in two dimensions Quantum criticality of Fermi surfaces in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Yejin Huh, Harvard Max Metlitski, Harvard HARVARD Outline 1. Quantum criticality of Fermi points:

More information

AdS/CFT and condensed matter

AdS/CFT and condensed matter AdS/CFT and condensed matter Reviews: arxiv:0907.0008 arxiv:0901.4103 arxiv:0810.3005 (with Markus Mueller) Talk online: sachdev.physics.harvard.edu HARVARD Lars Fritz, Harvard Victor Galitski, Maryland

More information

The phase diagrams of the high temperature superconductors

The phase diagrams of the high temperature superconductors The phase diagrams of the high temperature superconductors Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski, Harvard Eun Gook Moon, Harvard HARVARD The cuprate superconductors Square lattice

More information

Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors

Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors Talk online: sachdev.physics.harvard.edu HARVARD Frederik Denef, Harvard Max Metlitski, Harvard Sean Hartnoll, Harvard Christopher

More information

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu Quantum criticality in the cuprate superconductors Talk online: sachdev.physics.harvard.edu The cuprate superconductors Destruction of Neel order in the cuprates by electron doping, R. K. Kaul, M. Metlitksi,

More information

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates HARVARD Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates Talk online: sachdev.physics.harvard.edu HARVARD Where is the quantum critical point

More information

General relativity and the cuprates

General relativity and the cuprates General relativity and the cuprates Gary T. Horowitz and Jorge E. Santos Department of Physics, University of California, Santa Barbara, CA 93106, U.S.A. E-mail: gary@physics.ucsb.edu, jss55@physics.ucsb.edu

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

Condensed Matter Physics in the City London, June 20, 2012

Condensed Matter Physics in the City London, June 20, 2012 Entanglement, holography, and the quantum phases of matter Condensed Matter Physics in the City London, June 20, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World arxiv:1203.4565

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Quantum criticality and the phase diagram of the cuprates

Quantum criticality and the phase diagram of the cuprates Quantum criticality and the phase diagram of the cuprates Talk online: sachdev.physics.harvard.edu HARVARD Victor Galitski, Maryland Ribhu Kaul, Harvard Kentucky Max Metlitski, Harvard Eun Gook Moon, Harvard

More information

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 )

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 ) Revealing fermionic quantum criticality from new Monte Carlo techniques Zi Yang Meng ( 孟子杨 ) http://ziyangmeng.iphy.ac.cn Collaborators and References Xiao Yan Xu Zi Hong Liu Chuang Chen Gao Pei Pan Yang

More information

Sign-problem-free quantum Monte Carlo of the onset of antiferromagnetism in metals

Sign-problem-free quantum Monte Carlo of the onset of antiferromagnetism in metals arxiv:1206.0742v2 [cond-mat.str-el] 8 Nov 2012 Sign-problem-free quantum Monte Carlo of the onset of antiferromagnetism in metals Erez Berg, 1,2 Max A. Metlitski, 3 Subir Sachdev 1,4 1 Department of Physics,

More information

Quantum Melting of Stripes

Quantum Melting of Stripes Quantum Melting of Stripes David Mross and T. Senthil (MIT) D. Mross, TS, PRL 2012 D. Mross, TS, PR B (to appear) Varieties of Stripes Spin, Charge Néel 2π Q c 2π Q s ``Anti-phase stripes, common in La-based

More information

Metals without quasiparticles

Metals without quasiparticles Metals without quasiparticles A. Review of Fermi liquid theory B. A non-fermi liquid: the Ising-nematic quantum critical point C. Fermi surfaces and gauge fields Metals without quasiparticles A. Review

More information

Quantum Monte Carlo investigations of correlated electron systems, present and future. Zi Yang Meng ( 孟子杨 )

Quantum Monte Carlo investigations of correlated electron systems, present and future. Zi Yang Meng ( 孟子杨 ) Quantum Monte Carlo investigations of correlated electron systems, present and future Zi Yang Meng ( 孟子杨 ) http://ziyangmeng.iphy.ac.cn Collaborators Xiao Yan Xu Yoni Schattner Zi Hong Liu Erez Berg Chuang

More information

Quantum mechanics without particles

Quantum mechanics without particles Quantum mechanics without particles Institute Lecture, Indian Institute of Technology, Kanpur January 21, 2014 sachdev.physics.harvard.edu HARVARD Outline 1. Key ideas from quantum mechanics 2. Many-particle

More information

Saturday, April 3, 2010

Saturday, April 3, 2010 Phys. Rev. Lett. 1990 Superfluid-insulator transition Ultracold 87 Rb atoms - bosons M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). T σ = 4e2 h Σ Quantum Σ, auniversalnumber.

