Quantum phase transitions of insulators, superconductors and metals in two dimensions

Size: px
Start display at page:

Download "Quantum phase transitions of insulators, superconductors and metals in two dimensions"

Transcription

1 Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD

2 Outline 1. Phenomenology of the cuprate superconductors (and other compounds) 2. QPT of antiferromagnetic insulators (and bosons at rational filling) 3. QPT of d-wave superconductors: Fermi points of massless Dirac fermions 4. QPT of Fermi surfaces: A. Finite wavevector ordering (SDW/CDW): Hot spots on Fermi surfaces B. Zero wavevector ordering (Nematic): Hot Fermi surfaces

3 Outline 1. Phenomenology of the cuprate superconductors (and other compounds) 2. QPT of antiferromagnetic insulators (and bosons at rational filling) 3. QPT of d-wave superconductors: Fermi points of massless Dirac fermions 4. QPT of Fermi surfaces: A. Finite wavevector ordering (SDW/CDW): Hot spots on Fermi surfaces B. Zero wavevector ordering (Nematic): Hot Fermi surfaces

4 Max Metlitski

5 Strategy 1. Write down local field theory for order parameter and fermions 2. Apply renormalization group to field theory

6 Strategy 1. Write down local field theory for order parameter and fermions 2. Apply renormalization group to field theory

7 Order parameter at a nonzero wavevector: Hot spots on the Fermi surface.

8 T Fluctuating, Small Fermi pockets paired Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface Thermally fluctuating SDW Magnetic quantum criticality Spin gap d-wave SC SC+ SDW SC SDW (Small Fermi pockets) H M "Normal" (Large Fermi surface)

9 T Fluctuating, Small Fermi pockets paired Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface Theory of SDW quantum phase transition in Thermally fluctuating SDW Magnetic quantum criticality Spin gap d-wave SC metal SC+ SDW SC SDW (Small Fermi pockets) H M "Normal" (Large Fermi surface)

10 T Fluctuating, Small Fermi pockets paired Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface Theory of SDW quantum phase transition in Thermally fluctuating SDW Magnetic quantum criticality Spin gap d-wave SC metal SC+ SDW SC SDW (Small Fermi pockets) H M "Normal" (Large Fermi surface)

11 Hole-doped cuprates Increasing SDW order Γ Γ Γ Γ Hole pockets Electron pockets Large Fermi surface breaks up into electron and hole pockets S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

12 Hole-doped cuprates Increasing SDW order Γ Γ Γ ϕ Γ Hole pockets Electron pockets ϕ fluctuations act on the large Fermi surface S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

13 Start from the spin-fermion model Z = Dc α Dϕ exp ( S) S = dτ k λ c kα dτ i τ ε k c kα c iα ϕ i σ αβ c iβ e ik r i + dτd 2 r 1 2 ( r ϕ ) 2 ζ + 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4

14 =3 =2 =4 =1 Low energy fermions ψ 1α, ψ 2α =1,...,4 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α v =1 1 =(v x,v y ), v =1 2 =( v x,v y )

15 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α v 1 v 2 ψ 1 fermions occupied ψ 2 fermions occupied

16 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α v 1 v 2 Hot spot Cold Fermi surfaces

17 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4

18 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ Yukawa coupling: L c = λϕ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 ψ 1α σ αβψ2β + ψ 2α σ αβψ1β

19 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ Yukawa coupling: L c = λϕ Hertz-Moriya-Millis (HMM) theory 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 ψ 1α σ αβψ2β + ψ 2α σ αβψ1β Integrate out fermions and obtain non-local corrections to L ϕ L ϕ = 1 2 ϕ 2 q 2 + γ ω /2 ; γ = 2 πv x v y Exponent z = 2 and mean-field criticality (upto logarithms)

20 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ Yukawa coupling: L c = λϕ Hertz-Moriya-Millis (HMM) theory Integrate out fermions and obtain non-local corrections to L ϕ L ϕ = 1 2 ϕ 2 q 2 + γ ω /2 ; γ = 2 But, higher order terms contain an infinite number of marginal couplings ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 πv x v y Exponent z = 2 and mean-field criticality (upto logarithms) ψ 1α σ αβψ2β + ψ 2α σ αβψ1β Ar. Abanov and A.V. Chubukov, Phys. Rev. Lett. 93, (2004).

21 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 Yukawa coupling: L c = λϕ ψ 1α σ αβψ2β + ψ 2α σ αβψ1β Perform RG on both fermions and ϕ, using a local field theory.

22 Order parameter at zero wavevector: Hot Fermi surface.

23 T Fluctuating, paired Fermi pockets T* Strange Metal Large Fermi surface T c Fluctuating, paired Fermi pockets T sdw d-wave SC VBS and/or Ising nematic order SC+ SDW SC H c2 H SDW Insulator M SDW (Small Fermi pockets) "Normal" (Large Fermi 22 surface)

24 Broken rotational symmetry in the pseudogap phase of a high-tc superconductor R. Daou, J. Chang, David LeBoeuf, Olivier Cyr- Choiniere, Francis Laliberte, Nicolas Doiron- Leyraud, B. J. Ramshaw, Ruixing Liang, D. A. Bonn, W. N. Hardy, and Louis Taillefer arxiv: , Nature, in press

25 Quantum criticality of Pomeranchuk instability y x Fermi surface with full square lattice symmetry

26 Quantum criticality of Pomeranchuk instability y x Spontaneous elongation along x direction: Ising order parameter φ > 0.

