The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions

Size: px
Start display at page:

Download "The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions"

Transcription

1 The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions Niels Bohr Institute, Copenhagen, May 6, 2010 Talk online: sachdev.physics.harvard.edu HARVARD

2 Max Metlitski, Harvard arxiv: Eun Gook Moon, Harvard Phys. Rev. B 80, (2009) HARVARD

3 Outline 1. Phase diagram of the cuprates Quantum criticality of the competition between antiferromagnetism and superconductivity 2. Theory of spin density wave ordering in a metal Strong-coupling in d=2 3. Instabilities near SDW critical point d-wave pairing and bond density wave

4 Outline 1. Phase diagram of the cuprates Quantum criticality of the competition between antiferromagnetism and superconductivity 2. Theory of spin density wave ordering in a metal Strong-coupling in d=2 3. Instabilities near SDW critical point d-wave pairing and bond density wave

5 Central ingredients in cuprate phase diagram: antiferromagnetism, superconductivity, and change in Fermi surface Γ Γ

6 d-wave Antiferromagnetism superconductivity Fermi surface

7 d-wave Antiferromagnetism superconductivity Fermi surface

8 Fermi surface+antiferromagnetism Γ Hole states occupied Electron states occupied + Γ The electron spin polarization obeys S(r, τ) = ϕ (r, τ)e ik r where K is the ordering wavevector.

9 Fermi surfaces in electron- and hole-doped cuprates Γ Hole states occupied Electron states occupied Effective Hamiltonian for quasiparticles: Γ H 0 = i<j t ij c iα c iα k ε k c kα c kα with t ij non-zero for first, second and third neighbor, leads to satisfactory agreement with experiments. The area of the occupied electron states, A e, from Luttinger s theory is A e = 2π 2 (1 p) 2π 2 (1 + x) for hole-doping p for electron-doping x The area of the occupied hole states, A h, which form a closed Fermi surface and so appear in quantum oscillation experiments is A h =4π 2 A e.

10 Spin density wave theory In the presence of spin density wave order, ϕ at wavevector K = (π, π), we have an additional term which mixes electron states with momentum separated by K H sdw = ϕ c k,α σ αβ c k+k,β k,α,β where σ are the Pauli matrices. The electron dispersions obtained by diagonalizing H 0 + H sdw for ϕ (0, 0, 1) are E k± = ε k + ε k+k 2 ± εk ε k+k 2 + ϕ 2 This leads to the Fermi surfaces shown in the following slides for electron and hole doping.

11 Hole-doped cuprates Increasing SDW order Γ Γ Γ Γ Hole pockets Electron pockets S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

12 Hole-doped cuprates Increasing SDW order Γ Γ Γ Γ Hole pockets Electron pockets S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

13 Hole-doped cuprates Increasing SDW order Γ Γ Γ Γ Hole pockets Electron pockets Hot spots S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

14 Hole-doped cuprates Increasing SDW order Γ Hole pockets Γ Γ Γ Hole pockets Electron pockets Hot spots Fermi surface breaks up at hot spots into electron and hole pockets S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

15 Hole-doped cuprates Increasing SDW order Γ Γ Γ Γ Hole pockets Electron pockets Hot spots Fermi surface breaks up at hot spots into electron and hole pockets S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

16 Evidence for small Fermi pockets Fermi liquid behaviour in an underdoped high Tc superconductor Suchitra E. Sebastian, N. Harrison, M. M. Altarawneh, Ruixing Liang, D. A. Bonn, W. N. Hardy, and G. G. Lonzarich arxiv:

17 Theory of quantum criticality in the cuprates T * Fluctuating Fermi pockets Strange Metal Large Fermi surface ncreasing SDW Spin density wave (SDW) Underlying SDW ordering quantum critical point in metal at x = x m

18 d-wave Antiferromagnetism superconductivity Fermi surface

19 Spin density wave d-wave superconductivity Fermi surface

20 Spin density wave d-wave superconductivity Fermi surface

21 Theory of quantum criticality in the cuprates T * Fluctuating Fermi pockets Strange Metal Large Fermi surface ncreasing SDW Spin density wave (SDW) Underlying SDW ordering quantum critical point in metal at x = x m

22 Theory of quantum criticality in the cuprates T * Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface d-wave superconductor Spin density wave (SDW) Onset of d-wave superconductivity hides the critical point x = x m

23 Theory of quantum criticality in the cuprates T * Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, (2001). d-wave superconductor E. G. Moon and S. Sachdev, Phy. Rev. B 80, (2009) Spin density wave (SDW) Competition between SDW order and superconductivity moves the actual quantum critical point to x = x s <x m.

24 Theory of quantum criticality in the cuprates T * Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, (2001). d-wave superconductor E. G. Moon and S. Sachdev, Phy. Rev. B 80, (2009) Spin density wave (SDW) Competition between SDW order and superconductivity moves the actual quantum critical point to x = x s <x m.

25 Theory of quantum criticality in the cuprates T * Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, (2001). Thermally fluctuating SDW Magnetic quantum criticality Spin gap d-wave superconductor E. G. Moon and S. Sachdev, Phy. Rev. B 80, (2009) Spin density wave (SDW) Competition between SDW order and superconductivity moves the actual quantum critical point to x = x s <x m.