More information

Topological order in insulators and metals

Topological order in insulators and metals HARVARD Topological order in insulators and metals 34th Jerusalem Winter School in Theoretical Physics New Horizons in Quantum Matter December 27, 2016 - January 5, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter University of Cincinnati March 30, 2012 sachdev.physics.harvard.edu HARVARD Sommerfeld-Bloch theory of metals, insulators, and superconductors: many-electron

More information

Electronic quasiparticles and competing orders in the cuprate superconductors

Electronic quasiparticles and competing orders in the cuprate superconductors Electronic quasiparticles and competing orders in the cuprate superconductors Andrea Pelissetto Rome Subir Sachdev Ettore Vicari Pisa Yejin Huh Harvard Harvard Gapless nodal quasiparticles in d-wave superconductors

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies on-line at http://pantheon.yale.edu/~subir

More information

!"#$%& IIT Kanpur. !"#$%&. Kanpur, How spins become pairs: Composite and magnetic pairing in the 115 Heavy Fermion Superconductors

!#$%& IIT Kanpur. !#$%&. Kanpur, How spins become pairs: Composite and magnetic pairing in the 115 Heavy Fermion Superconductors How spins become pairs: Composite and magnetic pairing in the 115 Heavy Fermion Superconductors!"#$%& IIT Kanpur Feb 6 2010 Interaction, Instability and Transport!"#$%&. Kanpur, 1857. How spins become

More information

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012 Entanglement, holography, and strange metals Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum

More information

Strong coupling problems in condensed matter and the AdS/CFT correspondence

Strong coupling problems in condensed matter and the AdS/CFT correspondence Strong coupling problems in condensed matter and the AdS/CFT correspondence Reviews: arxiv:0910.1139 arxiv:0901.4103 Talk online: sachdev.physics.harvard.edu HARVARD Frederik Denef, Harvard Yejin Huh,

More information

Quantum phase transitions in condensed matter physics, with connections to string theory

Quantum phase transitions in condensed matter physics, with connections to string theory Quantum phase transitions in condensed matter physics, with connections to string theory sachdev.physics.harvard.edu HARVARD High temperature superconductors Cuprates High temperature superconductors Pnictides

More information

Topological order in the pseudogap metal

Topological order in the pseudogap metal HARVARD Topological order in the pseudogap metal High Temperature Superconductivity Unifying Themes in Diverse Materials 2018 Aspen Winter Conference Aspen Center for Physics Subir Sachdev January 16,

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Small and large Fermi surfaces in metals with local moments

Small and large Fermi surfaces in metals with local moments Small and large Fermi surfaces in metals with local moments T. Senthil (MIT) Subir Sachdev Matthias Vojta (Augsburg) cond-mat/0209144 Transparencies online at http://pantheon.yale.edu/~subir Luttinger

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter University of Toronto March 22, 2012 sachdev.physics.harvard.edu HARVARD Sommerfeld-Bloch theory of metals, insulators, and superconductors: many-electron

More information

Mean field theories of quantum spin glasses

Mean field theories of quantum spin glasses Mean field theories of quantum spin glasses Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Talk online: Sachdev Classical Sherrington-Kirkpatrick model H = JS S i j ij i j J ij : a

More information

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability Subir Sachdev sachdev.physics.harvard.edu HARVARD y x Fermi surface with full square lattice symmetry y x Spontaneous

More information

Topological order in quantum matter

Topological order in quantum matter HARVARD Topological order in quantum matter Stanford University Subir Sachdev November 30, 2017 Talk online: sachdev.physics.harvard.edu Mathias Scheurer Wei Wu Shubhayu Chatterjee arxiv:1711.09925 Michel

