Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Size: px
Start display at page:

Download "Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University"

Transcription

1 Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS

2 t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation Blackbody radiation Einstein coefficients Quantum field theory 7 2 Lorentz invariance and second quantization Lorentz invariance Classical plane waves as oscillators Second quantization 20 Problems 27 3 Classical field theory Hamiltonians and Lagrangians The Euler-Lagrange equations Noether's theorem Coulomb's law Green's functions 39 Problems 42 4 Old-fashioned perturbation theory Lippmann-Schwinger equation Early infinities 52 Problems 55 5 Cross sections and decay rates Cross sections Non-relativistic limit e+e~ > with spin 65 Problems 67 6 The S-matrix and time-ordered products The LSZ reduction formula The Feynman propagator 75 Problems 77 vii

3 7 Feynman rules Lagrangian derivation Hamiltonian derivation Momentum-space Feynman rules Examples * 97 7.A Normal ordering and Wick's theorem 100 Problems 103 Part II Quantum electrodynamics Spin 1 and gauge invariance Unitary representations of the Poincare group Embedding particles into fields Covariant derivatives Quantization and the Ward identity The photon propagator Is gauge invariance real? Higher-spin fields 132 Problems Scalar quantum electrodynamics Quantizing complex scalar fields Feynman rules for scalar QED Scattering in scalar QED Ward identity and gauge invariance Lorentz invariance and charge conservation 150 Problems Spinors Representations of the Lorentz group Spinor representations Dirac matrices Coupling to the photon What does spin \ mean? Majorana and Weyl fermions 178 Problems Spinor solutions and CPT Chirality, helicity and spin Solving the Dirac equation Majorana spinors Charge conjugation Parity 195

4 11.6 Time reversal 198 Problems Spin and statistics Identical particles Spin-statistics from path dependence Quantizing spinors Lorentz invariance of the S -matrix Stability Causality 219 Problems Quantum electrodynamics QED Feynman rules matrix identities e+e~ n+p Rutherford scattering e p+ e~p Compton scattering Historical note 246 Problems Path integrals Introduction The path integral Generating functionals Where is the iel Gauge invariance Fermionic path integral Schwinger-Dyson equations Ward-Takahashi identity 277 Problems 283 Part III Renormalization The Casimir effect Casimir effect Hard cutoff Regulator independence Scalar field theory example 296 Problems Vacuum polarization Scalar < 3 theory Vacuum polarization in QED 304

5 16.3 Physics of vacuum polarization 309 Problems The anomalous magnetic moment Extracting the moment» Evaluating the graphs 318 Problems Mass renormalization Vacuum expectation values Electron self-energy Pole mass Minimal subtraction Summary and discussion 336 Problems Renormalized perturbation theory Counterterms Two-point functions Three-point functions Renormalization conditions in QED Z Zi\ implications and proof 350 Problems Infrared divergences e+e~ -> n+fi- (+7) Jets Other loops A Dimensional regularization 373 Problems Renormalizability Renormalizability of QED Non-renormalizable field theories 386 Problems Non-renormalizable theories The Schrodinger equation The 4-Fermi theory Theory of mesons Quantum gravity Summary of non-renormalizable theories Mass terms and naturalness Super-renormalizable theories 414 Problems 416

6 23 The renormalization group Running couplings Renormalization group from counterterms Renormalization group equation for the 4-Fermi theory Renormalization group equation for general interactions Scalar masses and renormalization group flows Wilsonian renormalization group equation 442 Problems Implications of unitarity The optical theorem Spectral decomposition Polology Locality 475 Problems 477 Part IV The Standard Model Yang-Mills theory Lie groups Gauge invariance and Wilson lines Conserved currents Gluon propagator Lattice gauge theories 503 Problems Quantum Yang-Mills theory Feynman rules Attractive and repulsive potentials e+e~ > hadrons and as Vacuum polarization Renormalization at 1-loop Running coupling Defining the charge 529 Problems Gluon scattering and the spinor-helicity formalism Spinor-helicity formalism Gluon scattering amplitudes gg -» gg Color ordering Complex momenta On-shell recursion Outlook 558 Problems 559

