Quantum critical metals and their instabilities. Srinivas Raghu (Stanford)

Size: px
Start display at page:

Download "Quantum critical metals and their instabilities. Srinivas Raghu (Stanford)"

Transcription

1 Quantum critical metals and their instabilities Srinivas Raghu (Stanford)

2 Collaborators and References R. Mahajan, D. Ramirez, S. Kachru, and SR, PRB 88, (2013). A. Liam Fitzpatrick, S. Kachru, J. Kaplan, and SR, PRB 88, (2013). A. Liam Fitzpatrick, S. Kachru, J. Kaplan, and SR, PRB (2014). A. Liam Fitzpatrick, S. Kachru, J. Kaplan, and SR, G. Torroba, H. Wang, to appear. With Liam Fitzpatrick, Jared Kaplan, Shamit Kachru Gonzalo Torroba, Huajia Wang

3 Basic themes to be explored Basic issues related to metallic quantum criticality. Hertz: metallic quasiparticles + order parameter fluctuations. Current frontier: treatment of the interplay between incoherent fermions and order parameter fluctuations. Instabilities towards conventional ground states? Goal: treat fermions and order parameter fields on equal footing, find controllable limits and associated scaling laws.

4 Ordinary metals Free electrons k(t) =e i (k)t ~ k (0) plane-wave eigenstates switch on short-range interactions quasiparticles k(t) e i (k)t ~ e (k)t ~ k (0) q.p. scattering rate Quasiparticle description is viable when Near Fermi surface, this is increasingly well-satisfied: Fairly robustly in the simplest setting,! fermions 0, contribute: 2 Consequences: Universal thermodynamics e.g. C V T T 2

5 Effective field theory of ordinary metals (Shankar 1991, Polchinski 1992) Z Non-interacting Fixed point action, S: Landau Fermi liquid theory S =!,k Z k,! Z (i! d! 2 Z v`) d`dd 1 k k (2 ) d k ` : perpendicular to F. S. empty states ) q y filled states q x Most interactions are irrelevant. BCS -> marginal. Fermi surface Clean metal - unstable only to BCS (at exponentially small energy scales).

6 Breakdown of fermion quasiparticles A recurring theme: Fermi liquid theory breaks down at a quantum phase transition. NFL emanates from a critical point at T=0. NFL can give way to higher Tc superconductivity. NFL QCPs in metals: wide-open problem especially in d=2+1.

7 How do Fermi liquids break down? Shankar/Polchinski s theory cannot capture such behavior. New IR effects can occur if additional low energy modes couple to electrons: e.g. order parameter fluctuations near criticality. This occurs at quantum critical points in metals. Two types of quantum critical points:! 1) transition preserves translation symmetry (e.g. Ferromagnetism, nematic ordering) 2) transition breaks translation symmetry (e.g. CDW, SDW ordering) I will focus on the class 1) of critical points above.

8 Concrete model system Ising nematic transition: breaking of point group symmetry. Fermi liquids: Pomeranchuk instability Fermi liquid 2 possible ground states Analogy with classical liquid crystals spin up spin down t Isotropic Nematic order parameter: t + At the critical point is a massless field.

9 Effective theory: Fermion-boson problem Starting UV action: S = S + S + S S S S Landau Fermi liquid Landau-Ginzburg-Wilson theory for order parameter. Fermion-boson Yukawa coupling Obtaining such an action: Start with electrons strongly interacting ( Hubbard model ). Integrate out high energy modes from lattice scale down to a new UV cutoff << E F. = Scale below which we can linearize the fermion Kinetic energy.

10 Effective theory: Fermion-boson problem Starting UV action (in imaginary time): een bosons and fermions: S = d d d x L = S + S + S L = [ + µ (i )] + 2 L = m 2 2 +( ) 2 + c 2 + 4! 4 d d+1 kd d+1 q S, = (2 ) g(k, q) (k) (k + q) (q), 2(d+1) Fermions bosons Yukawa coupling Ising nematic theory: g(k, q) =g (cos k x cos k y ). g=0: decoupled limit (Fermi liquid + ordinary critical point). non-zero g: complex tug-of-war between bosons and fermions.

11 Tug-of-war between bosons and fermions Non-zero g: Bosons can decay into particle-hole continuum -> overdamped bosons. a ab ab + b Non-zero g: Quasiparticle scattering enhanced due to bosons. ab a b a + q.p. Scattering rate can exceed its energy. Fermion propagators: poles become branch cuts. Result: breakdown of Landau quasiparticle. How to proceed???

12 Mainstream view: Hertz (1976) This approach takes the viewpoint that damping of bosons due to fermions is the most significant effect. Idea: integrating out all fermions results in a non-local theory of nearly free, overdamped bosons: S eff = Z k,!! 2 c 2 k 2 + i (!, k) 2 (!,k)=g 2 kd 1 F v! k Landau damping -> bosons governed by z=3 dynamic scaling. Interactions among bosons are irrelevant but singular: ignoring them could be dangerous!