More information

Quantum criticality and high temperature superconductivity

Quantum criticality and high temperature superconductivity Quantum criticality and high temperature superconductivity University of Waterloo February 14, 2014 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD William Witczak-Krempa Perimeter Erik

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter Stony Brook University February 14, 2012 sachdev.physics.harvard.edu HARVARD Quantum superposition and entanglement Quantum Superposition The double slit experiment

More information

Tuning order in cuprate superconductors

Tuning order in cuprate superconductors Tuning order in cuprate superconductors arxiv:cond-mat/0201401 v1 23 Jan 2002 Subir Sachdev 1 and Shou-Cheng Zhang 2 1 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120,

More information

3. Quantum matter without quasiparticles

3. Quantum matter without quasiparticles 1. Review of Fermi liquid theory Topological argument for the Luttinger theorem 2. Fractionalized Fermi liquid A Fermi liquid co-existing with topological order for the pseudogap metal 3. Quantum matter

More information

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES studies of cuprates Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Goals of lecture Understand why gaps are important and various ways that gap

More information

Can superconductivity emerge out of a non Fermi liquid.

Can superconductivity emerge out of a non Fermi liquid. Can superconductivity emerge out of a non Fermi liquid. Andrey Chubukov University of Wisconsin Washington University, January 29, 2003 Superconductivity Kamerling Onnes, 1911 Ideal diamagnetism High Tc

More information

Quantum transitions of d-wave superconductors in a magnetic field

Quantum transitions of d-wave superconductors in a magnetic field Quantum transitions of d-wave superconductors in a magnetic field Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 86, 479 (1999). Transparencies

More information

Quantum Criticality. S. Sachdev and B. Keimer, Physics Today, February Talk online: sachdev.physics.harvard.edu HARVARD. Thursday, May 5, 2011

Quantum Criticality. S. Sachdev and B. Keimer, Physics Today, February Talk online: sachdev.physics.harvard.edu HARVARD. Thursday, May 5, 2011 Quantum Criticality S. Sachdev and B. Keimer, Physics Today, February 2011 Talk online: sachdev.physics.harvard.edu HARVARD What is a quantum phase transition? Non-analyticity in ground state properties

More information

Quantum phase transitions and the Luttinger theorem.

Quantum phase transitions and the Luttinger theorem. Quantum phase transitions and the Luttinger theorem. Leon Balents (UCSB) Matthew Fisher (UCSB) Stephen Powell (Yale) Subir Sachdev (Yale) T. Senthil (MIT) Ashvin Vishwanath (Berkeley) Matthias Vojta (Karlsruhe)

More information

Exact results concerning the phase diagram of the Hubbard Model

Exact results concerning the phase diagram of the Hubbard Model Steve Kivelson Apr 15, 2011 Freedman Symposium Exact results concerning the phase diagram of the Hubbard Model S.Raghu, D.J. Scalapino, Li Liu, E. Berg H. Yao, W-F. Tsai, A. Lauchli G. Karakonstantakis,

More information

Quantum Entanglement and Superconductivity. Subir Sachdev, Harvard University

Quantum Entanglement and Superconductivity. Subir Sachdev, Harvard University Quantum Entanglement and Superconductivity Subir Sachdev, Harvard University Quantum Entanglement and Superconductivity Superconductor, levitated by an unseen magnet, in which countless trillions of electrons

More information

Quantum Monte Carlo study of a Z 2 gauge theory containing phases with and without a Luttinger volume Fermi surface

Quantum Monte Carlo study of a Z 2 gauge theory containing phases with and without a Luttinger volume Fermi surface Quantum Monte Carlo study of a Z 2 gauge theory containing phases with and without a Luttinger volume Fermi surface V44.00011 APS March Meeting, Los Angeles Fakher Assaad, Snir Gazit, Subir Sachdev, Ashvin

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter IISc, Bangalore January 23, 2012 sachdev.physics.harvard.edu HARVARD Outline 1. Conformal quantum matter Entanglement, emergent dimensions and string theory

