Superconductivity due to massless boson exchange.

Size: px
Start display at page:

Download "Superconductivity due to massless boson exchange."

Transcription

1 Superconductivity due to massless boson exchange. Andrey Chubukov University of Wisconsin Consultations Artem Abanov Mike Norman Joerg Schmalian Boris Altshuler Emil Yuzbashyan Texas A&M ANL ISU Columbia Rutgers Critical issues related to high temperature superconductors, Santa Barbara, June 009

2 1. In the case of electron-electron interactions, is the concept of a pairing "glue" even meaningful?. If your theory advocates an instantaneous interaction, does this mean the pairs have no dynamics, or just that the theory has not developed to the extent to address this question? 3. If your theory ignores phonons, can you really get away with that? Do you think phonons are even relevant? 4. What is the spectroscopic signatures predicted for your theory? Is a McMillan-Rowell inversion or related procedure possible for your theory? Is this question meaningful? 5. What would your theory predict in regards to collective modes? Is this even an important question?

3 Pnictides Pairing glue Cuprates T * Is the pairing due to electron-electron interaction mediated by collective spin fluctuations? Can T * line be understood in the context of a Fermi liquid, as the result of a collective mode exchange?

4 1. In the case of electron-electron interactions, is the concept of a pairing "glue" even meaningful? Fermi RPA, constant U: Liquid Yes, but the exact prove is lacking The goal is to re-write electron-electron interaction as the exchange of collective degrees of freedom: spin, charge, or pairing fluctuations Γ ω αβ, γδ = U U Π ( ) + (k - p) αδ γβ αδ γβ σ U Π (k - p) 1+ U Π (k - p) αδ σ γβ δαδ δγβ σ σ δ δ bare interaction spin fluctuation exchange charge fluctuation exchange Near a magnetic instability with momentum Q Γ eff (q) U σ αδ σ γβ, 1- U Π (q + Q) U Π (Q) 1

5 Γ eff (q) U 1- σ αδ σ γβ, U Π (q + Q) U Π (Q) 1 Advantage: the effective interaction is momentum dependent and contributes to non-s-wave channels Δ ( θ ) = Δ 0 (cos k x - cos k y) Scalapino, Loh, Hirsh Bickers, Scalapino, Scalettar

6 Pnictides + Δ ( θ ) = Δ 0 (cos k x + cos k y) sign-changing, extended s-wave gap Mazin et al, Graser et al, Gorkov & Barzykin, Kuroki et al. Intra-band repulsion Pair hopping Inter-band forward and back-scattering Γ + s αβ, γδ = u 4 - u 3 ( σ σ -δ δ ) αδ γβ αδ γβ 1 σ αδ σ γβ (u1 + u3) 1- (u + u 1 3 Π (k - p) ) Π (k - p) s-wave bare interaction spin fluctuation exchange

7 Problem: Γ eff (q) U σ αδ σ γβ 1- U Π (q + Q) In general, Π (Q) ~1/E F, hence U cr ~ E F No small parameter Third order Coupling between ph and pp channels Non-RPA diagrams In the ph channel Γ eff (q) U 1- σ αδ σ γβ, U Π (q + Q) U Π (Q) 1 Obtained within RPA, but no proof beyond RPA (or 1 loop RG)

8 . If your theory advocates an instantaneous interaction, does this mean the pairs have no dynamics, or just that the theory has not developed to the extent to address this question? The bare interaction is instantaneous H eff = g (c + α χ (q + Q) = r σ q αδ c δ 1 + ξ ) (c + γ r σ γβ or... c β ) χ (q + Q) The dynamics of χ (the Landau damping) is generated within the theory and in turn affects the dynamics of fermions χ L D = χ (q + Q) d FL 0 q Fermi liquid Σ ' ( ω) = λω, '' Σ ( ω) ω χ ( ω) ξ L ω sf ~ - vfξ g Σ Σ ' '' ( ω) χ ( ω) L Non-Fermi liquid ω ( ω) ω 1-γ 1-γ ω γ > ω, > ω ω ~ g Σ ( ω) χ ( ω) L Fermi gas E < ω, ω γ

9 Fermi Liquid 0 sf => ω ξ - Quantum Critical Non-Fermi Liquid => ω Im Σ(ω) (arb. units) γ =1/ ω ω 1/ ω ω/ω sf

10 ω - sf ξ

11 0 Fermi liquid ω sf - vfξ ~ g Non-Fermi liquid ω ~ Pairing in the Fermi liquid regime is essentially d-wave BCS g Fermi gas E ξ + ξ0 Tc ξ exp( ) ξ In analogy with McMillan formula for phonons T c ~ ω exp[-(1+ λ)/ λ] D No pseudogap

12 0 Fermi liquid ω sf - vfξ ~ g Non-Fermi liquid ω ~ Pairing in non-fermi liquid regime is a new phenomenon Pairing vertex Φ becomes frequency dependent Φ(Ω) Gap equation has non-bcs form g E Φ Φ( ω) 1 ( Ω) = λ π T, λ = ω 1-γ γ γ ω Ω -ω 1+ ( ω / ω ) 1- γ Σ ( ω) ω 1-γ χ L ( ω) ω γ 1+ ω / Σ( ω), soft cutoff This is NOT BCS pairing summing up logarithms leads nowhere There exists a threshold λ cr (γ )