27 Quantum criticality of Pomeranchuk instability y x Spontaneous elongation along y direction: Ising order parameter φ < 0.

28 Quantum criticality of Pomeranchuk instability φ =0 φ =0 λ c λ Pomeranchuk instability as a function of coupling λ

29 Quantum criticality of Pomeranchuk instability T Quantum critical T c φ =0 φ =0 λ c λ Phase diagram as a function of T and λ

30 Quantum criticality of Pomeranchuk instability T Quantum critical T c Classical d=2 Ising criticality φ =0 φ =0 λ c λ Phase diagram as a function of T and λ

31 Quantum criticality of Pomeranchuk instability T Quantum critical T c φ =0 φ =0 D=2+1 quantum λ criticality c? λ Phase diagram as a function of T and λ

32 Quantum criticality of Pomeranchuk instability Effective action for Ising order parameter S φ = d 2 rdτ ( τ φ) 2 + c 2 ( φ) 2 +(λ λ c )φ 2 + uφ 4

33 Quantum criticality of Pomeranchuk instability Effective action for Ising order parameter S φ = d 2 rdτ ( τ φ) 2 + c 2 ( φ) 2 +(λ λ c )φ 2 + uφ 4 Effective action for electrons: S c = dτ N f i c iα τ c iα i<j t ij c iα c iα α=1 N f dτc kα ( τ + ε k ) c kα α=1 k

34 Quantum criticality of Pomeranchuk instability Coupling between Ising order and electrons S φc = γ dτ φ N f (cos k x cos k y )c kα c kα α=1 k for spatially independent φ φ > 0 φ < 0

35 Quantum criticality of Pomeranchuk instability Coupling between Ising order and electrons S φc = γ dτ N f φ q (cos k x cos k y )c k+q/2,α c k q/2,α α=1 k,q for spatially dependent φ φ > 0 φ < 0

36 Quantum criticality of Pomeranchuk instability S φ = d 2 rdτ ( τ φ) 2 + c 2 ( φ) 2 +(λ λ c )φ 2 + uφ 4 S c = S φc = γ N f α=1 k dτ N f α=1 dτc kα ( τ + ε k ) c kα k,q φ q (cos k x cos k y )c k+q/2,α c k q/2,α

37 A φ fluctuation at wavevector q couples most efficiently to fermions near ± k 0. Expand fermion kinetic energy at wavevectors about k 0

38 L = ψ y + ζ τ i x 2 ψ+ + ψ y ζ τ + i x 2 ψ ψ λφ +ψ + + ψ ψ + 1 2g ( yφ) 2 + r 2 φ2

39 Emergent Galilean invariance at low energy (s = ±): φ(x, y) φ(x, y + θx), ψ s (x, y) e is( θ 2 y+ θ2 4 x) ψ s (x, y + θx) which implies for the fermion Green s function G(q x,q y )=G(sq x + qy). 2 Every point on the Fermi surface sq x +qy 2 = 0 has the same singularity: Hot Fermi surface.

40 Hot Fermi surfaces Emergent Galilean invariance at low energy (s = ±): φ(x, y) φ(x, y + θx), ψ s (x, y) e is( θ 2 y+ θ2 4 x) ψ s (x, y + θx) which implies for the fermion Green s function G(q x,q y )=G(sq x + qy). 2 Every point on the Fermi surface sq x +qy 2 = 0 has the same singularity: Hot Fermi surface.

41 Hertz-Moriya-Millis (HMM) theory Integrate out fermions and obtain effective action for φ L φ = 1 q 2 y 2 φ2 g + ω 4π q y Exponent z = 3 and mean-field criticality?

42 Strategy 1. Write down local field theory for order parameter and fermions 2. Apply renormalization group to field theory

43 Strategy 1. Write down local field theory for order parameter and fermions 2. Apply renormalization group to field theory

44 Order parameter at a nonzero wavevector: Hot spots on the Fermi surface.

45 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ Yukawa coupling: L c = λϕ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 ψ 1α σ αβψ2β + ψ 2α σ αβψ1β Under the rescaling x = xe, τ = τe z, the spatial gradients are fixed if the fields transform as ϕ = e (d+z 2)/2 ϕ ; ψ = e (d+z 1)/2 ψ. Then the Yukawa coupling transforms as λ = e (4 d z)/2 λ For d = 2, with z = 2 the Yukawa coupling is invariant, and the bare time-derivative terms ζ, ζ are irrelevant.

46 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 Yukawa coupling: L c = ϕ ψ 1α σ αβψ2β + ψ 2α σ αβψ1β With z = 2 scaling, ζ is irrelevant. So we take ζ 0 ( watch for dangerous irrelevancy).