26 Theory of quantum criticality in the cuprates T * Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface V. Galitski and S. Sachdev, Phys. Rev. B 79, (2009). Thermally fluctuating SDW Magnetic quantum criticality Spin gap d-wave superconductor E. G. Moon and S. Sachdev, Phys. Rev. B 80, (2009) Spin density wave (SDW) Physics of competition: d-wave SC and SDW eat up same pieces of the large Fermi surface.

27 T T * Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface Thermally fluctuating SDW Magnetic quantum criticality Spin gap d-wave SC

28 T T * Fluctuating, Small Fermi pockets paired Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface T sdw d-wave SC SC+ SDW SC SDW (Small Fermi pockets) H M "Normal" (Large Fermi surface)

29 T T * Fluctuating, Small Fermi pockets paired Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface T sdw d-wave SC SC+ SDW SC Quantum oscillations SDW (Small Fermi pockets) M H "Normal" (Large Fermi surface)

30 J. Chang, Ch. Niedermayer, R. Gilardi, N.B. Christensen, H.M. Ronnow, D.F. McMorrow, M. Ay, J. Stahn, O. Sobolev, A. Hiess, S. Pailhes, C. Baines, N. Momono, M. Oda, M. Ido, and J. Mesot, Physical Review B 78, (2008). J. Chang, N. B. Christensen, Ch. Niedermayer, K. Lefmann, H. M. Roennow, D. F. McMorrow, A. Schneidewind, P. Link, A. Hiess, M. Boehm, R. Mottl, S. Pailhes, N. Momono, M. Oda, M. Ido, and J. Mesot, Phys. Rev. Lett. 102, (2009).

31 T T * Fluctuating, Small Fermi pockets paired Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface T sdw d-wave SC SC+ SDW SC SDW (Small Fermi pockets) H M "Normal" (Large Fermi surface)

32 Similar phase diagram for CeRhIn5 G. Knebel, D. Aoki, and J. Flouquet, arxiv:

33 Similar phase diagram for the pnictides Ort Tet Ishida, Nakai, and Hosono arxiv: v1 50 AFM / Ort 0 SC S. Nandi, M. G. Kim, A. Kreyssig, R. M. Fernandes, D. K. Pratt, A. Thaler, N. Ni, S. L. Bud'ko, P. C. Canfield, J. Schmalian, R. J. McQueeney, A. I. Goldman, arxiv:

34 Outline 1. Phase diagram of the cuprates Quantum criticality of the competition between antiferromagnetism and superconductivity 2. Theory of spin density wave ordering in a metal Strong-coupling in d=2 3. Instabilities near SDW critical point d-wave pairing and bond density wave

35 Outline 1. Phase diagram of the cuprates Quantum criticality of the competition between antiferromagnetism and superconductivity 2. Theory of spin density wave ordering in a metal Strong-coupling in d=2 3. Instabilities near SDW critical point d-wave pairing and bond density wave

36 T T * Fluctuating, Small Fermi pockets paired Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface T sdw d-wave SC SC+ SDW SC SDW (Small Fermi pockets) H M "Normal" (Large Fermi surface)

37 Theory of quantum criticality in the cuprates T * Fluctuating Fermi pockets Strange Metal Large Fermi surface ncreasing SDW Spin density wave (SDW) Underlying SDW ordering quantum critical point in metal at x = x m

38 Hole-doped cuprates Increasing SDW order Γ Γ Γ Γ Hole pockets Electron pockets Large Fermi surface breaks up into electron and hole pockets S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

39 Hole-doped cuprates Increasing SDW order Γ Γ Γ ϕ Γ Hole pockets Electron pockets ϕ fluctuations act on the large Fermi surface S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

40 Start from the spin-fermion model Z = Dc α Dϕ exp ( S) S = dτ k λ c kα dτ i τ ε k c kα c iα ϕ i σ αβ c iβ e ik r i + dτd 2 r 1 2 ( r ϕ ) 2 ζ + 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4

41 =3 =2 =4 =1 Low energy fermions ψ 1α, ψ 2α =1,...,4 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α v =1 1 =(v x,v y ), v =1 2 =( v x,v y )

42 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α v 1 v 2 ψ 1 fermions occupied ψ 2 fermions occupied

43 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α v 1 v 2 Hot spot Cold Fermi surfaces

44 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4

45 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ Yukawa coupling: L c = λϕ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 ψ 1α σ αβψ2β + ψ 2α σ αβψ1β

46 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: Hertz theory L ϕ = 1 2 ( r ϕ ) 2 + ζ Yukawa coupling: L c = λϕ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 ψ 1α σ αβψ2β + ψ 2α σ αβψ1β Integrate out fermions and obtain non-local corrections to L ϕ L ϕ = 1 2 ϕ 2 q 2 + γ ω /2 ; γ = 2 πv x v y Exponent z = 2 and mean-field criticality (upto logarithms)

47 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ Yukawa coupling: L c = λϕ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 ψ 1α σ αβψ2β + ψ 2α σ αβψ1β Integrate out fermions and obtain non-local corrections to L ϕ L ϕ = 1 2 ϕ 2 q 2 + γ ω /2 ; γ = 2 πv x v y Exponent z = 2 and mean-field criticality (upto logarithms) OK in d =3, but higher order terms contain an infinite number of marginal couplings in d =2 Hertz theory Ar. Abanov and A.V. Chubukov, Phys. Rev. Lett. 93, (2004).