13 This problem is quite generic (not only cuprates) Φ g 1 - γ Φ ( ω ) ( Ω) = d ω 1-γ γ ω Ω - ω 0 She, Zaanen γ =1/ γ =1/3 γ =1/4 Antiferromagnetic QCP Ferromagnetic QCP k F QCP Abanov, A.C., Finkelstein, hot spots Haslinger et al, Millis et al, Bedel et al Ω /3 problem: gauge field, nematic. Krotkov et al, electron-doped γ = γ = +0 (log ω) γ =1 Pairing by near-gapless phonons T ad c = g 3D QCP, Color superconductivity Z=1 pairing problem Allen, Dynes, Carbotte, Marsiglio, Scalapino, Combescot, Maksimov, Bulaevskii, Dolgov,.. Son, Schmalian, A.C. γ = + 0 γ = 1 γ 0.7 pairing in the presence of SDW fermions with Dirac cone dispersion Moon, Sachdev Metzner et al

14 It turns out that for all γ, the coupling (1 + γ)/ is larger than the threshold At QCP T * T/g T/ω McMillan T * T ins T * = 0.05 g at QCP γ =1/ inverse coupling 1 λ ξ 1 1

15 Dome of a pairing instability above QCP g ω sf ξ -

16 Problems: 1. Calculations are performed within Eliashberg approximation, Σ(k, ω) Σ( ω) Valid when bosons are slow compared to fermions Bosons (spin fluctuations) are Landau-damped q typ ~ ω q typ ~ ω Free fermions have, i.e are fast compared to bosons q typ ~ Σ( ω) ~ Dressed fermions have, i.e. are comparable to bosons ω Large N (actual N=, N = infinity makes Eliashberg approximation exact) First order in 1/N: 1 χ (q, ω) η (q + ω ) η =1-1 N Then, the only change is γ 1-1 N Apparently, Eliashberg approximation is OK

17 Problems:. The coupling g is assumed to be smaller than E F ~ v F /a T * = g Ψ ξ T/g T/ω T * = 0.05 g at QCP T γ = 1/ ins T * The larger is g, the larger is T * McMillan inverse coupling λ 1 λ ξ In general, we have two parameters, u = g a v F and λ = u ξ T * = v a F F (u) ( g when u is small) ξ Ψ ξ

18 T* (mev) T * = v a F F ξ (u) v F / a ~1eV u

19 Angle along the Fermi surface u <1, λ = u ξ >1 T* (mev) u ~ g a/v F Hot spot story: Pairing involves only fermions near hot spots T * ~ v a F u ( = 0.05 g) O(u) Gap, Δ u The gap is anisortopic, not cos k x cos k y

20 Strong coupling, u >1 T* (mev) T * ~ vf a 1 u 0.5 J u χq ( Ω) = (q -π ) d-wave attraction 1-16 Ω + ξ + u 3 v a F A tendency towards χ(ω) 1/Ω Balance when T u ~ vf/a At strong coupling, T* scales with the magnetic exchange J

21 Strong coupling, u >1 The whole Fermi surface is involved in the pairing Δ Gap variation along the Fermi surface Angle along the Fermi surface Almost cos kx cos ky d-wave gap (as if the pairing is between nearest neighbors)

22 Strong coupling, u >1 On one hand, the whole Fermi surface is involved in the pairing On the other, the fact that T* does not grow with u restricts relevant fermionic states: ε k vf (k - k F) ~ J << vf/a k - k F ~ (3-4) v F J π π ~ 0.1 << a a d-wave pairing at strong coupling involves fermions in the near vicinity of the Fermi surface

23 Intermediate u = O(1) T* (mev) c b a Mott insulator/ Heisenberg c b a u * T * T max max ~ v ~ 00 F K a Universal pairing scale

24 Robustness of T* max FLEX (similar but not identical to Eliashberg) Monthoux, Scalapino Monthoux, Pines, Eremin, Manske, Bennemann, Schmalian, Dahm, Tewordt. T * ~ ( ) v a F ~ K for u ~ 0.5 CDA, cluster DMFT Maier, Jarrell, Haule, Kotliar, Capone Tremblay, Senechal,. T * ~ 0.01 v a F for u ~ 0.5, T * ~ v a F for u = 0.75 FLEX with experimental inputs T * Scalapino, Dahn, Hinkov, Hanke, Keimer, Fink, Borisenko, Kordyuk, Zabolotny, Buechner ~170 K

25 5. What would your theory predict in regards to collective modes? Is this even an important question? Spin resonance, B1g Raman resonance, Most important is the spin resonance Feedback from a d-wave superconductivity on the pairing boson χ( π, Ω) Ω 1/ res (g ωsf ) ~ ~ ξ -1 χ( Ω) ~ Ω 1 Ω res Ωres Δ The pairing boson becomes a mode (+ a gapped continuum)