47 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 Yukawa coupling: L c = ϕ ψ 1α σ αβψ2β + ψ 2α σ αβψ1β Set ϕ wavefunction renormalization by keeping co-efficient of ( r ϕ ) 2 fixed (as usual).

48 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 Yukawa coupling: L c = ϕ ψ 1α σ αβψ2β + ψ 2α σ αβψ1β Set fermion wavefunction renormalization by keeping Yukawa coupling fixed. Y. Huh and S. Sachdev, Phys. Rev. B 78, (2008).

49 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 Yukawa coupling: L c = ϕ ψ 1α σ αβψ2β + ψ 2α σ αβψ1β We find consistent two-loop RG factors, as ζ 0, for the velocities v x, v y, and the wavefunction renormalizations. Consistency check: the expression for the boson damping constant, γ = 2 πv x v y, is preserved under RG.

50 RG-improved Migdal-Eliashberg theory RG flow can be computed a 1/N expansion (with N fermion species) in terms of a single dimensionless coupling α = v y /v x whose flow obeys dα d = 3 πn α 2 1+α 2

51 RG-improved Migdal-Eliashberg theory RG flow can be computed a 1/N expansion (with N fermion species) in terms of a single dimensionless coupling α = v y /v x whose flow obeys dα d = 3 πn α 2 1+α 2 The velocities flow as 1 dv x v x d A(α) B(α) = A(α)+B(α) 2 3 α πn 1+α πN α α 1+ ; 1 dv y v y d = A(α)+B(α) 2 1 α α tan 1 1 α

52 RG-improved Migdal-Eliashberg theory RG flow can be computed a 1/N expansion (with N fermion species) in terms of a single dimensionless coupling α = v y /v x whose flow obeys dα d = 3 πn α 2 1+α 2 The anomalous dimensions of ϕ and ψ are η ϕ = 2πN α α + α 2 + α2 tan 1 1 α η ψ = πN α α 1+ α α tan 1 1 α

53 RG-improved Migdal-Eliashberg theory α = v y /v x 0 logarithmically in the infrared. Dynamical Nesting v 1 v 2 Bare Fermi surface

54 RG-improved Migdal-Eliashberg theory α = v y /v x 0 logarithmically in the infrared. Dynamical Nesting Dressed Fermi surface

55 RG-improved Migdal-Eliashberg theory α = v y /v x 0 logarithmically in the infrared. Dynamical Nesting Bare Fermi surface

56 RG-improved Migdal-Eliashberg theory α = v y /v x 0 logarithmically in the infrared. Dynamical Nesting Dressed Fermi surface

57 RG-improved Migdal-Eliashberg theory α = v y /v x 0 logarithmically in the infrared. In ϕ SDW fluctuations, characteristic q and ω scale as q ω 1/2 exp 3 64π 2 ln(1/ω) N 3 However, 1/N expansion cannot be trusted in the asymptotic regime..

58 New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg) ϕ propagator 1 N 1 (q 2 + γ ω ) fermion propagator v q + iζω + i 1 1 N γv ωf v 2 q 2 ω

59 New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg) ϕ propagator 1 N 1 (q 2 + γ ω ) fermion propagator v q + iζω + i 1 1 N γv ωf v 2 q 2 ω Dangerous

60 New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg) Ignoring fermion self energy: 1 N 2 1 ζ 2 1 ω

61 New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg) Ignoring fermion self energy: 1 N 2 1 Actual order 1 N 0 ζ 2 1 ω

62 Double line representation A way to compute the order of a diagram. Extra powers of N come from the Fermi-surface What are the conditions for all propagators to be on the Fermi surface? Concentrate on diagrams involving a single pair of hot-spots Any bosonic momentum may be (uniquely) written as R. Shankar, Rev. Mod. Phys. 66, 129 (1994). S. W. Tsai, A. H. Castro Neto, R. Shankar, and D. K. Campbell, Phys. Rev. B 72, (2005).

63 New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg) = Singularities as ζ 0 appear when fermions in closed blue and red line loops are exactly on the Fermi surface Actual order 1 N 0

64 New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg) = Actual order 1 N 0 Graph is planar after turning fermion propagators also into double lines by drawing additional dotted single line loops for each fermion loop Sung-Sik Lee, arxiv:

65 New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg) = Actual order 1 N 0 A consistent analysis requires resummation of all planar graphs

66 Theory for the onset of spin density wave order in metals is strongly coupled in two dimensions

Quantum criticality of Fermi surfaces in two dimensions

Quantum criticality of Fermi surfaces in two dimensions Quantum criticality of Fermi surfaces in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Yejin Huh, Harvard Max Metlitski, Harvard HARVARD Outline 1. Quantum criticality of Fermi points:

More information

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions Niels Bohr Institute, Copenhagen, May 6, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski,

More information

Quantum disordering magnetic order in insulators, metals, and superconductors

Quantum disordering magnetic order in insulators, metals, and superconductors Quantum disordering magnetic order in insulators, metals, and superconductors Perimeter Institute, Waterloo, May 29, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Cenke Xu, Harvard arxiv:1004.5431