48 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 Yukawa coupling: L c = λϕ ψ 1α σ αβψ2β + ψ 2α σ αβψ1β Perform RG on both fermions and ϕ, using a local field theory.

49 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ Yukawa coupling: L c = λϕ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 ψ 1α σ αβψ2β + ψ 2α σ αβψ1β Under the rescaling x = xe, τ = τe z, the spatial gradients are fixed if the fields transform as ϕ = e (d+z 2)/2 ϕ ; ψ = e (d+z 1)/2 ψ. Then the Yukawa coupling transforms as λ = e (4 d z)/2 λ For d = 2, with z = 2 the Yukawa coupling is invariant, and the bare time-derivative terms ζ, ζ are irrelevant.

50 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 Yukawa coupling: L c = ϕ ψ 1α σ αβψ2β + ψ 2α σ αβψ1β With z = 2 scaling, ζ is irrelevant. So we take ζ 0 ( watch for dangerous irrelevancy).

51 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 Yukawa coupling: L c = ϕ ψ 1α σ αβψ2β + ψ 2α σ αβψ1β Set ϕ wavefunction renormalization by keeping co-efficient of ( r ϕ ) 2 fixed (as usual).

52 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 Yukawa coupling: L c = ϕ ψ 1α σ αβψ2β + ψ 2α σ αβψ1β Set fermion wavefunction renormalization by keeping Yukawa coupling fixed. Y. Huh and S. Sachdev, Phys. Rev. B 78, (2008).

53 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 Yukawa coupling: L c = ϕ ψ 1α σ αβψ2β + ψ 2α σ αβψ1β We find consistent two-loop RG factors, as ζ 0, for the velocities v x, v y, and the wavefunction renormalizations. Consistency check: the expression for the boson damping constant, γ = 2 πv x v y, is preserved under RG.

54 RG-improved Migdal-Eliashberg theory α = v y /v x 0 logarithmically in the infrared. Dynamical Nesting v 1 v 2 Bare Fermi surface

55 RG-improved Migdal-Eliashberg theory α = v y /v x 0 logarithmically in the infrared. Dynamical Nesting Dressed Fermi surface

56 RG-improved Migdal-Eliashberg theory α = v y /v x 0 logarithmically in the infrared. Dynamical Nesting Bare Fermi surface

57 RG-improved Migdal-Eliashberg theory α = v y /v x 0 logarithmically in the infrared. Dynamical Nesting Dressed Fermi surface

58 RG-improved Migdal-Eliashberg theory α = v y /v x 0 logarithmically in the infrared. In ϕ SDW fluctuations, characteristic q and ω scale as q ω 1/2 exp 3 64π 2 ln(1/ω) N 3 However, 1/N expansion cannot be trusted in the asymptotic regime..

59 Outline 1. Phase diagram of the cuprates Quantum criticality of the competition between antiferromagnetism and superconductivity 2. Theory of spin density wave ordering in a metal Strong-coupling in d=2 3. Instabilities near SDW critical point d-wave pairing and bond density wave

60 Outline 1. Phase diagram of the cuprates Quantum criticality of the competition between antiferromagnetism and superconductivity 2. Theory of spin density wave ordering in a metal Strong-coupling in d=2 3. Instabilities near SDW critical point d-wave pairing and bond density wave

61 =3 =2 =4 =1 Low energy fermions ψ 1α, ψ 2α =1,...,4

62 ψ 3 2 Hot spots have strong instability to d-wave pairing near SDW critical point. This instability is ψ 3 1 stronger than the BCS instability of a Fermi liquid. Pairing order parameter: ε αβ ψ 3 1αψ 1 1β ψ 3 2αψ 1 2β

63 + ϕ ψ 3 1 ψ 3 2 ψ 3 1 ψ 3 2 ψ 3 1 d-wave Cooper pairing instability in particle-particle channel

64 Emergent Pseudospin symmetry Continuum theory of hotspots in invariant under: ψ ψ U ψ ψ where U are arbitrary SU(2) matrices which can be different on different hotspots.

65 + ϕ ψ 3 1 ψ 3 2 ψ 3 1 ψ 3 2 ψ 3 1 d-wave Cooper pairing instability in particle-particle channel

66 + ϕ ψ 3 1 ψ 3 2 ψ 3 1 ψ 3 2 ψ 3 1 Bond density wave (with local Ising-nematic order) instability in particle-hole channel

67 ψ 3 2 d-wave pairing has a partner instability in the particle-hole channel ψ 3 1 Density-wave order parameter: ψ 3 1α ψ1 1α ψ 3 2α ψ1 2α

68 ψ 3 2 ψ 3 1

69 ψ 3 2 Q ψ 3 1 ψ 3 1 Q ψ 3 2 Single ordering wavevector Q: c k Q/2,α c k+q/2,α = Φ(cos k x cos k y )

70 1 Bond density measures amplitude for electrons to be in spin-singlet valence bond: VBS order 1 No modulations on sites. Modulated bond-density wave with local Ising-nematic ordering: c k Q/2,α c k+q/2,α = Φ(cos k x cos k y )