26 By itself, the resonance is NOT a fingerprint of spin-mediated pairing, nor it is a glue to a superconductivity What must be observable at strong coupling is how the resonance peak affects the electronic behavior, if the spin-fermion interaction is the dominant one I(ω G )( ) Im ω peak dip hump Δ Δ + Ωres Ω mode ~ mev

27 Dispersion anomalies along the Fermi surface The self-energy The dispersion Norman, AC Antinodal direction the S-shape dispersion ω0 = Δ + Ω res Nodal direction The kink

28 Nodal Antinodal Antinodal The S-shape disappears at Tc Nodal (diagonal)

29 Another role of the resonance mode: at T=0 we have a superconductor with a low-energy mode, Ω res ~ g/ λ << Δ ~ g which is not a fluctuation of the sc order parameter χ( Ω) ~ Ω 1 Ω res attractive at repulsive at Ω < Ω res < Δ Ω > Ωres The pairing gap Δ (T = 0) ~ T * ~ g ( Δ(0)/T * 4) The superconducting stiffness (estimates) ρ s ~ Ω res ~ g/ λ Abanov, AC

30 T * ~ g Ωres T c d-wave SC

31 3. If your theory ignores phonons, can you really get away with that? Do you think phonons are even relevant? 4. What is the spectroscopic signatures predicted for your theory? Is a McMillan-Rowell inversion or related procedure possible for your theory? Is this question meaningful? The effective α F( ω) = Im χ (q, ω) d FS q Above Tc : spin interaction is with the continuum. Norman, AC Van Heumen et al

32 Below Tc mode surely affects optical conductivity YBCO6.95 d ( ω) = dω W 1 ω Re σ ( ω) Theory ( Δ + Ω ) res Δ + Ω res Basov et al, Timusk et al, J. Tu et al.. Δ 30 mev, Ω res 40 mev Abanov et al Carbotte et al

33 Conclusions Effective interaction between low-energy fermions, mediated by a collective degree of freedom Some phenomenology is unavoidable (or RPA) Once we set the model, to get Σ(ω) and the pairing is a legitimate theoretical issue (and not only for the cuprates) T* Universal pairing scale T * max The gap ~ 0.0 v a F Δ(k) Δ (cos k x - cos k y ) u Low-energy collective mode Ω res ~ Δ / λ < Δ

34 T * ~ g Ωres T c d-wave SC

35 THANK YOU

Can superconductivity emerge out of a non Fermi liquid.

Can superconductivity emerge out of a non Fermi liquid. Can superconductivity emerge out of a non Fermi liquid. Andrey Chubukov University of Wisconsin Washington University, January 29, 2003 Superconductivity Kamerling Onnes, 1911 Ideal diamagnetism High Tc

More information

Strength of the spin fluctuation mediated pairing interaction in YBCO 6.6

Strength of the spin fluctuation mediated pairing interaction in YBCO 6.6 Universität Tübingen Lehrstuhl für Theoretische Festkörperphysik Strength of the spin fluctuation mediated pairing interaction in YBCO 6.6 Thomas Dahm Institut für Theoretische Physik Universität Tübingen

More information

Neutron scattering from quantum materials

Neutron scattering from quantum materials Neutron scattering from quantum materials Bernhard Keimer Max Planck Institute for Solid State Research Max Planck UBC UTokyo Center for Quantum Materials Detection of bosonic elementary excitations in

More information

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES studies of cuprates Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Goals of lecture Understand why gaps are important and various ways that gap

More information

arxiv:cond-mat/ v3 [cond-mat.supr-con] 15 Jan 2001

arxiv:cond-mat/ v3 [cond-mat.supr-con] 15 Jan 2001 Europhysics Letters PREPRINT arxiv:cond-mat/000563v3 [cond-mat.supr-con] 5 Jan 200 Quantum-critical superconductivity in underdoped cuprates Ar. Abanov, Andrey V. Chubukov and Jörg Schmalian 2 Department

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Back to the Iron age the physics of Fe-pnictides

Back to the Iron age the physics of Fe-pnictides Back to the Iron age the physics of Fe-pnictides Andrey Chubukov University of Wisconsin Texas A & M, Dec. 4, 2009 Fe-Pnictides: Binary componds of pnictogens A pnictogen an element from the nitrogen group

More information

Quantum criticality of Fermi surfaces

Quantum criticality of Fermi surfaces Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface

More information

Nodal and nodeless superconductivity in Iron-based superconductors

Nodal and nodeless superconductivity in Iron-based superconductors Nodal and nodeless superconductivity in Iron-based superconductors B. Andrei Bernevig Department of Physics Princeton University Minneapolis, 2011 Collaborators: R. Thomale, Yangle Wu (Princeton) J. Hu

More information

Singularites in Fermi liquids and the instability of a ferromagnetic quantum-critical point

Singularites in Fermi liquids and the instability of a ferromagnetic quantum-critical point Singularites in ermi liquids and the instability of a ferromagnetic quantum-critical point Andrey Chubukov Dmitrii Maslov lorida University of Wisconsin Catherine Pepin Jerome Rech SPhT Saclay Dima Kveshchenko