13 A long line of works building along this direction exists: Hertz 1976 Millis 1993 Polchinski 1994 Altshuler, Ioffe, Millis, 1994 Nayak, Wilczek, 1994 Oganesyan, Fradkin, Kivelson, 2001 Chubukov et al, 2006 Sung-Sik Lee, 2009 Metlitski, Sachdev 2010 Mross, Mcgreevy, Liu, Senthil (2010) Davidovic, Sung-Sik Lee (2014). We go in a different direction

14 Outline of the rest of the talk Ignore SC here and address normal state { I. Large N theory II. Renormalization group analysis III. Superconducting domes

15 I. Large N limits

16 Large N limits Essence of the problem: dissipative coupling between bosons and fermions. Large N limits: particles with many (N) flavors act as a dissipative bath while remaining degrees of freedom become overdamped. Large N limits present us with sharp separation of energy scales. e.g. Large number of fermion flavors (Nf). Boson can decay in many channels -> Overdamped bosons (NFL is subdominant). Mainstream (Hertz) theory captures the IR behavior in this regime. e.g. Large number of boson flavors (Nb). Fermion can decay in many channels -> NFL is strongest effect (boson damping is subdominant).

17 Large N limits Large NF: O(1/N F ): Large NB: O(1/N B ):

18 Implementation of large N limits! i! i =1 N F i, j =1 N B! j i g! g i j j i (repeated indices summed). I will consider the case: N F =1,N B!1. Focus today on SO(N) global symmetry

19 Large NB action L = i [@ + µ (ir)] i + i NB L =tr m (@ ) 2 + c 2 r ~ i j j (1) + tr( 4 )+ 8N B L, = g p NB i j j i (2) 8N 2 B (tr( 2 )) 2 i, j =1 N B Emergent SO(NB 2 ) symmetry when (1) =0 This symmetry is softly broken: i.e., only at O(1/N 2 B).

20 N B!1: = Large NB solution Properties of the solution: G(k,!) = 1) Fermi velocity vanishes at infinite NB. 2) Green function has branch cut spectrum. 3) Damping of order parameter is a 1/NB effect. =3 d 1! 1 /2 f! k ; N B! f k ; N B!1 =1 The solution matches on to perturbation theory in the UV. The theory can smoothly be extended to d=2. The theory describes infinitely heavy, incoherent fermionic quasiparticles.

21 Large N limits The theory can be solved at large N even in d=2+1. First 1/NB correction: Landau damping of the boson due to incoherent particle-hole fluctuations. The form of Landau damping here very different than in the standard approach: (k,!) =! log! 2 v 2 F k 2 Landau damping due to ill-defined quasiparticles is weaker. This leads to a broad energy regime governed by a z=2 boson.

22 Scaling landscape N B Our theory?? Real materials Hertz N F Moral of the story: there may be several distinct asymptotic limits with different scaling behaviors, dynamic crossovers in this problem.

23 II. RG analysis

24 Scaling near the upper-critical dimension UV theory: decoupled Fermi liquid + nearly free bosons (g=0). Scaling must contend with vastly different kinematics of bosons and fermions. Fermions: low energy = Fermi surface. -> anisotropic scaling. Bosons: low energy = point in k-space. -> isotropic scaling. (a) } [g] q y (c) q x k q (b) empty states k + q q y filled states empty states filled states = 1 2 (3 d) d=3 is the upper critical dimension. q x Note for experts: this can also be seen readily in z=1 patch scaling.

25 Renormalization group analysis Integrate out modes with energy Integrate out modes with momenta e t <E< k e t <k< k k / = UV cutoff: scale below which fermion dispersion can be linearized (with a well-defined Fermi velocity). Following Wilson, we will integrate out only highenergy modes to obtain RG flows. This is a radical departure from the standard approach to this problem. K. G. Wilson I will present RG results at large Nb.

26 Renormalization group analysis RG flows at one-loop: =3 d N B 1 4 term : d dt = a 2 a>0 g term : Fermi velocity: dg dt = 2 g dv bg3 b>0 dt = cg2 S(v) S(v) sgn(v) Naive fixed point: = O( ) g = O( p ) v =0

27 A few heretical remarks a Landau damping, which plays a central role in Hertz s theory never contributes to RG running! ab ab b The same is not true for the fermion. It obtains non-trivial wave-function renormalization: a ab b a t+dt (!, k) t (k) =i!g 2 a g dt a positive constant. This effect gives rise to anomalous dimensions for the fermions (i.e. Green functions have branch cuts, no poles) and to velocity running. This effect (and vertex corrections) produce the NFL.

28 Properties of the naive fixed point v/c: vanishes before the system reaches the fixed point! This feature shuts down Landau damping. Fermion 2-pt function takes the form: G(!,k)= 1! 1 2 f! k? f(x) = scaling function Consistent with the large NB solution. Is this too much of a good thing?? Infinitely heavy, incoherent fermions + non-mean-field critical exponents!

29 Introducing leading irrelevant couplings (k) µ = v` + w`2 + w ~ band curvature RG flow equations dv dt = cg2 S(v) S(v) sgn(v) dw dt = w w cannot be neglected below an emergent energy scale: µ e v 0/g 2 0, O(1) w is dangerously irrelevant We don t know what happens below this scale (Lifshitz transition?)

30 Summary so far We studied a metal near a nematic quantum critical point and found non-fermi liquid phenomena via 1) large N and 2)RG methods. Both methods produce consistent results. The fixed point corresponds to an infinitely heavy incoherent soup of fermions + order parameter fluctuations. This fixed point is unstable, but it governs scaling laws over a broad range of energy/temperature scales.

31 Summary so far E F Wilson-Fisher + dressed non-fermi liquid! LD ge F 1 p N Scale where Landau damping sets in???

32 III. Superconducting domes

33 Effect of QCP on pairing The order parameter has two effects on the fermions: 1) It destroys fermion quasiparticle. Bad for pairing. a ab b a 2) It enhances the pairing interaction: (like a critical optical phonon). Good for pairing. v v v v Which of these effects dominates??