71 1 Bond density measures amplitude for electrons to be in spin-singlet valence bond: VBS order 1 No modulations on sites. Modulated bond-density wave with local Ising-nematic ordering: c k Q/2,α c k+q/2,α = Φ(cos k x cos k y )

72 STM measurements of Z(r), the energy asymmetry in density of states in Bi 2 Sr 2 CaCu 2 O 8+δ. M. J. Lawler, K. Fujita, Jhinhwan Lee, A. R. Schmidt, Y. Kohsaka, Chung Koo Kim, H. Eisaki, S. Uchida, J. C. Davis, J. P. Sethna, and Eun-Ah Kim, preprint

73 STM measurements of Z(r), the energy asymmetry in density of states in Bi 2 Sr 2 CaCu 2 O 8+δ. M. J. Lawler, K. Fujita, Jhinhwan Lee, A. R. Schmidt, Y. Kohsaka, Chung Koo Kim, H. Eisaki, S. Uchida, J. C. Davis, J. P. Sethna, and Eun-Ah Kim, preprint A C D B

74 STM measurements of Z(r), the energy asymmetry in density of states in Bi 2 Sr 2 CaCu 2 O 8+δ. M. J. Lawler, K. Fujita, Jhinhwan Lee, A. R. Schmidt, Y. Kohsaka, Chung Koo Kim, H. Eisaki, S. Uchida, J. C. Davis, J. P. Sethna, and Eun-Ah Kim, preprint A C D B Strong anisotropy of electronic states between x and y directions: Electronic Ising-nematic order

75 Conclusions Identified quantum criticality in cuprate superconductors with a critical point at optimal doping associated with onset of spin density wave order in a metal Elusive optimal doping quantum critical point has been hiding in plain sight. It is shifted to lower doping by the onset of superconductivity

76 Conclusions Theory for the onset of spin density wave in metals is strongly coupled in two dimensions For the cuprate Fermi surface, there are strong instabilities near the quantum critical point to d-wave pairing and bond density waves with local Ising-nematic ordering

Quantum disordering magnetic order in insulators, metals, and superconductors

Quantum disordering magnetic order in insulators, metals, and superconductors Quantum disordering magnetic order in insulators, metals, and superconductors Perimeter Institute, Waterloo, May 29, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Cenke Xu, Harvard arxiv:1004.5431

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Saturday, April 3, 2010

Saturday, April 3, 2010 Phys. Rev. Lett. 1990 Superfluid-insulator transition Ultracold 87 Rb atoms - bosons M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). T σ = 4e2 h Σ Quantum Σ, auniversalnumber.

More information

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu Quantum criticality in the cuprate superconductors Talk online: sachdev.physics.harvard.edu The cuprate superconductors Destruction of Neel order in the cuprates by electron doping, R. K. Kaul, M. Metlitksi,

More information

Quantum criticality of Fermi surfaces in two dimensions

Quantum criticality of Fermi surfaces in two dimensions Quantum criticality of Fermi surfaces in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Yejin Huh, Harvard Max Metlitski, Harvard HARVARD Outline 1. Quantum criticality of Fermi points:

More information

Electronic quasiparticles and competing orders in the cuprate superconductors

Electronic quasiparticles and competing orders in the cuprate superconductors Electronic quasiparticles and competing orders in the cuprate superconductors Andrea Pelissetto Rome Subir Sachdev Ettore Vicari Pisa Yejin Huh Harvard Harvard Gapless nodal quasiparticles in d-wave superconductors

More information

Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors

Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors Talk online: sachdev.physics.harvard.edu HARVARD Frederik Denef, Harvard Max Metlitski, Harvard Sean Hartnoll, Harvard Christopher

More information

Quantum criticality of Fermi surfaces

Quantum criticality of Fermi surfaces Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface

More information

The phase diagrams of the high temperature superconductors

The phase diagrams of the high temperature superconductors The phase diagrams of the high temperature superconductors Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski, Harvard Eun Gook Moon, Harvard HARVARD The cuprate superconductors Square lattice

More information

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates HARVARD Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates Talk online: sachdev.physics.harvard.edu HARVARD Where is the quantum critical point

More information

Quantum criticality and the phase diagram of the cuprates

Quantum criticality and the phase diagram of the cuprates Quantum criticality and the phase diagram of the cuprates Talk online: sachdev.physics.harvard.edu HARVARD Victor Galitski, Maryland Ribhu Kaul, Harvard Kentucky Max Metlitski, Harvard Eun Gook Moon, Harvard

More information

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals Subir Sachdev sachdev.physics.harvard.edu HARVARD Max Metlitski Erez Berg HARVARD Max Metlitski Erez Berg Sean Hartnoll

More information

AdS/CFT and condensed matter

AdS/CFT and condensed matter AdS/CFT and condensed matter Reviews: arxiv:0907.0008 arxiv:0901.4103 arxiv:0810.3005 (with Markus Mueller) Talk online: sachdev.physics.harvard.edu HARVARD Lars Fritz, Harvard Victor Galitski, Maryland

More information

The underdoped cuprates as fractionalized Fermi liquids (FL*)

The underdoped cuprates as fractionalized Fermi liquids (FL*) The underdoped cuprates as fractionalized Fermi liquids (FL*) R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, Physical Review B 75, 235122 (2007) R. K. Kaul, Y. B. Kim, S. Sachdev, and T.