7 28 Spontaneous symmetry breaking Spontaneous breaking of discrete symmetries Spontaneous breaking of continuous global symmetries The Higgs mechanism Quantization of spontaneously broken gauge theories Problems Weak interactions Electroweak symmetry breaking Unitarity and gauge boson scattering Fermion sector The 4-Fermi theory CP violation 605 Problems Anomalies Pseudoscalars decaying to photons Triangle diagrams with massless fermions Chiral anomaly from the integral measure Gauge anomalies in the Standard Model Global anomalies in the Standard Model Anomaly matching 638 Problems Precision tests of the Standard Model Electroweak precision tests Custodial SU(2), p, S, T and U Large logarithms in flavor physics 657 Problems Quantum chromodynamics and the parton model Electron-proton scattering DGLAP equations Parton showers Factorization and the parton model from QCD Lightcone coordinates 695 Problems 698 Part V Advanced topics Effective actions and Schwinger proper time Effective actions from matching Effective actions from Schwinger proper time Effective actions from Feynman path integrals Euler-Heisenberg Lagrangian 713

8 33.5 Coupling to other currents Semi-classical and non-relativistic limits A Schwinger's method 728 Problems Background fields PI effective action Background scalar fields Background gauge fields 752 Problems Heavy-quark physics Heavy-meson decays Heavy-quark effective theory Loops in HQET Power corrections 772 Problems Jets and effective field theory Event shapes Power counting Soft interactions Collinear interactions Soft-Collinear Effective Theory Thrust in SCET 802 Problems 810 Appendices 813 Appendix A Conventions 815 A.l Dimensional analysis 815 A.2 Signs 817 A.3 Feynman rules 819 A. 4 Dirac algebra 820 Problems 821 Appendix B Regularization 822 B. l Integration parameters 822 B.2 Wick rotations 823 B.3 Dimensional regularization 825 B.4 Other regularization schemes 830 Problems 833 References 834 Index 842

Quantum Field Theory 2 nd Edition

Quantum Field Theory 2 nd Edition Quantum Field Theory 2 nd Edition FRANZ MANDL and GRAHAM SHAW School of Physics & Astromony, The University of Manchester, Manchester, UK WILEY A John Wiley and Sons, Ltd., Publication Contents Preface

More information

QUANTUM FIELD THEORY. A Modern Introduction MICHIO KAKU. Department of Physics City College of the City University of New York

QUANTUM FIELD THEORY. A Modern Introduction MICHIO KAKU. Department of Physics City College of the City University of New York QUANTUM FIELD THEORY A Modern Introduction MICHIO KAKU Department of Physics City College of the City University of New York New York Oxford OXFORD UNIVERSITY PRESS 1993 Contents Quantum Fields and Renormalization

More information

An Introduction to. Michael E. Peskin. Stanford Linear Accelerator Center. Daniel V. Schroeder. Weber State University. Advanced Book Program

An Introduction to. Michael E. Peskin. Stanford Linear Accelerator Center. Daniel V. Schroeder. Weber State University. Advanced Book Program An Introduction to Quantum Field Theory Michael E. Peskin Stanford Linear Accelerator Center Daniel V. Schroeder Weber State University 4B Advanced Book Program TT Addison-Wesley Publishing Company Reading,

More information

TENTATIVE SYLLABUS INTRODUCTION

TENTATIVE SYLLABUS INTRODUCTION Physics 615: Overview of QFT Fall 2010 TENTATIVE SYLLABUS This is a tentative schedule of what we will cover in the course. It is subject to change, often without notice. These will occur in response to

More information

PHYSICS PARTICLE. An Introductory Course of. Palash B. Pal. CRC Press. Saha Institute of Nuclear Physics. Kolkata, India. Taylor &.

PHYSICS PARTICLE. An Introductory Course of. Palash B. Pal. CRC Press. Saha Institute of Nuclear Physics. Kolkata, India. Taylor &. An Introductory Course of PARTICLE PHYSICS Palash B. Pal Saha Institute of Nuclear Physics Kolkata, India W CRC Press Taylor &. Francis Croup Boca Raton London New York CRC Press is an imprint of the &

More information

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals Kerson Huang Quantum Field Theory From Operators to Path Integrals Second, Revised, and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA I vh Contents Preface XIII 1 Introducing Quantum Fields

More information

Elementary Particle Physics

Elementary Particle Physics Yorikiyo Nagashima Elementary Particle Physics Volume 2: Foundations of the Standard Model WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XI Acknowledgments XV Color Plates XVII Part One

More information

An Introduction to the Standard Model of Particle Physics

An Introduction to the Standard Model of Particle Physics An Introduction to the Standard Model of Particle Physics W. N. COTTINGHAM and D. A. GREENWOOD Ж CAMBRIDGE UNIVERSITY PRESS Contents Preface. page xiii Notation xv 1 The particle physicist's view of Nature

More information

Introduction to Elementary Particles

Introduction to Elementary Particles David Criffiths Introduction to Elementary Particles Second, Revised Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Preface to the First Edition IX Preface to the Second Edition XI Formulas and Constants