34 Perturbation theory near d=3 There are log-squared divergences in the Cooper channel in the vicinity of the quantum critical point. v v v v k v v v + + v eff (!) + g 2 log 2 apple! + Naively summing these up in the spirit of BCS, we find a parametrically higher instability scale:! exp ( 1/ g )

35 Log 2 divergences and universality Exponentially enhanced pairing at QCP is encouraging. However, log 2 divergences pose a significant challenge for the RG. RG time: t = log [ /!] When log 2 divergences are present, RG flows are explicitly t-dependent: d dt (coupling) / t Notions of universality and fixed points could be destroyed. How to proceed?

36 RG Analysis Key point: ordinary log-divergence is hidden in a tree-level interaction: k v v v v k 0 k k 0 = g 2 (k 0 k 0 0 )2 + c 2 k k 0 2 To see this: consider the angular momentum basis: V (`) = 2` +1 2 Z 1 1 d(cos ) ( )P`(cos )

37 RG Analysis S-wave (` = 0) case for simplicity: V (0) = g2 2 Z 1 1 d(cos ) (k 0 k 0 0 )2 + k k 0 2 Momentum transfer: q 2 k k 0 2 ' 2k 2 F (1 cos ) d(cos ) = d(q 2 )/2k 2 F Note that kf as a scale is crucial here: it converts an angle to a momentum transfer q imparted by the boson: Z 2k 2 g2 F V (0) = 4k 2 F 2k 2 F d(q 2 ) (k 0 k 0 0 )2 + q 2

38 RG Analysis Idea: treat V(0) in a Wilsonian spirit, decimating only fast q modes. The contribution from decimating a thin shell d <q< : V (0) = g 2 d Adding the Fermi liquid contribution, which is present even when g=0, we obtain the RG flow for the BCS pairing amplitude: dv (`) dt = g 2 + V (`) 2 [dt = d log ] Note that flows are not explicitly t-dependent. It s solution contains the exponential enhancement of pairing that we guessed using perturbation theory.

39 Accounting for anomalous dimensions Last step in the RG: after integrating out a thin shell of modes, we must rescale fields. Fermion fields acquire anomalous dimension in the presence of the boson. This will affect the flow of BCS couplings after field rescaling. ab a b a Final result: competition between 2 effects. dv (`) dt = g 2 + V (`) 2 a g g 2 V (`) { enhancement of pairing by scalar { suppression due to qp destruction. a g = (1 + v /c)

40 Previous work on dense QCD D.T. Son considered superconductivity of quarks due to gluon exchange in finite density QCD. Similar log 2 divergences occur here. In a remarkable paper, Son concluded (based on intuitive reasoning): d = (g ) dt Our result agrees (upto anomalous dimensions) with Son s. Similar recent work: Metlitski et al.,

41 Phase diagrams at large Nb Consider the large Fermion velocity limit: c/v ->0. Taking g, v large but with fixed (and small) = g 2 /v we can still control the theory. BCS k F e 1/p NFL k F e 1/ p kf LD p v N In the large v limit, with moderately large N, we can arrange for BCS instability to occur above the scale where our theory breaks down (due to Landau damping). Note: there is a subdominant CDW instability also present in this theory.

42 Conclusions and outlook Near d=3+1, superconductivity forms at higher energy scales than the formation of a non-fermi liquid in the large Nb limit. Anomalous dimension contribution is small. Also Landau damping is unimportant. Near d=2+1, other possibilities may occur.! With both overdamped fermions and bosons, pairing can occur out of a non-fermi liquid with a large anomalous dimension (work in progress). Outstanding goal: to demonstrate enhanced superconductivity out of a non-fermi liquid.

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford)

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford) Wilsonian and large N theories of quantum critical metals Srinivas Raghu (Stanford) Collaborators and References R. Mahajan, D. Ramirez, S. Kachru, and SR, PRB 88, 115116 (2013). A. Liam Fitzpatrick, S.

More information

Quantum criticality of Fermi surfaces

Quantum criticality of Fermi surfaces Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface

More information

3. Quantum matter without quasiparticles

3. Quantum matter without quasiparticles 1. Review of Fermi liquid theory Topological argument for the Luttinger theorem 2. Fractionalized Fermi liquid A Fermi liquid co-existing with topological order for the pseudogap metal 3. Quantum matter

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Emergent Quantum Criticality

Emergent Quantum Criticality (Non-)Fermi Liquids and Emergent Quantum Criticality from gravity Hong Liu Massachusetts setts Institute te of Technology HL, John McGreevy, David Vegh, 0903.2477 Tom Faulkner, HL, JM, DV, to appear Sung-Sik

More information

Quantum Melting of Stripes

Quantum Melting of Stripes Quantum Melting of Stripes David Mross and T. Senthil (MIT) D. Mross, TS, PRL 2012 D. Mross, TS, PR B (to appear) Varieties of Stripes Spin, Charge Néel 2π Q c 2π Q s ``Anti-phase stripes, common in La-based

More information

Landau s Fermi Liquid Theory

Landau s Fermi Liquid Theory Thors Hans Hansson Stockholm University Outline 1 Fermi Liquids Why, What, and How? Why Fermi liquids? What is a Fermi liquids? Fermi Liquids How? 2 Landau s Phenomenological Approach The free Fermi gas