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds Twelfth Arnold Sommerfeld Lecture Series January 31 - February 3, 2012 sachdev.physics.harvard.edu HARVARD Max

More information

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability Subir Sachdev sachdev.physics.harvard.edu HARVARD y x Fermi surface with full square lattice symmetry y x Spontaneous

More information

A quantum dimer model for the pseudogap metal

A quantum dimer model for the pseudogap metal A quantum dimer model for the pseudogap metal College de France, Paris March 27, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Andrea Allais Matthias Punk Debanjan Chowdhury (Innsbruck)

More information

Metals without quasiparticles

Metals without quasiparticles Metals without quasiparticles A. Review of Fermi liquid theory B. A non-fermi liquid: the Ising-nematic quantum critical point C. Fermi surfaces and gauge fields Metals without quasiparticles A. Review

More information

General relativity and the cuprates

General relativity and the cuprates General relativity and the cuprates Gary T. Horowitz and Jorge E. Santos Department of Physics, University of California, Santa Barbara, CA 93106, U.S.A. E-mail: gary@physics.ucsb.edu, jss55@physics.ucsb.edu

More information

3. Quantum matter without quasiparticles

3. Quantum matter without quasiparticles 1. Review of Fermi liquid theory Topological argument for the Luttinger theorem 2. Fractionalized Fermi liquid A Fermi liquid co-existing with topological order for the pseudogap metal 3. Quantum matter

More information

Strong coupling problems in condensed matter and the AdS/CFT correspondence

Strong coupling problems in condensed matter and the AdS/CFT correspondence Strong coupling problems in condensed matter and the AdS/CFT correspondence Reviews: arxiv:0910.1139 arxiv:0901.4103 Talk online: sachdev.physics.harvard.edu HARVARD Frederik Denef, Harvard Yejin Huh,

More information

Quantum Melting of Stripes

Quantum Melting of Stripes Quantum Melting of Stripes David Mross and T. Senthil (MIT) D. Mross, TS, PRL 2012 D. Mross, TS, PR B (to appear) Varieties of Stripes Spin, Charge Néel 2π Q c 2π Q s ``Anti-phase stripes, common in La-based

More information

From the pseudogap to the strange metal

From the pseudogap to the strange metal HARVARD From the pseudogap to the strange metal S. Sachdev, E. Berg, S. Chatterjee, and Y. Schattner, PRB 94, 115147 (2016) S. Sachdev and S. Chatterjee, arxiv:1703.00014 APS March meeting March 13, 2017

More information

Emergent gauge fields and the high temperature superconductors

Emergent gauge fields and the high temperature superconductors HARVARD Emergent gauge fields and the high temperature superconductors Unifying physics and technology in light of Maxwell s equations The Royal Society, London November 16, 2015 Subir Sachdev Talk online:

More information

Can superconductivity emerge out of a non Fermi liquid.

Can superconductivity emerge out of a non Fermi liquid. Can superconductivity emerge out of a non Fermi liquid. Andrey Chubukov University of Wisconsin Washington University, January 29, 2003 Superconductivity Kamerling Onnes, 1911 Ideal diamagnetism High Tc

More information

Dual vortex theory of doped antiferromagnets

Dual vortex theory of doped antiferromagnets Dual vortex theory of doped antiferromagnets Physical Review B 71, 144508 and 144509 (2005), cond-mat/0502002, cond-mat/0511298 Leon Balents (UCSB) Lorenz Bartosch (Harvard) Anton Burkov (Harvard) Predrag

More information

ANISOTROPIC TRANSPORT IN THE IRON PNICTIDES

ANISOTROPIC TRANSPORT IN THE IRON PNICTIDES ANISOTROPIC TRANSPORT IN THE IRON PNICTIDES JÖRG SCHMALIAN AMES LABORATORY AND IOWA STATE UNIVERSITY Collaborators theory Ames: Rafael Fernandes Rutgers: Premala Chandra UCLA: Elihu Abrahams experiment

More information

Quantum theory of vortices and quasiparticles in d-wave superconductors

Quantum theory of vortices and quasiparticles in d-wave superconductors Quantum theory of vortices and quasiparticles in d-wave superconductors Quantum theory of vortices and quasiparticles in d-wave superconductors Physical Review B 73, 134511 (2006), Physical Review B 74,

More information

Emergent light and the high temperature superconductors

Emergent light and the high temperature superconductors HARVARD Emergent light and the high temperature superconductors Pennsylvania State University State College, January 21, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu Maxwell's equations:

More information

Quantum Criticality. S. Sachdev and B. Keimer, Physics Today, February Talk online: sachdev.physics.harvard.edu HARVARD. Thursday, May 5, 2011

Quantum Criticality. S. Sachdev and B. Keimer, Physics Today, February Talk online: sachdev.physics.harvard.edu HARVARD. Thursday, May 5, 2011 Quantum Criticality S. Sachdev and B. Keimer, Physics Today, February 2011 Talk online: sachdev.physics.harvard.edu HARVARD What is a quantum phase transition? Non-analyticity in ground state properties