More information

arxiv: v1 [cond-mat.supr-con] 5 Dec 2017

arxiv: v1 [cond-mat.supr-con] 5 Dec 2017 International Journal of Modern Physics B c World Scientific Publishing Company arxiv:1712.01624v1 [cond-mat.supr-con] 5 Dec 2017 How to pin down the pairing interaction for high T c superconductivity

More information

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018 High Tc superconductivity in cuprates: Determination of pairing interaction Han-Yong Choi / SKKU SNU Colloquium May 30 018 It all began with Discovered in 1911 by K Onnes. Liquid He in 1908. Nobel prize

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates arxiv:0905.1096, To appear in New. J. Phys. Erez Berg 1, Steven A. Kivelson 1, Doug J. Scalapino 2 1 Stanford University, 2

More information

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu Quantum criticality in the cuprate superconductors Talk online: sachdev.physics.harvard.edu The cuprate superconductors Destruction of Neel order in the cuprates by electron doping, R. K. Kaul, M. Metlitksi,

More information

Superconductivity from repulsion

Superconductivity from repulsion Superconductivity from repulsion Andrey Chubukov University of Minnesota University of Virginia Feb. 0, 07 Superconductivity: Zero-resistance state of interacting electrons A superconductor expels a magnetic

More information

FROM NODAL LIQUID TO NODAL INSULATOR

FROM NODAL LIQUID TO NODAL INSULATOR FROM NODAL LIQUID TO NODAL INSULATOR Collaborators: Urs Ledermann and Maurice Rice John Hopkinson (Toronto) GORDON, 2004, Oxford Doped Mott insulator? Mott physics: U Antiferro fluctuations: J SC fluctuations

More information

Quantum Melting of Stripes

Quantum Melting of Stripes Quantum Melting of Stripes David Mross and T. Senthil (MIT) D. Mross, TS, PRL 2012 D. Mross, TS, PR B (to appear) Varieties of Stripes Spin, Charge Néel 2π Q c 2π Q s ``Anti-phase stripes, common in La-based

More information

requires going beyond BCS theory to include inelastic scattering In conventional superconductors we use Eliashberg theory to include the electron-

requires going beyond BCS theory to include inelastic scattering In conventional superconductors we use Eliashberg theory to include the electron- MECHANISM requires going beyond BCS theory to include inelastic scattering In conventional superconductors we use Eliashberg theory to include the electron- A serious limitation of BCS theory is that it

More information

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay I- Similarities between phase diagram and quantum critical points Quantum Criticality in 3 Families of Superconductors L. Taillefer,

More information

A Twisted Ladder: relating the Fe superconductors to the high T c cuprates. (Dated: May 7, 2009)

A Twisted Ladder: relating the Fe superconductors to the high T c cuprates. (Dated: May 7, 2009) A Twisted Ladder: relating the Fe superconductors to the high T c cuprates E. Berg 1, S. A. Kivelson 1, and D. J. Scalapino 2 1 Department of Physics, Stanford University, Stanford, CA 94305-4045, USA

More information

Quantum disordering magnetic order in insulators, metals, and superconductors

Quantum disordering magnetic order in insulators, metals, and superconductors Quantum disordering magnetic order in insulators, metals, and superconductors Perimeter Institute, Waterloo, May 29, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Cenke Xu, Harvard arxiv:1004.5431

More information

A brief Introduction of Fe-based SC

A brief Introduction of Fe-based SC Part I: Introduction A brief Introduction of Fe-based SC Yunkyu Bang (Chonnam National Univ., Kwangju, Korea) Lecture 1: Introduction 1. Overview 2. What is sign-changing s-wave gap : +/-s-wave gap Lecture

More information

Quantum criticality of Fermi surfaces in two dimensions

Quantum criticality of Fermi surfaces in two dimensions Quantum criticality of Fermi surfaces in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Yejin Huh, Harvard Max Metlitski, Harvard HARVARD Outline 1. Quantum criticality of Fermi points:

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3 4D-XY Quantum Criticality in Underdoped High-T c cuprates M. Franz University of British Columbia franz@physics.ubc.ca February 22, 2005 In collaboration with: A.P. Iyengar (theory) D.P. Broun, D.A. Bonn

More information

A quantum dimer model for the pseudogap metal

A quantum dimer model for the pseudogap metal A quantum dimer model for the pseudogap metal College de France, Paris March 27, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Andrea Allais Matthias Punk Debanjan Chowdhury (Innsbruck)

More information

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES N.M.Plakida Joint Institute for Nuclear Research, Dubna, Russia CORPES, Dresden, 26.05.2005 Publications and collaborators: N.M. Plakida,

More information

New insights into high-temperature superconductivity

New insights into high-temperature superconductivity New insights into high-temperature superconductivity B. Keimer Max-Planck-Institute for Solid State Research introduction to conventional and unconventional superconductivity empirical approach to quantitative

More information

MOTTNESS AND STRONG COUPLING

MOTTNESS AND STRONG COUPLING MOTTNESS AND STRONG COUPLING ROB LEIGH UNIVERSITY OF ILLINOIS Rutgers University April 2008 based on various papers with Philip Phillips and Ting-Pong Choy PRL 99 (2007) 046404 PRB 77 (2008) 014512 PRB

More information

The underdoped cuprates as fractionalized Fermi liquids (FL*)

The underdoped cuprates as fractionalized Fermi liquids (FL*) The underdoped cuprates as fractionalized Fermi liquids (FL*) R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, Physical Review B 75, 235122 (2007) R. K. Kaul, Y. B. Kim, S. Sachdev, and T.