More information

Singularites in Fermi liquids and the instability of a ferromagnetic quantum-critical point

Singularites in Fermi liquids and the instability of a ferromagnetic quantum-critical point Singularites in ermi liquids and the instability of a ferromagnetic quantum-critical point Andrey Chubukov Dmitrii Maslov lorida University of Wisconsin Catherine Pepin Jerome Rech SPhT Saclay Dima Kveshchenko

More information

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability Subir Sachdev sachdev.physics.harvard.edu HARVARD y x Fermi surface with full square lattice symmetry y x Spontaneous

More information

Metals without quasiparticles

Metals without quasiparticles Metals without quasiparticles A. Review of Fermi liquid theory B. A non-fermi liquid: the Ising-nematic quantum critical point C. Fermi surfaces and gauge fields Metals without quasiparticles A. Review

More information

Strange metal from local quantum chaos

Strange metal from local quantum chaos Strange metal from local quantum chaos John McGreevy (UCSD) hello based on work with Daniel Ben-Zion (UCSD) 2017-08-26 Compressible states of fermions at finite density The metallic states that we understand

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

Nematic and Magnetic orders in Fe-based Superconductors

Nematic and Magnetic orders in Fe-based Superconductors Nematic and Magnetic orders in Fe-based Superconductors Cenke Xu Harvard University Collaborators: Markus Mueller, Yang Qi Subir Sachdev, Jiangping Hu Collaborators: Subir Sachdev Markus Mueller Yang Qi

More information

Lecture 2: Deconfined quantum criticality

Lecture 2: Deconfined quantum criticality Lecture 2: Deconfined quantum criticality T. Senthil (MIT) General theoretical questions Fate of Landau-Ginzburg-Wilson ideas at quantum phase transitions? (More precise) Could Landau order parameters

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

Supersymmetric Mirror Duality and Half-filled Landau level S. Kachru, M Mulligan, G Torroba and H. Wang Phys.Rev.

Supersymmetric Mirror Duality and Half-filled Landau level S. Kachru, M Mulligan, G Torroba and H. Wang Phys.Rev. Supersymmetric Mirror Duality and Half-filled Landau level S. Kachru, M Mulligan, G Torroba and H. Wang Phys.Rev. B92 (2015) 235105 Huajia Wang University of Illinois Urbana Champaign Introduction/Motivation

More information

How might a Fermi surface die? Unconventional quantum criticality in metals. T. Senthil (MIT)

How might a Fermi surface die? Unconventional quantum criticality in metals. T. Senthil (MIT) How might a Fermi surface die? Unconventional quantum criticality in metals T. Senthil (MIT) Fermi Liquid Theory (FLT) of conventional metals Electron retains integrity at low energies as a `quasiparticle

More information

Fermi liquid & Non- Fermi liquids. Sung- Sik Lee McMaster University Perimeter Ins>tute

Fermi liquid & Non- Fermi liquids. Sung- Sik Lee McMaster University Perimeter Ins>tute Fermi liquid & Non- Fermi liquids Sung- Sik Lee McMaster University Perimeter Ins>tute Goal of many- body physics : to extract a small set of useful informa>on out of a large number of degrees of freedom

More information

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality Hans-Henning Klauss Institut für Festkörperphysik TU Dresden 1 References [1] Stephen Blundell, Magnetism in Condensed

More information

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 )

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 ) Revealing fermionic quantum criticality from new Monte Carlo techniques Zi Yang Meng ( 孟子杨 ) http://ziyangmeng.iphy.ac.cn Collaborators and References Xiao Yan Xu Zi Hong Liu Chuang Chen Gao Pei Pan Yang

More information

General relativity and the cuprates

General relativity and the cuprates General relativity and the cuprates Gary T. Horowitz and Jorge E. Santos Department of Physics, University of California, Santa Barbara, CA 93106, U.S.A. E-mail: gary@physics.ucsb.edu, jss55@physics.ucsb.edu

More information

(Effective) Field Theory and Emergence in Condensed Matter

(Effective) Field Theory and Emergence in Condensed Matter (Effective) Field Theory and Emergence in Condensed Matter T. Senthil (MIT) Effective field theory in condensed matter physics Microscopic models (e.g, Hubbard/t-J, lattice spin Hamiltonians, etc) `Low

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

Quantum Monte Carlo investigations of correlated electron systems, present and future. Zi Yang Meng ( 孟子杨 )

Quantum Monte Carlo investigations of correlated electron systems, present and future. Zi Yang Meng ( 孟子杨 ) Quantum Monte Carlo investigations of correlated electron systems, present and future Zi Yang Meng ( 孟子杨 ) http://ziyangmeng.iphy.ac.cn Collaborators Xiao Yan Xu Yoni Schattner Zi Hong Liu Erez Berg Chuang

More information

Can superconductivity emerge out of a non Fermi liquid.