More information

Quantum phase transitions and Fermi surface reconstruction

Quantum phase transitions and Fermi surface reconstruction Quantum phase transitions and Fermi surface reconstruction Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski Matthias Punk Erez Berg HARVARD 1. Fate of the Fermi surface: reconstruction or

More information

Topological order in insulators and metals

Topological order in insulators and metals HARVARD Topological order in insulators and metals 34th Jerusalem Winter School in Theoretical Physics New Horizons in Quantum Matter December 27, 2016 - January 5, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu

More information

Tuning order in the cuprate superconductors

Tuning order in the cuprate superconductors Tuning order in the cuprate superconductors Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies online at http://pantheon.yale.edu/~subir

More information

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012 Entanglement, holography, and strange metals Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Talks online at http://sachdev.physics.harvard.edu What is a phase transition? A change in the collective properties of a macroscopic number of atoms What is a quantum

More information

Topological order in the pseudogap metal

Topological order in the pseudogap metal HARVARD Topological order in the pseudogap metal High Temperature Superconductivity Unifying Themes in Diverse Materials 2018 Aspen Winter Conference Aspen Center for Physics Subir Sachdev January 16,

More information

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford)

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford) Wilsonian and large N theories of quantum critical metals Srinivas Raghu (Stanford) Collaborators and References R. Mahajan, D. Ramirez, S. Kachru, and SR, PRB 88, 115116 (2013). A. Liam Fitzpatrick, S.

More information

Order and quantum phase transitions in the cuprate superconductors

Order and quantum phase transitions in the cuprate superconductors Order and quantum phase transitions in the cuprate superconductors Subir Sachdev Department of Physics, Yale University, P.O. Box 208120, New Haven CT 06520-8120 March 26, 2003 Abstract This is a summary

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Quantum mechanics without particles

Quantum mechanics without particles Quantum mechanics without particles Institute Lecture, Indian Institute of Technology, Kanpur January 21, 2014 sachdev.physics.harvard.edu HARVARD Outline 1. Key ideas from quantum mechanics 2. Many-particle

More information

Spin liquids on the triangular lattice

Spin liquids on the triangular lattice Spin liquids on the triangular lattice ICFCM, Sendai, Japan, Jan 11-14, 2011 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Classification of spin liquids Quantum-disordering magnetic order

More information

Mean field theories of quantum spin glasses

Mean field theories of quantum spin glasses Mean field theories of quantum spin glasses Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Talk online: Sachdev Classical Sherrington-Kirkpatrick model H = JS S i j ij i j J ij : a

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter Stony Brook University February 14, 2012 sachdev.physics.harvard.edu HARVARD Quantum superposition and entanglement Quantum Superposition The double slit experiment

More information

arxiv: v1 [cond-mat.str-el] 16 Dec 2011

arxiv: v1 [cond-mat.str-el] 16 Dec 2011 Competition between superconductivity and nematic order: anisotropy of superconducting coherence length Eun-Gook Moon 1, 2 and Subir Sachdev 1 1 Department of Physics, Harvard University, Cambridge MA

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter University of Toronto March 22, 2012 sachdev.physics.harvard.edu HARVARD Sommerfeld-Bloch theory of metals, insulators, and superconductors: many-electron

More information

Quantum transitions of d-wave superconductors in a magnetic field

Quantum transitions of d-wave superconductors in a magnetic field Quantum transitions of d-wave superconductors in a magnetic field Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 86, 479 (1999). Transparencies

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies on-line at http://pantheon.yale.edu/~subir

More information

Tuning order in the cuprate superconductors by a magnetic field

Tuning order in the cuprate superconductors by a magnetic field Tuning order in the cuprate superconductors by a magnetic field Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies

More information

Quantum phase transitions in condensed matter physics, with connections to string theory

Quantum phase transitions in condensed matter physics, with connections to string theory Quantum phase transitions in condensed matter physics, with connections to string theory sachdev.physics.harvard.edu HARVARD High temperature superconductors Cuprates High temperature superconductors Pnictides

More information

Subir Sachdev. Talk online: sachdev.physics.harvard.edu

Subir Sachdev. Talk online: sachdev.physics.harvard.edu HARVARD Gauge theory for the cuprates near optimal doping Developments in Quantum Field Theory and Condensed Matter Physics Simons Center for Geometry and Physics, Stony Brook University November 7, 2018

More information

Let There Be Topological Superconductors

Let There Be Topological Superconductors Let There Be Topological Superconductors K K d Γ ~q c µ arxiv:1606.00857 arxiv:1603.02692 Eun-Ah Kim (Cornell) Boulder 7.21-22.2016 Q. Topological Superconductor material? Bulk 1D proximity 2D proximity?