More information

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity Mike Norman Materials Science Division Argonne National Laboratory & Center for Emergent Superconductivity Physics 3, 86

More information

Temperature crossovers in cuprates

Temperature crossovers in cuprates J. Phys.: Condens. Matter 8 (1996) 10017 10036. Printed in the UK Temperature crossovers in cuprates Andrey V Chubukov, David Pines and Branko P Stojković Department of Physics, University of Wisconsin,

More information

Superconducting glue: are there limits on T c?

Superconducting glue: are there limits on T c? Superconducting glue: are there limits on T c? Oleg V. Dolgov Max Planck Institute for Solid State Research Stuttgart Germany In collaboration with E.G. Maksimov P.N. Lebedev Physical Institute RAS Moscow

More information

Resonating Valence Bond point of view in Graphene

Resonating Valence Bond point of view in Graphene Resonating Valence Bond point of view in Graphene S. A. Jafari Isfahan Univ. of Technology, Isfahan 8456, Iran Nov. 29, Kolkata S. A. Jafari, Isfahan Univ of Tech. RVB view point in graphene /2 OUTLINE

More information

Density-matrix theory for time-resolved dynamics of superconductors in non-equilibrium

Density-matrix theory for time-resolved dynamics of superconductors in non-equilibrium Max Planck Institute for Solid State Research Density-matrix theory for time-resolved dynamics of superconductors in non-equilibrium co-workers and papers: (1) (2) (3) (4) Dirk Manske A. Knorr (TU Berlin),

More information

Dual fermion approach to unconventional superconductivity and spin/charge density wave

Dual fermion approach to unconventional superconductivity and spin/charge density wave June 24, 2014 (ISSP workshop) Dual fermion approach to unconventional superconductivity and spin/charge density wave Junya Otsuki (Tohoku U, Sendai) in collaboration with H. Hafermann (CEA Gif-sur-Yvette,

More information

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals Subir Sachdev sachdev.physics.harvard.edu HARVARD Max Metlitski Erez Berg HARVARD Max Metlitski Erez Berg Sean Hartnoll

More information

A twisted ladder: relating the Fe superconductors to the high-t c. cuprates. Related content. Recent citations

A twisted ladder: relating the Fe superconductors to the high-t c. cuprates. Related content. Recent citations A twisted ladder: relating the Fe superconductors to the high-t c cuprates To cite this article: E Berg et al 2009 New J. Phys. 11 085007 View the article online for updates and enhancements. Related content

More information

Physics of iron-based high temperature superconductors. Abstract

Physics of iron-based high temperature superconductors. Abstract Physics of iron-based high temperature superconductors Yuji Matsuda Department of Physics, Kyoto University, Kyoto 606-8502, Japan Abstract The discovery of high-t c iron pnictide and chalcogenide superconductors

More information

arxiv: v1 [cond-mat.supr-con] 26 Sep 2007

arxiv: v1 [cond-mat.supr-con] 26 Sep 2007 Signatures of non-monotonic d wave gap in electron-doped cuprates Ilya Eremin,, Evelina Tsoncheva 3, and Andrey V. Chubukov 3 Max-Planck Institut für Physik komplexer Systeme, D-87 Dresden, Germany Institute

More information

Chapter 7. Summary and Outlook

Chapter 7. Summary and Outlook Chapter 7 Summary and Outlook In this thesis the coexistence of Density Waves and singlet Superconductivity was analyzed in some detail. As a first step the gap equations for pure DW order were derived

More information

Predicting New BCS Superconductors. Marvin L. Cohen Department of Physics, University of. Lawrence Berkeley Laboratory Berkeley, CA

Predicting New BCS Superconductors. Marvin L. Cohen Department of Physics, University of. Lawrence Berkeley Laboratory Berkeley, CA Predicting New BCS Superconductors Marvin L. Cohen Department of Physics, University of California, and Materials Sciences Division, Lawrence Berkeley Laboratory Berkeley, CA CLASSES OF SUPERCONDUCTORS

More information

Manifesto for a higher T c

Manifesto for a higher T c Manifesto for a higher T c D. N. Basov and Andrey V. Chubukov The term high-temperature superconductor used to refer only to copper-based compounds now, iron-based pnictides have entered the frame. The

More information

Quantum Cluster Methods (CPT/CDMFT)

Quantum Cluster Methods (CPT/CDMFT) Quantum Cluster Methods (CPT/CDMFT) David Sénéchal Département de physique Université de Sherbrooke Sherbrooke (Québec) Canada Autumn School on Correlated Electrons Forschungszentrum Jülich, Sept. 24,