More information

AdS/CFT and condensed matter

AdS/CFT and condensed matter AdS/CFT and condensed matter Reviews: arxiv:0907.0008 arxiv:0901.4103 arxiv:0810.3005 (with Markus Mueller) Talk online: sachdev.physics.harvard.edu HARVARD Lars Fritz, Harvard Victor Galitski, Maryland

More information

Quantum criticality of Fermi surfaces

Quantum criticality of Fermi surfaces Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface

More information

Strong coupling problems in condensed matter and the AdS/CFT correspondence

Strong coupling problems in condensed matter and the AdS/CFT correspondence Strong coupling problems in condensed matter and the AdS/CFT correspondence Reviews: arxiv:0910.1139 arxiv:0901.4103 Talk online: sachdev.physics.harvard.edu HARVARD Frederik Denef, Harvard Yejin Huh,

More information

Metals without quasiparticles

Metals without quasiparticles Metals without quasiparticles A. Review of Fermi liquid theory B. A non-fermi liquid: the Ising-nematic quantum critical point C. Fermi surfaces and gauge fields Metals without quasiparticles A. Review

More information

Quantum criticality and the phase diagram of the cuprates

Quantum criticality and the phase diagram of the cuprates Quantum criticality and the phase diagram of the cuprates Talk online: sachdev.physics.harvard.edu HARVARD Victor Galitski, Maryland Ribhu Kaul, Harvard Kentucky Max Metlitski, Harvard Eun Gook Moon, Harvard

More information

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability Subir Sachdev sachdev.physics.harvard.edu HARVARD y x Fermi surface with full square lattice symmetry y x Spontaneous

More information

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals Subir Sachdev sachdev.physics.harvard.edu HARVARD Max Metlitski Erez Berg HARVARD Max Metlitski Erez Berg Sean Hartnoll

More information

Saturday, April 3, 2010

Saturday, April 3, 2010 Phys. Rev. Lett. 1990 Superfluid-insulator transition Ultracold 87 Rb atoms - bosons M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). T σ = 4e2 h Σ Quantum Σ, auniversalnumber.

More information

3. Quantum matter without quasiparticles

3. Quantum matter without quasiparticles 1. Review of Fermi liquid theory Topological argument for the Luttinger theorem 2. Fractionalized Fermi liquid A Fermi liquid co-existing with topological order for the pseudogap metal 3. Quantum matter

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Quantum phase transitions and Fermi surface reconstruction

Quantum phase transitions and Fermi surface reconstruction Quantum phase transitions and Fermi surface reconstruction Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski Matthias Punk Erez Berg HARVARD 1. Fate of the Fermi surface: reconstruction or

More information

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu Quantum criticality in the cuprate superconductors Talk online: sachdev.physics.harvard.edu The cuprate superconductors Destruction of Neel order in the cuprates by electron doping, R. K. Kaul, M. Metlitksi,

More information

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates HARVARD Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates Talk online: sachdev.physics.harvard.edu HARVARD Where is the quantum critical point

More information

General relativity and the cuprates

General relativity and the cuprates General relativity and the cuprates Gary T. Horowitz and Jorge E. Santos Department of Physics, University of California, Santa Barbara, CA 93106, U.S.A. E-mail: gary@physics.ucsb.edu, jss55@physics.ucsb.edu

More information

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds Twelfth Arnold Sommerfeld Lecture Series January 31 - February 3, 2012 sachdev.physics.harvard.edu HARVARD Max

More information

The underdoped cuprates as fractionalized Fermi liquids (FL*)

The underdoped cuprates as fractionalized Fermi liquids (FL*) The underdoped cuprates as fractionalized Fermi liquids (FL*) R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, Physical Review B 75, 235122 (2007) R. K. Kaul, Y. B. Kim, S. Sachdev, and T.

More information

The phase diagrams of the high temperature superconductors

The phase diagrams of the high temperature superconductors The phase diagrams of the high temperature superconductors Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski, Harvard Eun Gook Moon, Harvard HARVARD The cuprate superconductors Square lattice

More information

Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors

Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors Talk online: sachdev.physics.harvard.edu HARVARD Frederik Denef, Harvard Max Metlitski, Harvard Sean Hartnoll, Harvard Christopher

More information

From the pseudogap to the strange metal

From the pseudogap to the strange metal HARVARD From the pseudogap to the strange metal S. Sachdev, E. Berg, S. Chatterjee, and Y. Schattner, PRB 94, 115147 (2016) S. Sachdev and S. Chatterjee, arxiv:1703.00014 APS March meeting March 13, 2017

More information

Quantum Melting of Stripes

Quantum Melting of Stripes Quantum Melting of Stripes David Mross and T. Senthil (MIT) D. Mross, TS, PRL 2012 D. Mross, TS, PR B (to appear) Varieties of Stripes Spin, Charge Néel 2π Q c 2π Q s ``Anti-phase stripes, common in La-based