Can superconductivity emerge out of a non Fermi liquid. Can superconductivity emerge out of a non Fermi liquid. Andrey Chubukov University of Wisconsin Washington University, January 29, 2003 Superconductivity Kamerling Onnes, 1911 Ideal diamagnetism High Tc

More information

Phase Transitions and Renormalization:

Phase Transitions and Renormalization: Phase Transitions and Renormalization: Using quantum techniques to understand critical phenomena. Sean Pohorence Department of Applied Mathematics and Theoretical Physics University of Cambridge CAPS 2013

More information

MOTTNESS AND STRONG COUPLING

MOTTNESS AND STRONG COUPLING MOTTNESS AND STRONG COUPLING ROB LEIGH UNIVERSITY OF ILLINOIS Rutgers University April 2008 based on various papers with Philip Phillips and Ting-Pong Choy PRL 99 (2007) 046404 PRB 77 (2008) 014512 PRB

More information

Fermi Liquid and BCS Phase Transition

Fermi Liquid and BCS Phase Transition Fermi Liquid and BCS Phase Transition Yu, Zhenhua November 2, 25 Abstract Landau fermi liquid theory is introduced as a successful theory describing the low energy properties of most fermi systems. Besides

More information

Quantum Phase Transitions in Fermi Liquids

Quantum Phase Transitions in Fermi Liquids Quantum Phase Transitions in Fermi Liquids in d=1 and higher dimensions Mihir Khadilkar Kyungmin Lee Shivam Ghosh PHYS 7653 December 2, 2010 Outline 1 Introduction 2 d = 1: Mean field vs RG Model 3 Higher

More information

Kolloquium Universität Innsbruck October 13, The renormalization group: from the foundations to modern applications

Kolloquium Universität Innsbruck October 13, The renormalization group: from the foundations to modern applications Kolloquium Universität Innsbruck October 13, 2009 The renormalization group: from the foundations to modern applications Peter Kopietz, Universität Frankfurt 1.) Historical introduction: what is the RG?

More information

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory Renormalization of microscopic Hamiltonians Renormalization Group without Field Theory Alberto Parola Università dell Insubria (Como - Italy) Renormalization Group Universality Only dimensionality and

More information

Exact results concerning the phase diagram of the Hubbard Model

Exact results concerning the phase diagram of the Hubbard Model Steve Kivelson Apr 15, 2011 Freedman Symposium Exact results concerning the phase diagram of the Hubbard Model S.Raghu, D.J. Scalapino, Li Liu, E. Berg H. Yao, W-F. Tsai, A. Lauchli G. Karakonstantakis,

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Vertex corrections for impurity scattering at a ferromagnetic quantum critical point

Vertex corrections for impurity scattering at a ferromagnetic quantum critical point PHYSICAL REVIEW B 8, 5 Vertex corrections for impurity scattering at a ferromagnetic quantum critical point Enrico Rossi, * and Dirk K. Morr, Department of Physics, University of Illinois at Chicago, Chicago,

More information

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals Kerson Huang Quantum Field Theory From Operators to Path Integrals Second, Revised, and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA I vh Contents Preface XIII 1 Introducing Quantum Fields

More information

A Renormalization Group Primer

A Renormalization Group Primer A Renormalization Group Primer Physics 295 2010. Independent Study. Topics in Quantum Field Theory Michael Dine Department of Physics University of California, Santa Cruz May 2010 Introduction: Some Simple

More information

FRG approach to interacting fermions with partial bosonization: from weak to strong coupling

FRG approach to interacting fermions with partial bosonization: from weak to strong coupling FRG approach to interacting fermions with partial bosonization: from weak to strong coupling Talk at conference ERG08, Heidelberg, June 30, 2008 Peter Kopietz, Universität Frankfurt collaborators: Lorenz

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

Electronic quasiparticles and competing orders in the cuprate superconductors

Electronic quasiparticles and competing orders in the cuprate superconductors Electronic quasiparticles and competing orders in the cuprate superconductors Andrea Pelissetto Rome Subir Sachdev Ettore Vicari Pisa Yejin Huh Harvard Harvard Gapless nodal quasiparticles in d-wave superconductors

More information

Part III: Impurities in Luttinger liquids

Part III: Impurities in Luttinger liquids Functional RG for interacting fermions... Part III: Impurities in Luttinger liquids 1. Luttinger liquids 2. Impurity effects 3. Microscopic model 4. Flow equations 5. Results S. Andergassen, T. Enss (Stuttgart)

More information

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 We are directly observing the history of the universe as we look deeply into the sky. JUN 30, 2016 ZZXianyu (CMSA) 2 At ~10 4 yrs the universe becomes

More information

Inverse square potential, scale anomaly, and complex extension

Inverse square potential, scale anomaly, and complex extension Inverse square potential, scale anomaly, and complex extension Sergej Moroz Seattle, February 2010 Work in collaboration with Richard Schmidt ITP, Heidelberg Outline Introduction and motivation Functional

More information

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9 Preface v Chapter 1 Introduction 1 1.1 Prerequisites and textbooks......................... 1 1.2 Physical phenomena and theoretical tools................. 5 1.3 The path integrals..............................

More information

Quantum oscillations & black hole ringing

Quantum oscillations & black hole ringing Quantum oscillations & black hole ringing Sean Hartnoll Harvard University Work in collaboration with Frederik Denef : 0901.1160. Frederik Denef and Subir Sachdev : 0908.1788, 0908.2657. Sept. 09 ASC,

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Precision (B)SM Higgs future colliders

Precision (B)SM Higgs future colliders Flavor and top physics @ 100 TeV Workshop, IHEP/CAS, MARCH 5, 2015 Seung J. Lee (KAIST) Precision (B)SM Higgs Studies @ future colliders 1. Study of SM Higgs boson partial widths and branching fractions

More information

(Im)possible emergent symmetry and conformal bootstrap

(Im)possible emergent symmetry and conformal bootstrap (Im)possible emergent symmetry and conformal bootstrap Yu Nakayama earlier results are based on collaboration with Tomoki Ohtsuki Phys.Rev.Lett. 117 (2016) Symmetries in nature The great lesson from string