More information

Differential sum rule for the relaxation rate in dirty superconductors

Differential sum rule for the relaxation rate in dirty superconductors Differential sum rule for the relaxation rate in dirty superconductors Andrey V. Chubukov, Ar. Abanov, and D. N. Basov 3 Department of Physics, University of Wisconsin, Madison, Wisconsin 5376, USA Los

More information

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Phase diagram

More information

Optical conductivity and kinetic energy of the superconducting state: A cluster dynamical mean field study

Optical conductivity and kinetic energy of the superconducting state: A cluster dynamical mean field study January 27 EPL, 77 (27) 277 doi: 1.129/295-575/77/277 www.epljournal.org Optical conductivity and kinetic energy of the superconducting state: A cluster dynamical mean field study K. Haule and G. Kotliar

More information

Emergent Frontiers in Quantum Materials:

Emergent Frontiers in Quantum Materials: Emergent Frontiers in Quantum Materials: High Temperature superconductivity and Topological Phases Jiun-Haw Chu University of Washington The nature of the problem in Condensed Matter Physics Consider a

More information

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions Niels Bohr Institute, Copenhagen, May 6, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski,

More information

Workshop on Principles and Design of Strongly Correlated Electronic Systems August 2010

Workshop on Principles and Design of Strongly Correlated Electronic Systems August 2010 2157-6 Workshop on Principles and Design of Strongly Correlated Electronic Systems 2-13 August 2010 Selection of Magnetic Order and Magnetic Excitations in the SDW State of Iron-based Superconductors Ilya

More information

Let There Be Topological Superconductors

Let There Be Topological Superconductors Let There Be Topological Superconductors K K d Γ ~q c µ arxiv:1606.00857 arxiv:1603.02692 Eun-Ah Kim (Cornell) Boulder 7.21-22.2016 Q. Topological Superconductor material? Bulk 1D proximity 2D proximity?

More information

André-Marie Tremblay

André-Marie Tremblay André-Marie Tremblay CENTRE DE RECHERCHE SUR LES PROPRIÉTÉS ÉLECTRONIQUES DE MATÉRIAUX AVANCÉS Sponsors: Pairing vs antiferromagnetism in the cuprates 1. Motivation, model 2. The standard approach : -

More information

Quantum critical metals and their instabilities. Srinivas Raghu (Stanford)

Quantum critical metals and their instabilities. Srinivas Raghu (Stanford) Quantum critical metals and their instabilities Srinivas Raghu (Stanford) Collaborators and References R. Mahajan, D. Ramirez, S. Kachru, and SR, PRB 88, 115116 (2013). A. Liam Fitzpatrick, S. Kachru,

More information

Imaginary part of the infrared conductivity of a d x 2 y 2 superconductor

Imaginary part of the infrared conductivity of a d x 2 y 2 superconductor PHYSICAL REVIEW B VOLUME 54, NUMBER 2 JULY 996-II Imaginary part of the infrared conductivity of a d x 2 y 2 superconductor C. Jiang, E. Schachinger, J. P. Carbotte, D. Basov, T. Timusk Department of Physics

More information

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors?

More information

Quantum Monte Carlo investigations of correlated electron systems, present and future. Zi Yang Meng ( 孟子杨 )

Quantum Monte Carlo investigations of correlated electron systems, present and future. Zi Yang Meng ( 孟子杨 ) Quantum Monte Carlo investigations of correlated electron systems, present and future Zi Yang Meng ( 孟子杨 ) http://ziyangmeng.iphy.ac.cn Collaborators Xiao Yan Xu Yoni Schattner Zi Hong Liu Erez Berg Chuang

More information

Resistivity studies in magnetic materials. Makariy A. Tanatar

Resistivity studies in magnetic materials. Makariy A. Tanatar Resistivity studies in magnetic materials 590B Makariy A. Tanatar November 30, 2018 Classical examples Quantum criticality Nematicity Density waves: nesting Classics: resistivity anomaly at ferromagnetic

More information

Comparison of the in- and out-of-plane charge dynamics in YBa 2 Cu 3 O 6.95

Comparison of the in- and out-of-plane charge dynamics in YBa 2 Cu 3 O 6.95 PHYSICAL REVIEW B, VOLUME 64, 094501 Comparison of the in- and out-of-plane charge dynamics in YBa Cu 3 O 6.95 E. Schachinger Institut für Theoretische Physik, Technische Universität Graz, A-8010 Graz,

More information

More a progress report than a talk

More a progress report than a talk Superconductivity and Magnetism in novel Fe-based superconductors Ilya Eremin 1,2 and Maxim Korshunov 1 1 - Max-Planck Institut für Physik komplexer Systeme, Dresden, 2- Institut für Theoretische Physik,

More information

High Temperature Superconductivity - After 20 years, where are we at?

High Temperature Superconductivity - After 20 years, where are we at? High Temperature Superconductivity - After 20 years, where are we at? Michael Norman Materials Science Division Argonne National Laboratory Norman and Pepin, Rep. Prog. Phys. (2003) Norman, Pines, and

More information

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford)

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford) Wilsonian and large N theories of quantum critical metals Srinivas Raghu (Stanford) Collaborators and References R. Mahajan, D. Ramirez, S. Kachru, and SR, PRB 88, 115116 (2013). A. Liam Fitzpatrick, S.