More information

Electronic quasiparticles and competing orders in the cuprate superconductors

Electronic quasiparticles and competing orders in the cuprate superconductors Electronic quasiparticles and competing orders in the cuprate superconductors Andrea Pelissetto Rome Subir Sachdev Ettore Vicari Pisa Yejin Huh Harvard Harvard Gapless nodal quasiparticles in d-wave superconductors

More information

arxiv: v2 [cond-mat.str-el] 22 Aug 2010

arxiv: v2 [cond-mat.str-el] 22 Aug 2010 Quantum phase transitions of metals in two spatial dimensions: II. Spin density wave order arxiv:005.88v [cond-mat.str-el] Aug 00 Max A. Metlitski and Subir Sachdev Department of Physics, Harvard University,

More information

Strange metals and gauge-gravity duality

Strange metals and gauge-gravity duality Strange metals and gauge-gravity duality Loughborough University, May 17, 2012 Subir Sachdev Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World, chair D.J. Gross. arxiv:1203.4565

More information

Mean field theories of quantum spin glasses

Mean field theories of quantum spin glasses Mean field theories of quantum spin glasses Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Talk online: Sachdev Classical Sherrington-Kirkpatrick model H = JS S i j ij i j J ij : a

More information

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford)

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford) Wilsonian and large N theories of quantum critical metals Srinivas Raghu (Stanford) Collaborators and References R. Mahajan, D. Ramirez, S. Kachru, and SR, PRB 88, 115116 (2013). A. Liam Fitzpatrick, S.

More information

A quantum dimer model for the pseudogap metal

A quantum dimer model for the pseudogap metal A quantum dimer model for the pseudogap metal College de France, Paris March 27, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Andrea Allais Matthias Punk Debanjan Chowdhury (Innsbruck)

More information

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay I- Similarities between phase diagram and quantum critical points Quantum Criticality in 3 Families of Superconductors L. Taillefer,

More information

Topological order in insulators and metals

Topological order in insulators and metals HARVARD Topological order in insulators and metals 34th Jerusalem Winter School in Theoretical Physics New Horizons in Quantum Matter December 27, 2016 - January 5, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu

More information

Quantum critical metals and their instabilities. Srinivas Raghu (Stanford)

Quantum critical metals and their instabilities. Srinivas Raghu (Stanford) Quantum critical metals and their instabilities Srinivas Raghu (Stanford) Collaborators and References R. Mahajan, D. Ramirez, S. Kachru, and SR, PRB 88, 115116 (2013). A. Liam Fitzpatrick, S. Kachru,

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

Condensed Matter Physics in the City London, June 20, 2012

Condensed Matter Physics in the City London, June 20, 2012 Entanglement, holography, and the quantum phases of matter Condensed Matter Physics in the City London, June 20, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World arxiv:1203.4565

More information

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012 Entanglement, holography, and strange metals Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum

More information

The Superfluid-Insulator transition

The Superfluid-Insulator transition The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989). Superfluid-insulator transition Ultracold 87 Rb atoms

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal

Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal Workshop on Frontiers of Quantum Materials Rice University, Houston, November 4, 2016 Subir Sachdev Talk online:

More information

Can superconductivity emerge out of a non Fermi liquid.

Can superconductivity emerge out of a non Fermi liquid. Can superconductivity emerge out of a non Fermi liquid. Andrey Chubukov University of Wisconsin Washington University, January 29, 2003 Superconductivity Kamerling Onnes, 1911 Ideal diamagnetism High Tc

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals University of Cologne, June 8, 2012 Subir Sachdev Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World, chair D.J. Gross. arxiv:1203.4565

More information

Spin liquids on the triangular lattice

Spin liquids on the triangular lattice Spin liquids on the triangular lattice ICFCM, Sendai, Japan, Jan 11-14, 2011 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Classification of spin liquids Quantum-disordering magnetic order

More information

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity Mike Norman Materials Science Division Argonne National Laboratory & Center for Emergent Superconductivity Physics 3, 86

More information

Superconductivity due to massless boson exchange.

Superconductivity due to massless boson exchange. Superconductivity due to massless boson exchange. Andrey Chubukov University of Wisconsin Consultations Artem Abanov Mike Norman Joerg Schmalian Boris Altshuler Emil Yuzbashyan Texas A&M ANL ISU Columbia

More information

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST Laboratoire National des Champs Magnétiques Intenses Toulouse Collaborations D. Vignolles B. Vignolle C. Jaudet J.