More information

Non Fermi liquid effects in dense matter. Kai Schwenzer, Thomas Schäfer INT workshop From lattices to stars Seattle,

Non Fermi liquid effects in dense matter. Kai Schwenzer, Thomas Schäfer INT workshop From lattices to stars Seattle, Non Fermi liquid effects in dense matter Kai Schwenzer, Thomas Schäfer INT workshop From lattices to stars Seattle, 27.5.2004 1 Introduction Possible phases at high density...... all involve condensed

More information

Quantum criticality of Fermi surfaces in two dimensions

Quantum criticality of Fermi surfaces in two dimensions Quantum criticality of Fermi surfaces in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Yejin Huh, Harvard Max Metlitski, Harvard HARVARD Outline 1. Quantum criticality of Fermi points:

More information

Duality and Holography

Duality and Holography Duality and Holography? Joseph Polchinski UC Davis, 5/16/11 Which of these interactions doesn t belong? a) Electromagnetism b) Weak nuclear c) Strong nuclear d) a) Electromagnetism b) Weak nuclear c) Strong

More information

Trapping Centers at the Superfluid-Mott-Insulator Criticality: Transition between Charge-quantized States

Trapping Centers at the Superfluid-Mott-Insulator Criticality: Transition between Charge-quantized States Trapping Centers at the Superfluid-Mott-Insulator Criticality: Transition between Charge-quantized States Boris Svistunov University of Massachusetts, Amherst DIMOCA 2017, Mainz Institute for Theoretical

More information

Chapter 7. Summary and Outlook

Chapter 7. Summary and Outlook Chapter 7 Summary and Outlook In this thesis the coexistence of Density Waves and singlet Superconductivity was analyzed in some detail. As a first step the gap equations for pure DW order were derived

More information

arxiv: v2 [cond-mat.str-el] 28 Jul 2015

arxiv: v2 [cond-mat.str-el] 28 Jul 2015 UV/IR mixing in on-ermi Liquids Ipsita Mandal 1 and Sung-Sik Lee 1, 1 Perimeter Institute for Theoretical Physics, 1 Caroline St.., Waterloo O L Y5, Canada Department of Physics & Astronomy, McMaster University,

More information

Field Theories in Condensed Matter Physics. Edited by. Sumathi Rao. Harish-Chandra Research Institute Allahabad. lop

Field Theories in Condensed Matter Physics. Edited by. Sumathi Rao. Harish-Chandra Research Institute Allahabad. lop Field Theories in Condensed Matter Physics Edited by Sumathi Rao Harish-Chandra Research Institute Allahabad lop Institute of Physics Publishing Bristol and Philadelphia Contents Preface xiii Introduction

More information

Strong coupling problems in condensed matter and the AdS/CFT correspondence

Strong coupling problems in condensed matter and the AdS/CFT correspondence Strong coupling problems in condensed matter and the AdS/CFT correspondence Reviews: arxiv:0910.1139 arxiv:0901.4103 Talk online: sachdev.physics.harvard.edu HARVARD Frederik Denef, Harvard Yejin Huh,

More information

Manifestly diffeomorphism invariant classical Exact Renormalization Group

Manifestly diffeomorphism invariant classical Exact Renormalization Group Manifestly diffeomorphism invariant classical Exact Renormalization Group Anthony W. H. Preston University of Southampton Supervised by Prof. Tim R. Morris Talk prepared for Asymptotic Safety seminar,

More information

Strongly Correlated Physics With Ultra-Cold Atoms

Strongly Correlated Physics With Ultra-Cold Atoms Strongly Correlated Physics With Ultra-Cold Atoms Predrag Nikolić Rice University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Sponsors W.M.Keck Program in Quantum

More information

Mott metal-insulator transition on compressible lattices

Mott metal-insulator transition on compressible lattices Mott metal-insulator transition on compressible lattices Markus Garst Universität zu Köln T p in collaboration with : Mario Zacharias (Köln) Lorenz Bartosch (Frankfurt) T c Mott insulator p c T metal pressure

More information

Quantum disordering magnetic order in insulators, metals, and superconductors

Quantum disordering magnetic order in insulators, metals, and superconductors Quantum disordering magnetic order in insulators, metals, and superconductors Perimeter Institute, Waterloo, May 29, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Cenke Xu, Harvard arxiv:1004.5431

More information

Asymptotically free nonabelian Higgs models. Holger Gies

Asymptotically free nonabelian Higgs models. Holger Gies Asymptotically free nonabelian Higgs models Holger Gies Friedrich-Schiller-Universität Jena & Helmholtz-Institut Jena & Luca Zambelli, PRD 92, 025016 (2015) [arxiv:1502.05907], arxiv:16xx.yyyyy Prologue:

More information

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay I- Similarities between phase diagram and quantum critical points Quantum Criticality in 3 Families of Superconductors L. Taillefer,

More information

Examples of Lifshitz topological transition in interacting fermionic systems

Examples of Lifshitz topological transition in interacting fermionic systems Examples of Lifshitz topological transition in interacting fermionic systems Joseph Betouras (Loughborough U. Work in collaboration with: Sergey Slizovskiy (Loughborough, Sam Carr (Karlsruhe/Kent and Jorge