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 )

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 ) Revealing fermionic quantum criticality from new Monte Carlo techniques Zi Yang Meng ( 孟子杨 ) http://ziyangmeng.iphy.ac.cn Collaborators and References Xiao Yan Xu Zi Hong Liu Chuang Chen Gao Pei Pan Yang

More information

Spin and orbital freezing in unconventional superconductors

Spin and orbital freezing in unconventional superconductors Spin and orbital freezing in unconventional superconductors Philipp Werner University of Fribourg Kyoto, November 2017 Spin and orbital freezing in unconventional superconductors In collaboration with:

More information

Superconductivity by kinetic energy saving?

Superconductivity by kinetic energy saving? Superconductivity by kinetic energy saving? D. van der Marel, H. J. A. Molegraaf, C. Presura and I. Santoso Chapter in "Concepts in electron correlation", Edit e d by A. He ws on and V. Zlat ic, Kluwe

More information

Examples of Lifshitz topological transition in interacting fermionic systems

Examples of Lifshitz topological transition in interacting fermionic systems Examples of Lifshitz topological transition in interacting fermionic systems Joseph Betouras (Loughborough U. Work in collaboration with: Sergey Slizovskiy (Loughborough, Sam Carr (Karlsruhe/Kent and Jorge

More information

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Jaeger, Orr, Goldman, Kuper (1986) Dissipation driven QCP s Haviland, Liu, and Goldman Phys. Rev.

More information

Demystifying the Strange Metal in High-temperature. Superconductors: Composite Excitations

Demystifying the Strange Metal in High-temperature. Superconductors: Composite Excitations Demystifying the Strange Metal in High-temperature Superconductors: Composite Excitations Thanks to: T.-P. Choy, R. G. Leigh, S. Chakraborty, S. Hong PRL, 99, 46404 (2007); PRB, 77, 14512 (2008); ibid,

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

Magnetism in correlated-electron materials

Magnetism in correlated-electron materials Magnetism in correlated-electron materials B. Keimer Max-Planck-Institute for Solid State Research focus on delocalized electrons in metals and superconductors localized electrons: Hinkov talk outline

More information

FRG approach to interacting fermions with partial bosonization: from weak to strong coupling

FRG approach to interacting fermions with partial bosonization: from weak to strong coupling FRG approach to interacting fermions with partial bosonization: from weak to strong coupling Talk at conference ERG08, Heidelberg, June 30, 2008 Peter Kopietz, Universität Frankfurt collaborators: Lorenz

More information

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering DE-FG02-08ER46544 Overview

More information

File name: Supplementary Information Description: Supplementary Notes, Supplementary Figures and Supplementary References

File name: Supplementary Information Description: Supplementary Notes, Supplementary Figures and Supplementary References File name: Supplementary Information Description: Supplementary Notes, Supplementary Figures and Supplementary References File name: Peer Review File Description: Supplementary Note 1. CALCULATION OF THE

More information

Spin correlations in YBa 2 Cu 3 O 6+x bulk vs. interface

Spin correlations in YBa 2 Cu 3 O 6+x bulk vs. interface Spin correlations in YBa 2 Cu 3 O 6+x bulk vs. interface B. Keimer Max-Planck-Institute for Solid State Research outline new quantum states in bulk? yes, good evidence for electronic nematic phase new

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Spontaneous symmetry breaking in fermion systems with functional RG

Spontaneous symmetry breaking in fermion systems with functional RG Spontaneous symmetry breaking in fermion systems with functional RG Andreas Eberlein and Walter Metzner MPI for Solid State Research, Stuttgart Lefkada, September 24 A. Eberlein and W. Metzner Spontaneous

More information

Relativistic magnetotransport in graphene

Relativistic magnetotransport in graphene Relativistic magnetotransport in graphene Markus Müller in collaboration with Lars Fritz (Harvard) Subir Sachdev (Harvard) Jörg Schmalian (Iowa) Landau Memorial Conference June 6, 008 Outline Relativistic

More information

Pairing in Nuclear and Neutron Matter Screening effects

Pairing in Nuclear and Neutron Matter Screening effects Pairing Degrees of Freedom in Nuclei and Nuclear Medium Seattle, Nov. 14-17, 2005 Outline: Pairing in Nuclear and Neutron Matter Screening effects U. Lombardo pairing due to the nuclear (realistic) interaction

More information

Inelastic light scattering and the correlated metal-insulator transition

Inelastic light scattering and the correlated metal-insulator transition Inelastic light scattering and the correlated metal-insulator transition Jim Freericks (Georgetown University) Tom Devereaux (University of Waterloo) Ralf Bulla (University of Augsburg) Funding: National

More information

arxiv:cond-mat/ v1 4 Aug 2003

arxiv:cond-mat/ v1 4 Aug 2003 Conductivity of thermally fluctuating superconductors in two dimensions Subir Sachdev arxiv:cond-mat/0308063 v1 4 Aug 2003 Abstract Department of Physics, Yale University, P.O. Box 208120, New Haven CT