More information

Z 2 topological order near the Neel state on the square lattice

Z 2 topological order near the Neel state on the square lattice HARVARD Z 2 topological order near the Neel state on the square lattice Institut für Theoretische Physik Universität Heidelberg April 28, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu Shubhayu

More information

Nematic and Magnetic orders in Fe-based Superconductors

Nematic and Magnetic orders in Fe-based Superconductors Nematic and Magnetic orders in Fe-based Superconductors Cenke Xu Harvard University Collaborators: Markus Mueller, Yang Qi Subir Sachdev, Jiangping Hu Collaborators: Subir Sachdev Markus Mueller Yang Qi

More information

Landau s Fermi Liquid Theory

Landau s Fermi Liquid Theory Thors Hans Hansson Stockholm University Outline 1 Fermi Liquids Why, What, and How? Why Fermi liquids? What is a Fermi liquids? Fermi Liquids How? 2 Landau s Phenomenological Approach The free Fermi gas

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 )

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 ) Revealing fermionic quantum criticality from new Monte Carlo techniques Zi Yang Meng ( 孟子杨 ) http://ziyangmeng.iphy.ac.cn Collaborators and References Xiao Yan Xu Zi Hong Liu Chuang Chen Gao Pei Pan Yang

More information

J. McGreevy, arxiv Wednesday, April 18, 2012

J. McGreevy, arxiv Wednesday, April 18, 2012 r J. McGreevy, arxiv0909.0518 Consider the metric which transforms under rescaling as x i ζx i t ζ z t ds ζ θ/d ds. This identifies z as the dynamic critical exponent (z = 1 for relativistic quantum critical

More information

Quantum transitions of d-wave superconductors in a magnetic field

Quantum transitions of d-wave superconductors in a magnetic field Quantum transitions of d-wave superconductors in a magnetic field Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 86, 479 (1999). Transparencies

More information

Exact results concerning the phase diagram of the Hubbard Model

Exact results concerning the phase diagram of the Hubbard Model Steve Kivelson Apr 15, 2011 Freedman Symposium Exact results concerning the phase diagram of the Hubbard Model S.Raghu, D.J. Scalapino, Li Liu, E. Berg H. Yao, W-F. Tsai, A. Lauchli G. Karakonstantakis,

More information

Emergent gauge fields and the high temperature superconductors

Emergent gauge fields and the high temperature superconductors HARVARD Emergent gauge fields and the high temperature superconductors Unifying physics and technology in light of Maxwell s equations The Royal Society, London November 16, 2015 Subir Sachdev Talk online:

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

Emergent light and the high temperature superconductors

Emergent light and the high temperature superconductors HARVARD Emergent light and the high temperature superconductors Pennsylvania State University State College, January 21, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu Maxwell's equations:

More information

Emergent Quantum Criticality

Emergent Quantum Criticality (Non-)Fermi Liquids and Emergent Quantum Criticality from gravity Hong Liu Massachusetts setts Institute te of Technology HL, John McGreevy, David Vegh, 0903.2477 Tom Faulkner, HL, JM, DV, to appear Sung-Sik

More information

Quantum Monte Carlo investigations of correlated electron systems, present and future. Zi Yang Meng ( 孟子杨 )

Quantum Monte Carlo investigations of correlated electron systems, present and future. Zi Yang Meng ( 孟子杨 ) Quantum Monte Carlo investigations of correlated electron systems, present and future Zi Yang Meng ( 孟子杨 ) http://ziyangmeng.iphy.ac.cn Collaborators Xiao Yan Xu Yoni Schattner Zi Hong Liu Erez Berg Chuang

More information

arxiv: v2 [cond-mat.str-el] 2 Apr 2014

arxiv: v2 [cond-mat.str-el] 2 Apr 2014 Transport near the Ising-nematic quantum critical point of metals in two dimensions Sean A. Hartnoll, 1 Raghu Mahajan, 1 Matthias Punk, 2, 3 and Subir Sachdev 4 1 Department of Physics, Stanford University,

More information

Singularites in Fermi liquids and the instability of a ferromagnetic quantum-critical point

Singularites in Fermi liquids and the instability of a ferromagnetic quantum-critical point Singularites in ermi liquids and the instability of a ferromagnetic quantum-critical point Andrey Chubukov Dmitrii Maslov lorida University of Wisconsin Catherine Pepin Jerome Rech SPhT Saclay Dima Kveshchenko

More information

Valence Bonds in Random Quantum Magnets

Valence Bonds in Random Quantum Magnets Valence Bonds in Random Quantum Magnets theory and application to YbMgGaO 4 Yukawa Institute, Kyoto, November 2017 Itamar Kimchi I.K., Adam Nahum, T. Senthil, arxiv:1710.06860 Valence Bonds in Random Quantum

More information

arxiv: v4 [cond-mat.str-el] 26 Oct 2011

arxiv: v4 [cond-mat.str-el] 26 Oct 2011 Quantum phase transitions of antiferromagnets and the cuprate superconductors Subir Sachdev arxiv:1002.3823v4 [cond-mat.str-el] 26 Oct 2011 Abstract I begin with a proposed global phase diagram of the

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information

Holographic transport with random-field disorder. Andrew Lucas

Holographic transport with random-field disorder. Andrew Lucas Holographic transport with random-field disorder Andrew Lucas Harvard Physics Quantum Field Theory, String Theory and Condensed Matter Physics: Orthodox Academy of Crete September 1, 2014 Collaborators

More information

lattice that you cannot do with graphene! or... Antonio H. Castro Neto

lattice that you cannot do with graphene! or... Antonio H. Castro Neto Theoretical Aspects What you can do with cold atomsof on agraphene honeycomb lattice that you cannot do with graphene! or... Antonio H. Castro Neto 2 Outline 1. Graphene for beginners 2. Fermion-Fermion