More information

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu arxiv:0809.0694 Yang Qi Harvard Cenke Xu Harvard Max Metlitski Harvard Ribhu Kaul Microsoft Roger Melko

More information

Local criticality and marginal Fermi liquid in a solvable model Erez Berg

Local criticality and marginal Fermi liquid in a solvable model Erez Berg Local criticality and marginal Fermi liquid in a solvable model Erez Berg Y. Werman, D. Chowdhury, T. Senthil, and EB, arxiv:xxxx.xxxx Yochai Werman (Weizmann Berkeley) Debanjan Chowdhury (MIT) Senthil

More information

The Superfluid-Insulator transition

The Superfluid-Insulator transition The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989). Superfluid-insulator transition Ultracold 87 Rb atoms

More information

Miniworkshop on Strong Correlations in Materials and Atom Traps August Superconductivity, magnetism and criticality in the 115s.

Miniworkshop on Strong Correlations in Materials and Atom Traps August Superconductivity, magnetism and criticality in the 115s. 1957-2 Miniworkshop on Strong Correlations in Materials and Atom Traps 4-15 August 2008 Superconductivity, magnetism and criticality in the 115s. THOMPSON Joe David Los Alamos National Laboratory Materials

More information

Emergent gauge fields and the high temperature superconductors

Emergent gauge fields and the high temperature superconductors HARVARD Emergent gauge fields and the high temperature superconductors Unifying physics and technology in light of Maxwell s equations The Royal Society, London November 16, 2015 Subir Sachdev Talk online:

More information

From the pseudogap to the strange metal

From the pseudogap to the strange metal HARVARD From the pseudogap to the strange metal S. Sachdev, E. Berg, S. Chatterjee, and Y. Schattner, PRB 94, 115147 (2016) S. Sachdev and S. Chatterjee, arxiv:1703.00014 APS March meeting March 13, 2017

More information

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford)

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford) Wilsonian and large N theories of quantum critical metals Srinivas Raghu (Stanford) Collaborators and References R. Mahajan, D. Ramirez, S. Kachru, and SR, PRB 88, 115116 (2013). A. Liam Fitzpatrick, S.

More information

Spin liquids on the triangular lattice

Spin liquids on the triangular lattice Spin liquids on the triangular lattice ICFCM, Sendai, Japan, Jan 11-14, 2011 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Classification of spin liquids Quantum-disordering magnetic order

More information

Emergent light and the high temperature superconductors

Emergent light and the high temperature superconductors HARVARD Emergent light and the high temperature superconductors Pennsylvania State University State College, January 21, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu Maxwell's equations:

More information

Quantum criticality in condensed matter

Quantum criticality in condensed matter Quantum criticality in condensed matter Inaugural Symposium of the Wolgang Pauli Center Hamburg, April 17, 2013 Subir Sachdev Scientific American 308, 44 (January 2013) HARVARD Sommerfeld-Pauli-Bloch theory

More information

Lattice modulation experiments with fermions in optical lattices and more

Lattice modulation experiments with fermions in optical lattices and more Lattice modulation experiments with fermions in optical lattices and more Nonequilibrium dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University Rajdeep Sensarma Harvard

More information

arxiv: v4 [cond-mat.str-el] 26 Oct 2011

arxiv: v4 [cond-mat.str-el] 26 Oct 2011 Quantum phase transitions of antiferromagnets and the cuprate superconductors Subir Sachdev arxiv:1002.3823v4 [cond-mat.str-el] 26 Oct 2011 Abstract I begin with a proposed global phase diagram of the

More information

Theory of the Nernst effect near the superfluid-insulator transition

Theory of the Nernst effect near the superfluid-insulator transition Theory of the Nernst effect near the superfluid-insulator transition Sean Hartnoll (KITP), Christopher Herzog (Washington), Pavel Kovtun (KITP), Marcus Mueller (Harvard), Subir Sachdev (Harvard), Dam Son

More information

Supplementary Figures.