More information

Quantum theory of vortices in d-wave superconductors

Quantum theory of vortices in d-wave superconductors Quantum theory of vortices in d-wave superconductors Physical Review B 71, 144508 and 144509 (2005), Annals of Physics 321, 1528 (2006), Physical Review B 73, 134511 (2006), cond-mat/0606001. Leon Balents

More information

arxiv: v2 [cond-mat.str-el] 22 Aug 2010

arxiv: v2 [cond-mat.str-el] 22 Aug 2010 Quantum phase transitions of metals in two spatial dimensions: II. Spin density wave order arxiv:005.88v [cond-mat.str-el] Aug 00 Max A. Metlitski and Subir Sachdev Department of Physics, Harvard University,

More information

The Superfluid-Insulator transition

The Superfluid-Insulator transition The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989). Superfluid-insulator transition Ultracold 87 Rb atoms

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter IISc, Bangalore January 23, 2012 sachdev.physics.harvard.edu HARVARD Outline 1. Conformal quantum matter Entanglement, emergent dimensions and string theory

More information

Order and quantum phase transitions in the cuprate superconductors

Order and quantum phase transitions in the cuprate superconductors Order and quantum phase transitions in the cuprate superconductors Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Talk online:

More information

Subir Sachdev Research Accomplishments

Subir Sachdev Research Accomplishments Subir Sachdev Research Accomplishments Theory for the quantum phase transition involving loss of collinear antiferromagnetic order in twodimensional quantum antiferromagnets (N. Read and S. Sachdev, Phys.

More information

Tuning order in cuprate superconductors

Tuning order in cuprate superconductors Tuning order in cuprate superconductors arxiv:cond-mat/0201401 v1 23 Jan 2002 Subir Sachdev 1 and Shou-Cheng Zhang 2 1 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120,

More information

Topological order in quantum matter

Topological order in quantum matter HARVARD Topological order in quantum matter Stanford University Subir Sachdev November 30, 2017 Talk online: sachdev.physics.harvard.edu Mathias Scheurer Wei Wu Shubhayu Chatterjee arxiv:1711.09925 Michel

More information

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/0408329, cond-mat/0409470, and to appear Leon Balents (UCSB)

More information

Lattice modulation experiments with fermions in optical lattices and more

Lattice modulation experiments with fermions in optical lattices and more Lattice modulation experiments with fermions in optical lattices and more Nonequilibrium dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University Rajdeep Sensarma Harvard

More information

Z 2 topological order near the Neel state on the square lattice

Z 2 topological order near the Neel state on the square lattice HARVARD Z 2 topological order near the Neel state on the square lattice Institut für Theoretische Physik Universität Heidelberg April 28, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu Shubhayu

More information

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/0408329, cond-mat/0409470, and to appear Leon Balents (UCSB)

More information

arxiv: v4 [cond-mat.str-el] 26 Oct 2011

arxiv: v4 [cond-mat.str-el] 26 Oct 2011 Quantum phase transitions of antiferromagnets and the cuprate superconductors Subir Sachdev arxiv:1002.3823v4 [cond-mat.str-el] 26 Oct 2011 Abstract I begin with a proposed global phase diagram of the

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018 High Tc superconductivity in cuprates: Determination of pairing interaction Han-Yong Choi / SKKU SNU Colloquium May 30 018 It all began with Discovered in 1911 by K Onnes. Liquid He in 1908. Nobel prize

More information

Talk online at

Talk online at Talk online at http://sachdev.physics.harvard.edu Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic

More information

Singularites in Fermi liquids and the instability of a ferromagnetic quantum-critical point

Singularites in Fermi liquids and the instability of a ferromagnetic quantum-critical point Singularites in ermi liquids and the instability of a ferromagnetic quantum-critical point Andrey Chubukov Dmitrii Maslov lorida University of Wisconsin Catherine Pepin Jerome Rech SPhT Saclay Dima Kveshchenko

More information

Detecting boson-vortex duality in the cuprate superconductors

Detecting boson-vortex duality in the cuprate superconductors Detecting boson-vortex duality in the cuprate superconductors Physical Review B 71, 144508 and 144509 (2005), cond-mat/0602429 Leon Balents (UCSB) Lorenz Bartosch (Harvard) Anton Burkov (Harvard) Predrag

More information

arxiv: v3 [cond-mat.str-el] 15 Nov 2010

arxiv: v3 [cond-mat.str-el] 15 Nov 2010 The underdoped cuprates as fractionalized Fermi liquids: transition to superconductivity Eun Gook Moon and Subir Sachdev Department of Physics, Harvard University, Cambridge MA 2138 arxiv:11.4567v3 [cond-mat.str-el]

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals University of Cologne, June 8, 2012 Subir Sachdev Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World, chair D.J. Gross. arxiv:1203.4565

More information

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu Quantum phases of antiferromagnets and the underdoped cuprates Talk online: sachdev.physics.harvard.edu Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and

More information

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity Mike Norman Materials Science Division Argonne National Laboratory & Center for Emergent Superconductivity Physics 3, 86

More information

Theory of the Nernst effect near the superfluid-insulator transition

Theory of the Nernst effect near the superfluid-insulator transition Theory of the Nernst effect near the superfluid-insulator transition Sean Hartnoll (KITP), Christopher Herzog (Washington), Pavel Kovtun (KITP), Marcus Mueller (Harvard), Subir Sachdev (Harvard), Dam Son

More information

Superconductivity due to massless boson exchange.