More information

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu Quantum phases of antiferromagnets and the underdoped cuprates Talk online: sachdev.physics.harvard.edu Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and

More information

Notes on Renormalization Group: ϕ 4 theory and ferromagnetism

Notes on Renormalization Group: ϕ 4 theory and ferromagnetism Notes on Renormalization Group: ϕ 4 theory and ferromagnetism Yi Zhou (Dated: November 4, 015) In this lecture, we shall study the ϕ 4 theory up to one-loop RG and discuss the application to ferromagnetic

More information

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu arxiv:0809.0694 Yang Qi Harvard Cenke Xu Harvard Max Metlitski Harvard Ribhu Kaul Microsoft Roger Melko

More information

arxiv: v1 [cond-mat.str-el] 7 Oct 2009

arxiv: v1 [cond-mat.str-el] 7 Oct 2009 Finite temperature dissipation and transport near quantum critical points Subir Sachdev Department of Physics, Harvard University, Cambridge MA 02138 (Dated: Oct 5, 2009) arxiv:0910.1139v1 [cond-mat.str-el]

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

Unusual ordered phases of magnetized frustrated antiferromagnets

Unusual ordered phases of magnetized frustrated antiferromagnets Unusual ordered phases of magnetized frustrated antiferromagnets Credit: Francis Pratt / ISIS / STFC Oleg Starykh University of Utah Leon Balents and Andrey Chubukov Novel states in correlated condensed

More information

Topological order in the pseudogap metal

Topological order in the pseudogap metal HARVARD Topological order in the pseudogap metal High Temperature Superconductivity Unifying Themes in Diverse Materials 2018 Aspen Winter Conference Aspen Center for Physics Subir Sachdev January 16,

More information

Exotic phases of the Kondo lattice, and holography

Exotic phases of the Kondo lattice, and holography Exotic phases of the Kondo lattice, and holography Stanford, July 15, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. The Anderson/Kondo lattice models Luttinger s theorem 2. Fractionalized

More information

Sign-problem-free quantum Monte Carlo of the onset of antiferromagnetism in metals

Sign-problem-free quantum Monte Carlo of the onset of antiferromagnetism in metals arxiv:1206.0742v2 [cond-mat.str-el] 8 Nov 2012 Sign-problem-free quantum Monte Carlo of the onset of antiferromagnetism in metals Erez Berg, 1,2 Max A. Metlitski, 3 Subir Sachdev 1,4 1 Department of Physics,

More information

arxiv: v1 [cond-mat.str-el] 15 Jan 2018

arxiv: v1 [cond-mat.str-el] 15 Jan 2018 Fluctuation effects at the onset of 2k F density wave order with one pair of hot spots in two-dimensional metals Jáchym Sýkora, Tobias Holder, 2 and Walter Metzner Max Planck Institute for Solid State

More information

Spontaneous symmetry breaking in fermion systems with functional RG

Spontaneous symmetry breaking in fermion systems with functional RG Spontaneous symmetry breaking in fermion systems with functional RG Andreas Eberlein and Walter Metzner MPI for Solid State Research, Stuttgart Lefkada, September 24 A. Eberlein and W. Metzner Spontaneous

More information

Tuning order in cuprate superconductors

Tuning order in cuprate superconductors Tuning order in cuprate superconductors arxiv:cond-mat/0201401 v1 23 Jan 2002 Subir Sachdev 1 and Shou-Cheng Zhang 2 1 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120,

More information

Fermi liquid & Non- Fermi liquids. Sung- Sik Lee McMaster University Perimeter Ins>tute

Fermi liquid & Non- Fermi liquids. Sung- Sik Lee McMaster University Perimeter Ins>tute Fermi liquid & Non- Fermi liquids Sung- Sik Lee McMaster University Perimeter Ins>tute Goal of many- body physics : to extract a small set of useful informa>on out of a large number of degrees of freedom

More information

The bosonic Kondo effect:

The bosonic Kondo effect: The bosonic Kondo effect: probing spin liquids and multicomponent cold gases Serge Florens Institut für Theorie der Kondensierten Materie (Karlsruhe) with: Lars Fritz, ITKM (Karlsruhe) Matthias Vojta,

More information

A New look at the Pseudogap Phase in the Cuprates.

A New look at the Pseudogap Phase in the Cuprates. A New look at the Pseudogap Phase in the Cuprates. Patrick Lee MIT Common themes: 1. Competing order. 2. superconducting fluctuations. 3. Spin gap: RVB. What is the elephant? My answer: All of the above!