Supplementary Figures. Supplementary Figures. E -µ (e V ) 1 0-1 - (π,0 ) (0,π) (0,0 ) (π,0 ) (π,π) (0,0 ) a b c E -µ (e V ) 1 0-1 k y /π -0.5 - -1.0 (π,0 ) (0,π) (0,0 ) (π,0 ) (π,π) (0,0 ) -1.0-0.5 0.0 k x /π 0.5 1.0 1.0 0.5

More information

Examples of Lifshitz topological transition in interacting fermionic systems

Examples of Lifshitz topological transition in interacting fermionic systems Examples of Lifshitz topological transition in interacting fermionic systems Joseph Betouras (Loughborough U. Work in collaboration with: Sergey Slizovskiy (Loughborough, Sam Carr (Karlsruhe/Kent and Jorge

More information

Tuning order in the cuprate superconductors

Tuning order in the cuprate superconductors Tuning order in the cuprate superconductors Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies online at http://pantheon.yale.edu/~subir

More information

2D Bose and Non-Fermi Liquid Metals

2D Bose and Non-Fermi Liquid Metals 2D Bose and Non-Fermi Liquid Metals MPA Fisher, with O. Motrunich, D. Sheng, E. Gull, S. Trebst, A. Feiguin KITP Cold Atoms Workshop 10/5/2010 Interest: A class of exotic gapless 2D Many-Body States a)

More information

Superconductivity due to massless boson exchange.

Superconductivity due to massless boson exchange. Superconductivity due to massless boson exchange. Andrey Chubukov University of Wisconsin Consultations Artem Abanov Mike Norman Joerg Schmalian Boris Altshuler Emil Yuzbashyan Texas A&M ANL ISU Columbia

More information

Exotic phases of the Kondo lattice, and holography

Exotic phases of the Kondo lattice, and holography Exotic phases of the Kondo lattice, and holography Stanford, July 15, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. The Anderson/Kondo lattice models Luttinger s theorem 2. Fractionalized

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals University of Cologne, June 8, 2012 Subir Sachdev Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World, chair D.J. Gross. arxiv:1203.4565

More information

Physics of iron-based high temperature superconductors. Abstract

Physics of iron-based high temperature superconductors. Abstract Physics of iron-based high temperature superconductors Yuji Matsuda Department of Physics, Kyoto University, Kyoto 606-8502, Japan Abstract The discovery of high-t c iron pnictide and chalcogenide superconductors

More information

Tuning order in the cuprate superconductors by a magnetic field

Tuning order in the cuprate superconductors by a magnetic field Tuning order in the cuprate superconductors by a magnetic field Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies

More information

Transport in non-fermi liquids

Transport in non-fermi liquids HARVARD Transport in non-fermi liquids Theory Winter School National High Magnetic Field Laboratory, Tallahassee Subir Sachdev January 12, 2018 Talk online: sachdev.physics.harvard.edu Quantum matter without

More information

SYK models and black holes

SYK models and black holes SYK models and black holes Black Hole Initiative Colloquium Harvard, October 25, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Wenbo Fu, Harvard Yingfei Gu, Stanford Richard Davison,

More information

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES N.M.Plakida Joint Institute for Nuclear Research, Dubna, Russia CORPES, Dresden, 26.05.2005 Publications and collaborators: N.M. Plakida,

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter Imperial College May 16, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World, chair D.J. Gross. arxiv:1203.4565 sachdev.physics.harvard.edu

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information

Subir Sachdev Research Accomplishments

Subir Sachdev Research Accomplishments Subir Sachdev Research Accomplishments Theory for the quantum phase transition involving loss of collinear antiferromagnetic order in twodimensional quantum antiferromagnets (N. Read and S. Sachdev, Phys.