Superconductivity due to massless boson exchange. Superconductivity due to massless boson exchange. Andrey Chubukov University of Wisconsin Consultations Artem Abanov Mike Norman Joerg Schmalian Boris Altshuler Emil Yuzbashyan Texas A&M ANL ISU Columbia

More information

Vortices in the cuprate superconductors

Vortices in the cuprate superconductors Vortices in the cuprate superconductors Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies online at http://pantheon.yale.edu/~subir

More information

Perimeter Institute January 19, Subir Sachdev

Perimeter Institute January 19, Subir Sachdev HARVARD Emergent light and the high temperature superconductors Perimeter Institute January 19, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu Debanjan Chowdhury Andrea Allais Yang Qi Matthias

More information

Quantum Phase Transitions in Fermi Liquids

Quantum Phase Transitions in Fermi Liquids Quantum Phase Transitions in Fermi Liquids in d=1 and higher dimensions Mihir Khadilkar Kyungmin Lee Shivam Ghosh PHYS 7653 December 2, 2010 Outline 1 Introduction 2 d = 1: Mean field vs RG Model 3 Higher

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals PCTS, Princeton, October 26, 2012 Subir Sachdev Talk online at sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Complex entangled

More information

Conductor Insulator Quantum

Conductor Insulator Quantum Conductor Insulator Quantum Phase Transitions Edited by Vladimir Dobrosavljevic, Nandini Trivedi, James M. Valles, Jr. OXPORD UNIVERSITY PRESS Contents List of abbreviations List of contributors xiv xvi

More information

Quantum Entanglement and Superconductivity. Subir Sachdev, Perimeter Institute and Harvard University

Quantum Entanglement and Superconductivity. Subir Sachdev, Perimeter Institute and Harvard University Quantum Entanglement and Superconductivity Subir Sachdev, Perimeter Institute and Harvard University Quantum Entanglement and Superconductivity Superconductor, levitated by an unseen magnet, in which countless

More information

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu arxiv:0809.0694 Yang Qi Harvard Cenke Xu Harvard Max Metlitski Harvard Ribhu Kaul Microsoft Roger Melko

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

arxiv:cond-mat/ v1 4 Aug 2003

arxiv:cond-mat/ v1 4 Aug 2003 Conductivity of thermally fluctuating superconductors in two dimensions Subir Sachdev arxiv:cond-mat/0308063 v1 4 Aug 2003 Abstract Department of Physics, Yale University, P.O. Box 208120, New Haven CT

More information

2. Spin liquids and valence bond solids

2. Spin liquids and valence bond solids Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence bond solids (a) Schwinger-boson mean-field theory - square lattice (b) Gauge theories of perturbative

More information

Talk online: sachdev.physics.harvard.edu

Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Particle theorists Condensed matter theorists Quantum Entanglement Hydrogen atom: Hydrogen molecule: = _ = 1 2 ( ) Superposition of two electron states leads to

More information

Quantum critical metals and their instabilities. Srinivas Raghu (Stanford)

Quantum critical metals and their instabilities. Srinivas Raghu (Stanford) Quantum critical metals and their instabilities Srinivas Raghu (Stanford) Collaborators and References R. Mahajan, D. Ramirez, S. Kachru, and SR, PRB 88, 115116 (2013). A. Liam Fitzpatrick, S. Kachru,

More information

Condensed Matter Physics in the City London, June 20, 2012

Condensed Matter Physics in the City London, June 20, 2012 Entanglement, holography, and the quantum phases of matter Condensed Matter Physics in the City London, June 20, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World arxiv:1203.4565

More information

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality Hans-Henning Klauss Institut für Festkörperphysik TU Dresden 1 References [1] Stephen Blundell, Magnetism in Condensed

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay I- Similarities between phase diagram and quantum critical points Quantum Criticality in 3 Families of Superconductors L. Taillefer,

More information

Competition between spin density wave order and superconductivity in the underdoped cuprates. Abstract

Competition between spin density wave order and superconductivity in the underdoped cuprates. Abstract arxiv:0905.2608 Competition between spin density wave order and superconductivity in the underdoped cuprates Eun Gook Moon and Subir Sachdev Department of Physics, Harvard University, Cambridge MA 02138

More information

A Twisted Ladder: relating the Fe superconductors to the high T c cuprates. (Dated: May 7, 2009)

A Twisted Ladder: relating the Fe superconductors to the high T c cuprates. (Dated: May 7, 2009) A Twisted Ladder: relating the Fe superconductors to the high T c cuprates E. Berg 1, S. A. Kivelson 1, and D. J. Scalapino 2 1 Department of Physics, Stanford University, Stanford, CA 94305-4045, USA

More information

Understanding correlated electron systems by a classification of Mott insulators

Understanding correlated electron systems by a classification of Mott insulators Understanding correlated electron systems by a classification of Mott insulators Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe)

More information

Nodal and nodeless superconductivity in Iron-based superconductors

Nodal and nodeless superconductivity in Iron-based superconductors Nodal and nodeless superconductivity in Iron-based superconductors B. Andrei Bernevig Department of Physics Princeton University Minneapolis, 2011 Collaborators: R. Thomale, Yangle Wu (Princeton) J. Hu

More information

Nematic and Magnetic orders in Fe-based Superconductors

Nematic and Magnetic orders in Fe-based Superconductors Nematic and Magnetic orders in Fe-based Superconductors Cenke Xu Harvard University Collaborators: Markus Mueller, Yang Qi Subir Sachdev, Jiangping Hu Collaborators: Subir Sachdev Markus Mueller Yang Qi

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors?

More information

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES studies of cuprates Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Goals of lecture Understand why gaps are important and various ways that gap

More information