More information

Supplementary Information for. Linear-T resistivity and change in Fermi surface at the pseudogap critical point of a high-t c superconductor

Supplementary Information for. Linear-T resistivity and change in Fermi surface at the pseudogap critical point of a high-t c superconductor NPHYS-2008-06-00736 Supplementary Information for Linear-T resistivity and change in Fermi surface at the pseudogap critical point of a high-t c superconductor R. Daou 1, Nicolas Doiron-Leyraud 1, David

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

Properties of monopole operators in 3d gauge theories

Properties of monopole operators in 3d gauge theories Properties of monopole operators in 3d gauge theories Silviu S. Pufu Princeton University Based on: arxiv:1303.6125 arxiv:1309.1160 (with Ethan Dyer and Mark Mezei) work in progress with Ethan Dyer, Mark

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter IISc, Bangalore January 23, 2012 sachdev.physics.harvard.edu HARVARD Outline 1. Conformal quantum matter Entanglement, emergent dimensions and string theory

More information

2. Spin liquids and valence bond solids

2. Spin liquids and valence bond solids Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence bond solids (a) Schwinger-boson mean-field theory - square lattice (b) Gauge theories of perturbative

More information

Magnets, 1D quantum system, and quantum Phase transitions

Magnets, 1D quantum system, and quantum Phase transitions 134 Phys620.nb 10 Magnets, 1D quantum system, and quantum Phase transitions In 1D, fermions can be mapped into bosons, and vice versa. 10.1. magnetization and frustrated magnets (in any dimensions) Consider

More information

Disordered metals without quasiparticles, and charged black holes

Disordered metals without quasiparticles, and charged black holes HARVARD Disordered metals without quasiparticles, and charged black holes String Theory: Past and Present (SpentaFest) International Center for Theoretical Sciences, Bengaluru January 11-13, 2017 Subir

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals PCTS, Princeton, October 26, 2012 Subir Sachdev Talk online at sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Complex entangled

More information

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES studies of cuprates Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Goals of lecture Understand why gaps are important and various ways that gap

More information

Quantum phase transitions in condensed matter physics, with connections to string theory

Quantum phase transitions in condensed matter physics, with connections to string theory Quantum phase transitions in condensed matter physics, with connections to string theory sachdev.physics.harvard.edu HARVARD High temperature superconductors Cuprates High temperature superconductors Pnictides

More information

arxiv:cond-mat/ v1 4 Aug 2003

arxiv:cond-mat/ v1 4 Aug 2003 Conductivity of thermally fluctuating superconductors in two dimensions Subir Sachdev arxiv:cond-mat/0308063 v1 4 Aug 2003 Abstract Department of Physics, Yale University, P.O. Box 208120, New Haven CT

More information

Talk online at

Talk online at Talk online at http://sachdev.physics.harvard.edu Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic

More information

Topological order in quantum matter

Topological order in quantum matter HARVARD Topological order in quantum matter Stanford University Subir Sachdev November 30, 2017 Talk online: sachdev.physics.harvard.edu Mathias Scheurer Wei Wu Shubhayu Chatterjee arxiv:1711.09925 Michel

More information

Electrical transport near a pair-breaking superconductor-metal quantum phase transition

Electrical transport near a pair-breaking superconductor-metal quantum phase transition Electrical transport near a pair-breaking superconductor-metal quantum phase transition Emily Dunkel (Harvard) Joel Moore (Berkeley) Daniel Podolsky (Berkeley) Subir Sachdev (Harvard) Ashvin Vishwanath

More information

Subir Sachdev. Talk online: sachdev.physics.harvard.edu

Subir Sachdev. Talk online: sachdev.physics.harvard.edu HARVARD Gauge theory for the cuprates near optimal doping Developments in Quantum Field Theory and Condensed Matter Physics Simons Center for Geometry and Physics, Stony Brook University November 7, 2018

More information

SYK models and black holes

SYK models and black holes SYK models and black holes Black Hole Initiative Colloquium Harvard, October 25, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Wenbo Fu, Harvard Yingfei Gu, Stanford Richard Davison,

More information

Quantum Simulation Studies of Charge Patterns in Fermi-Bose Systems

Quantum Simulation Studies of Charge Patterns in Fermi-Bose Systems Quantum Simulation Studies of Charge Patterns in Fermi-Bose Systems 1. Hubbard to Holstein 2. Peierls Picture of CDW Transition 3. Phonons with Dispersion 4. Holstein Model on Honeycomb Lattice 5. A New

More information

Functional renormalization group approach to the Ising-nematic quantum critical point of two-dimensional metals

Functional renormalization group approach to the Ising-nematic quantum critical point of two-dimensional metals Functional renormalization group approach to the Ising-nematic quantum critical point of two-dimensional metals Casper Drukier, Lorenz Bartosch, Aldo Isidori, and Peter Kopietz Institut für Theoretische

More information

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Jaeger, Orr, Goldman, Kuper (1986) Dissipation driven QCP s Haviland, Liu, and Goldman Phys. Rev.

More information

Quantum mechanics without particles

Quantum mechanics without particles Quantum mechanics without particles Institute Lecture, Indian Institute of Technology, Kanpur January 21, 2014 sachdev.physics.harvard.edu HARVARD Outline 1. Key ideas from quantum mechanics 2. Many-particle

More information

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

Solutions to gauge hierarchy problem. SS 10, Uli Haisch Solutions to gauge hierarchy problem SS 10, Uli Haisch 1 Quantum instability of Higgs mass So far we considered only at RGE of Higgs quartic coupling (dimensionless parameter). Higgs mass has a totally

More information