More information

Vortices in the cuprate superconductors

Vortices in the cuprate superconductors Vortices in the cuprate superconductors Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies online at http://pantheon.yale.edu/~subir

More information

Holography of compressible quantum states

Holography of compressible quantum states Holography of compressible quantum states New England String Meeting, Brown University, November 18, 2011 sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Compressible quantum

More information

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay I- Similarities between phase diagram and quantum critical points Quantum Criticality in 3 Families of Superconductors L. Taillefer,

More information

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates arxiv:0905.1096, To appear in New. J. Phys. Erez Berg 1, Steven A. Kivelson 1, Doug J. Scalapino 2 1 Stanford University, 2

More information

Topological order in quantum matter

Topological order in quantum matter HARVARD Topological order in quantum matter Indian Institute of Science Education and Research, Pune Subir Sachdev November 13, 2017 Talk online: sachdev.physics.harvard.edu 1. Classical XY model in 2

More information

Properties of monopole operators in 3d gauge theories

Properties of monopole operators in 3d gauge theories Properties of monopole operators in 3d gauge theories Silviu S. Pufu Princeton University Based on: arxiv:1303.6125 arxiv:1309.1160 (with Ethan Dyer and Mark Mezei) work in progress with Ethan Dyer, Mark

More information

Topological Kondo Insulators!

Topological Kondo Insulators! Topological Kondo Insulators! Maxim Dzero, University of Maryland Collaborators: Kai Sun, University of Maryland Victor Galitski, University of Maryland Piers Coleman, Rutgers University Main idea Kondo

More information

The quantum criticality of metals in two dimensions: antiferromagnetism, d-wave superconductivity and bond order

The quantum criticality of metals in two dimensions: antiferromagnetism, d-wave superconductivity and bond order The quantum criticality of metals in two dimensions: antiferromagnetism, d-wave superconductivity and bond order ICTP, Trieste July 2, 2013 Subir Sachdev HARVARD Max Metlitski Erez Berg Rolando La Placa

More information

Perimeter Institute January 19, Subir Sachdev

Perimeter Institute January 19, Subir Sachdev HARVARD Emergent light and the high temperature superconductors Perimeter Institute January 19, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu Debanjan Chowdhury Andrea Allais Yang Qi Matthias

More information

Let There Be Topological Superconductors

Let There Be Topological Superconductors Let There Be Topological Superconductors K K d Γ ~q c µ arxiv:1606.00857 arxiv:1603.02692 Eun-Ah Kim (Cornell) Boulder 7.21-22.2016 Q. Topological Superconductor material? Bulk 1D proximity 2D proximity?

More information

FROM NODAL LIQUID TO NODAL INSULATOR

FROM NODAL LIQUID TO NODAL INSULATOR FROM NODAL LIQUID TO NODAL INSULATOR Collaborators: Urs Ledermann and Maurice Rice John Hopkinson (Toronto) GORDON, 2004, Oxford Doped Mott insulator? Mott physics: U Antiferro fluctuations: J SC fluctuations

More information

Understanding correlated electron systems by a classification of Mott insulators

Understanding correlated electron systems by a classification of Mott insulators Understanding correlated electron systems by a classification of Mott insulators Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe)

More information

Trapping Centers at the Superfluid-Mott-Insulator Criticality: Transition between Charge-quantized States

Trapping Centers at the Superfluid-Mott-Insulator Criticality: Transition between Charge-quantized States Trapping Centers at the Superfluid-Mott-Insulator Criticality: Transition between Charge-quantized States Boris Svistunov University of Massachusetts, Amherst DIMOCA 2017, Mainz Institute for Theoretical

More information

Strange metals and gauge-gravity duality

Strange metals and gauge-gravity duality Strange metals and gauge-gravity duality Loughborough University, May 17, 2012 Subir Sachdev Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World, chair D.J. Gross. arxiv:1203.4565

More information

Talk online at

Talk online at Talk online at http://sachdev.physics.harvard.edu Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic

More information

J. McGreevy, arxiv Wednesday, April 18, 2012

J. McGreevy, arxiv Wednesday, April 18, 2012 r J. McGreevy, arxiv0909.0518 Consider the metric which transforms under rescaling as x i ζx i t ζ z t ds ζ θ/d ds. This identifies z as the dynamic critical exponent (z = 1 for relativistic quantum critical

More information

Quantum Cluster Methods (CPT/CDMFT)

Quantum Cluster Methods (CPT/CDMFT) Quantum Cluster Methods (CPT/CDMFT) David Sénéchal Département de physique Université de Sherbrooke Sherbrooke (Québec) Canada Autumn School on Correlated Electrons Forschungszentrum Jülich, Sept. 24,

More information