More information

Universal Dynamics from the Conformal Bootstrap

Universal Dynamics from the Conformal Bootstrap Universal Dynamics from the Conformal Bootstrap Liam Fitzpatrick Stanford University! in collaboration with Kaplan, Poland, Simmons-Duffin, and Walters Conformal Symmetry Conformal = coordinate transformations

More information

Defining Chiral Gauge Theories Beyond Perturbation Theory

Defining Chiral Gauge Theories Beyond Perturbation Theory Defining Chiral Gauge Theories Beyond Perturbation Theory Lattice Regulating Chiral Gauge Theories Dorota M Grabowska UC Berkeley Work done with David B. Kaplan: Phys. Rev. Lett. 116 (2016), no. 21 211602

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Leon Balents T. Senthil, MIT A. Vishwanath, UCB S. Sachdev, Yale M.P.A. Fisher, UCSB Outline Introduction: what is a DQCP Disordered and VBS ground states and gauge theory

More information

Phase transitions in Hubbard Model

Phase transitions in Hubbard Model Phase transitions in Hubbard Model Anti-ferromagnetic and superconducting order in the Hubbard model A functional renormalization group study T.Baier, E.Bick, C.Krahl, J.Mueller, S.Friederich Phase diagram

More information

Effective Field Theory

Effective Field Theory Effective Field Theory Iain Stewart MIT The 19 th Taiwan Spring School on Particles and Fields April, 2006 Physics compartmentalized Quantum Field Theory String Theory? General Relativity short distance

More information

Recent Developments in Holographic Superconductors. Gary Horowitz UC Santa Barbara

Recent Developments in Holographic Superconductors. Gary Horowitz UC Santa Barbara Recent Developments in Holographic Superconductors Gary Horowitz UC Santa Barbara Outline 1) Review basic ideas behind holographic superconductors 2) New view of conductivity and the zero temperature limit

More information

Critical exponents in quantum Einstein gravity

Critical exponents in quantum Einstein gravity Critical exponents in quantum Einstein gravity Sándor Nagy Department of Theoretical physics, University of Debrecen MTA-DE Particle Physics Research Group, Debrecen Leibnitz, 28 June Critical exponents

More information

Let There Be Topological Superconductors

Let There Be Topological Superconductors Let There Be Topological Superconductors K K d Γ ~q c µ arxiv:1606.00857 arxiv:1603.02692 Eun-Ah Kim (Cornell) Boulder 7.21-22.2016 Q. Topological Superconductor material? Bulk 1D proximity 2D proximity?

More information

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II 8.3 Relativistic Quantum Field Theory II MIT OpenCourseWare Lecture Notes Hong Liu, Fall 010 Lecture Firstly, we will summarize our previous results. We start with a bare Lagrangian, L [ 0, ϕ] = g (0)

More information

Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality

Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality HARVARD Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality Indian Institute of Science Education and Research, Pune Subir Sachdev November 15, 2017 Talk online: sachdev.physics.harvard.edu

More information

Which Spin Liquid Is It?

Which Spin Liquid Is It? Which Spin Liquid Is It? Some results concerning the character and stability of various spin liquid phases, and Some speculations concerning candidate spin-liquid phases as the explanation of the peculiar

More information

Fractional quantum Hall effect and duality. Dam T. Son (University of Chicago) Canterbury Tales of hot QFTs, Oxford July 11, 2017

Fractional quantum Hall effect and duality. Dam T. Son (University of Chicago) Canterbury Tales of hot QFTs, Oxford July 11, 2017 Fractional quantum Hall effect and duality Dam T. Son (University of Chicago) Canterbury Tales of hot QFTs, Oxford July 11, 2017 Plan Plan General prologue: Fractional Quantum Hall Effect (FQHE) Plan General

More information

Transport theory and low energy properties of colour superconductors

Transport theory and low energy properties of colour superconductors 1 Transport theory and low energy properties of colour superconductors Daniel F. Litim Theory Group, CERN, CH 1211 Geneva 23, Switzerland. CERN-TH-2001-315 The one-loop polarisation tensor and the propagation

More information

arxiv: v2 [cond-mat.str-el] 2 Apr 2014

arxiv: v2 [cond-mat.str-el] 2 Apr 2014 Transport near the Ising-nematic quantum critical point of metals in two dimensions Sean A. Hartnoll, 1 Raghu Mahajan, 1 Matthias Punk, 2, 3 and Subir Sachdev 4 1 Department of Physics, Stanford University,

More information

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises SM, EWSB & Higgs MITP Summer School 017 Joint Challenges for Cosmology and Colliders Homework & Exercises Ch!"ophe Grojean Ch!"ophe Grojean DESY (Hamburg) Humboldt University (Berlin) ( christophe.grojean@desy.de

More information

Loop corrections in Yukawa theory based on S-51

Loop corrections in Yukawa theory based on S-51 Loop corrections in Yukawa theory based on S-51 Similarly, the exact Dirac propagator can be written as: Let s consider the theory of a pseudoscalar field and a Dirac field: the only couplings allowed

More information

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Quasi-1d Frustrated Antiferromagnets Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Outline Frustration in quasi-1d systems Excitations: magnons versus spinons Neutron scattering

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 7: Magnetic excitations - Phase transitions and the Landau mean-field theory. - Heisenberg and Ising models. - Magnetic excitations. External parameter, as for

More information

Color Superconductivity in High Density QCD

Color Superconductivity in High Density QCD Color Superconductivity in High Density QCD Roberto Casalbuoni Department of Physics and INFN - Florence Bari,, September 9 October 1, 004 1 Introduction Motivations for the study of high-density QCD:

More information

Interacting Fermi Gases

Interacting Fermi Gases Interacting Fermi Gases Mike Hermele (Dated: February 11, 010) Notes on Interacting Fermi Gas for Physics 7450, Spring 010 I. FERMI GAS WITH DELTA-FUNCTION INTERACTION Since it is easier to illustrate

More information

10 Thermal field theory

10 Thermal field theory 0 Thermal field theory 0. Overview Introduction The Green functions we have considered so far were all defined as expectation value of products of fields in a pure state, the vacuum in the absence of real

More information

Topological order in the pseudogap metal

Topological order in the pseudogap metal HARVARD Topological order in the pseudogap metal High Temperature Superconductivity Unifying Themes in Diverse Materials 2018 Aspen Winter Conference Aspen Center for Physics Subir Sachdev January 16,

More information

The mass of the Higgs boson

The mass of the Higgs boson The mass of the Higgs boson LHC : Higgs particle observation CMS 2011/12 ATLAS 2011/12 a prediction Higgs boson found standard model Higgs boson T.Plehn, M.Rauch Spontaneous symmetry breaking confirmed

More information

CFT approach to multi-channel SU(N) Kondo effect

CFT approach to multi-channel SU(N) Kondo effect CFT approach to multi-channel SU(N) Kondo effect Sho Ozaki (Keio Univ.) In collaboration with Taro Kimura (Keio Univ.) Seminar @ Chiba Institute of Technology, 2017 July 8 Contents I) Introduction II)

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Department of Physics Yale University P.O. Box 208120, New Haven, CT 06520-8120 USA E-mail: subir.sachdev@yale.edu May 19, 2004 To appear in Encyclopedia of Mathematical

More information

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis Quark matter and the high-density frontier Mark Alford Washington University in St. Louis Outline I Quarks at high density Confined, quark-gluon plasma, color superconducting II Color superconducting phases

More information

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3 4D-XY Quantum Criticality in Underdoped High-T c cuprates M. Franz University of British Columbia franz@physics.ubc.ca February 22, 2005 In collaboration with: A.P. Iyengar (theory) D.P. Broun, D.A. Bonn

More information

Magnets, 1D quantum system, and quantum Phase transitions

Magnets, 1D quantum system, and quantum Phase transitions 134 Phys620.nb 10 Magnets, 1D quantum system, and quantum Phase transitions In 1D, fermions can be mapped into bosons, and vice versa. 10.1. magnetization and frustrated magnets (in any dimensions) Consider

More information

Introduction to Operator Product Expansion

Introduction to Operator Product Expansion Introduction to Operator Product Expansion (Effective Hamiltonians, Wilson coefficients and all that... ) Thorsten Feldmann Neckarzimmern, March 2008 Th. Feldmann (Uni Siegen) Introduction to OPE March

More information

Quantum Choreography: Exotica inside Crystals

Quantum Choreography: Exotica inside Crystals Quantum Choreography: Exotica inside Crystals U. Toronto - Colloquia 3/9/2006 J. Alicea, O. Motrunich, T. Senthil and MPAF Electrons inside crystals: Quantum Mechanics at room temperature Quantum Theory

More information

Introduction to Renormalization Group

Introduction to Renormalization Group Introduction to Renormalization Group Alex Kovner University of Connecticut, Storrs, CT Valparaiso, December 12-14, 2013 Alex Kovner (UConn) Introduction to Renormalization Group December 12-14, 2013 1

More information

Functional renormalization group approach to the Ising-nematic quantum critical point of two-dimensional metals

Functional renormalization group approach to the Ising-nematic quantum critical point of two-dimensional metals Functional renormalization group approach to the Ising-nematic quantum critical point of two-dimensional metals Casper Drukier, Lorenz Bartosch, Aldo Isidori, and Peter Kopietz Institut für Theoretische

More information

Equation of state of the unitary Fermi gas

Equation of state of the unitary Fermi gas Equation of state of the unitary Fermi gas Igor Boettcher Institute for Theoretical Physics, University of Heidelberg with S. Diehl, J. M. Pawlowski, and C. Wetterich C o ld atom s Δ13, 11. 1. 2013 tio

More information

Why Be Natural? Jonathan Bain. Department of Technology, Culture and Society Tandon School of Engineering, New York University Brooklyn, New York

Why Be Natural? Jonathan Bain. Department of Technology, Culture and Society Tandon School of Engineering, New York University Brooklyn, New York Why Be Natural? Jonathan Bain Department of Technology, Culture and Society Tandon School of Engineering, New York University Brooklyn, New York 1. How to Construct an EFT. 2. Why Be Natural? - Modest

More information

Towards a quantitative FRG approach for the BCS-BEC crossover

Towards a quantitative FRG approach for the BCS-BEC crossover Towards a quantitative FRG approach for the BCS-BEC crossover Michael M. Scherer Theoretisch Physikalisches Institut, Jena University in collaboration with Sebastian Diehl, Stefan Flörchinger, Holger Gies,

More information

Transport w/o quasiparticles

Transport w/o quasiparticles Transport w/o quasiparticles Good metals, bad metals and insulators Sean Hartnoll (Stanford) -- Caneel Bay, Jan. 2013 Based on: 1201.3917 w/ Diego Hofman 1212.2998 w/ Aristos Donos (also work in progress

More information