More information

Mean field theories of quantum spin glasses

Mean field theories of quantum spin glasses Mean field theories of quantum spin glasses Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Talk online: Sachdev Classical Sherrington-Kirkpatrick model H = JS S i j ij i j J ij : a

More information

Anomalous Scaling Relations & Pairing Mechanism of Fe-based SC

Anomalous Scaling Relations & Pairing Mechanism of Fe-based SC Part III: SH jump & CE Anomalous Scaling Relations & Pairing Mechanism of Fe-based SC Yunkyu Bang (Chonnam National Univ., Kwangju, S Korea) G R Stewart (Univ. of Florida, Gainesville, USA) Refs: New J

More information

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Origin of High-Temperature Superconductivity Nature s great puzzle C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Basic characteristics of superconductors: Perfect electrical conduction

More information

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates HARVARD Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates Talk online: sachdev.physics.harvard.edu HARVARD Where is the quantum critical point

More information

AdS/CFT and condensed matter

AdS/CFT and condensed matter AdS/CFT and condensed matter Reviews: arxiv:0907.0008 arxiv:0901.4103 arxiv:0810.3005 (with Markus Mueller) Talk online: sachdev.physics.harvard.edu HARVARD Lars Fritz, Harvard Victor Galitski, Maryland

More information

Strongly Correlated Systems:

Strongly Correlated Systems: M.N.Kiselev Strongly Correlated Systems: High Temperature Superconductors Heavy Fermion Compounds Organic materials 1 Strongly Correlated Systems: High Temperature Superconductors 2 Superconductivity:

More information

Quantum criticality and the phase diagram of the cuprates

Quantum criticality and the phase diagram of the cuprates Quantum criticality and the phase diagram of the cuprates Talk online: sachdev.physics.harvard.edu HARVARD Victor Galitski, Maryland Ribhu Kaul, Harvard Kentucky Max Metlitski, Harvard Eun Gook Moon, Harvard

More information

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl Magnetism, Bad Metals and Superconductivity: Iron Pnictides and Beyond September 11, 2014 Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises Gertrud Zwicknagl Institut

More information

Magnetism and Superconductivity in Decorated Lattices

Magnetism and Superconductivity in Decorated Lattices Magnetism and Superconductivity in Decorated Lattices Mott Insulators and Antiferromagnetism- The Hubbard Hamiltonian Illustration: The Square Lattice Bipartite doesn t mean N A = N B : The Lieb Lattice

More information

Luttinger Liquid at the Edge of a Graphene Vacuum

Luttinger Liquid at the Edge of a Graphene Vacuum Luttinger Liquid at the Edge of a Graphene Vacuum H.A. Fertig, Indiana University Luis Brey, CSIC, Madrid I. Introduction: Graphene Edge States (Non-Interacting) II. III. Quantum Hall Ferromagnetism and

More information

Holographic superconductors

Holographic superconductors Holographic superconductors Sean Hartnoll Harvard University Work in collaboration with Chris Herzog and Gary Horowitz : 0801.1693, 0810.1563. Frederik Denef : 0901.1160. Frederik Denef and Subir Sachdev

More information

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds Twelfth Arnold Sommerfeld Lecture Series January 31 - February 3, 2012 sachdev.physics.harvard.edu HARVARD Max

More information

The bosonic Kondo effect:

The bosonic Kondo effect: The bosonic Kondo effect: probing spin liquids and multicomponent cold gases Serge Florens Institut für Theorie der Kondensierten Materie (Karlsruhe) with: Lars Fritz, ITKM (Karlsruhe) Matthias Vojta,

More information

Conference on Superconductor-Insulator Transitions May 2009

Conference on Superconductor-Insulator Transitions May 2009 2035-10 Conference on Superconductor-Insulator Transitions 18-23 May 2009 Phase transitions in strongly disordered magnets and superconductors on Bethe lattice L. Ioffe Rutgers, the State University of

More information

The High T c Superconductors: BCS or Not BCS?

The High T c Superconductors: BCS or Not BCS? The University of Illinois at Chicago The High T c Superconductors: BCS or Not BCS? Does BCS theory work for the high temperature superconductors? We take a look at the electronic excitations using angle

More information

Mott collapse and statistical quantum criticality

Mott collapse and statistical quantum criticality Mott collapse and statistical quantum criticality Jan Zaanen J. Zaanen and B.J. Overbosch, arxiv: 0911.4070 (Phil.Trans.Roy.Soc. A, in press) 1 2 Who to blame 3 Plan 1. The idea of Mott collapse 2. Mottness

More information

Mott physics: from basic concepts to iron superconductors

Mott physics: from basic concepts to iron superconductors Mott physics: from basic concepts to iron superconductors E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Outline Mott physics: Basic concepts (single orbital & half filling) - Mott

More information

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke BCS-BEC Crossover Hauptseminar: Physik der kalten Gase Robin Wanke Outline Motivation Cold fermions BCS-Theory Gap equation Feshbach resonance Pairing BEC of molecules BCS-BEC-crossover Conclusion 2 Motivation

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information