More information

Part I. Many-Body Systems and Classical Field Theory

Part I. Many-Body Systems and Classical Field Theory Part I. Many-Body Systems and Classical Field Theory 1. Classical and Quantum Mechanics of Particle Systems 3 1.1 Introduction. 3 1.2 Classical Mechanics of Mass Points 4 1.3 Quantum Mechanics: The Harmonic

More information

The Standard Model of Electroweak Physics. Christopher T. Hill Head of Theoretical Physics Fermilab

The Standard Model of Electroweak Physics. Christopher T. Hill Head of Theoretical Physics Fermilab The Standard Model of Electroweak Physics Christopher T. Hill Head of Theoretical Physics Fermilab Lecture I: Incarnations of Symmetry Noether s Theorem is as important to us now as the Pythagorean Theorem

More information

The Quantum Theory of Fields. Volume I Foundations Steven Weinberg

The Quantum Theory of Fields. Volume I Foundations Steven Weinberg The Quantum Theory of Fields Volume I Foundations Steven Weinberg PREFACE NOTATION x x xxv 1 HISTORICAL INTRODUCTION 1 1.1 Relativistic Wave Mechanics 3 De Broglie waves q Schrödinger-Klein-Gordon wave

More information

Maxwell s equations. electric field charge density. current density

Maxwell s equations. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

Contents. Preface to the First Edition Preface to the Second Edition

Contents. Preface to the First Edition Preface to the Second Edition Contents Preface to the First Edition Preface to the Second Edition Notes xiii xv xvii 1 Basic Concepts 1 1.1 History 1 1.1.1 The Origins of Nuclear Physics 1 1.1.2 The Emergence of Particle Physics: the

More information

The Standard Model and Beyond

The Standard Model and Beyond Paul Langacker The Standard Model and Beyond CRC PRESS Boca Raton Ann Arbor London Tokyo Contents Preface xi 1 Notation and Conventions 1 1.1 Problems............................. 5 2 Review of Perturbative

More information

Gauge Theories of the Standard Model

Gauge Theories of the Standard Model Gauge Theories of the Standard Model Professors: Domènec Espriu (50%, coordinador) Jorge Casalderrey (25%) Federico Mescia (25%) Time Schedule: Mon, Tue, Wed: 11:50 13:10 According to our current state

More information

FYS 3510 Subatomic physics with applications in astrophysics. Nuclear and Particle Physics: An Introduction

FYS 3510 Subatomic physics with applications in astrophysics. Nuclear and Particle Physics: An Introduction FYS 3510 Subatomic physics with applications in astrophysics Nuclear and Particle Physics: An Introduction Nuclear and Particle Physics: An Introduction, 2nd Edition Professor Brian Martin ISBN: 978-0-470-74275-4

More information

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in LONDON BEIJING HONG TSINGHUA Report and Review in Physics Vol2 PRINCIPLES OF PHYSICS From Quantum Field Theory to Classical Mechanics Ni Jun Tsinghua University, China NEW JERSEY \Hp SINGAPORE World Scientific

More information

Loop corrections in Yukawa theory based on S-51

Loop corrections in Yukawa theory based on S-51 Loop corrections in Yukawa theory based on S-51 Similarly, the exact Dirac propagator can be written as: Let s consider the theory of a pseudoscalar field and a Dirac field: the only couplings allowed

More information

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten Lecture 4 QCD as a Gauge Theory Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information

Part III The Standard Model

Part III The Standard Model Part III The Standard Model Theorems Based on lectures by C. E. Thomas Notes taken by Dexter Chua Lent 2017 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

Quarks, Leptons and Gauge Fields Downloaded from by on 03/13/18. For personal use only.

Quarks, Leptons and Gauge Fields Downloaded from  by on 03/13/18. For personal use only. QUARKS, LEPTONS & GAUGE FIELDS 2nd edition Kerson Huang Professor of Physics Mussuchusetts Institute qf Technology Y 8 World Scientific Singapore New Jersey London Hong Kong Publirhed by World Scientific

More information

Effective Field Theory

Effective Field Theory Effective Field Theory Iain Stewart MIT The 19 th Taiwan Spring School on Particles and Fields April, 2006 Physics compartmentalized Quantum Field Theory String Theory? General Relativity short distance

More information

Particle Physics I Lecture Exam Question Sheet

Particle Physics I Lecture Exam Question Sheet Particle Physics I Lecture Exam Question Sheet Five out of these 16 questions will be given to you at the beginning of the exam. (1) (a) Which are the different fundamental interactions that exist in Nature?

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Lecture 2: The QCD Lagrangian, Symmetries and Feynman Rules

More information

The path integral for photons

The path integral for photons The path integral for photons based on S-57 We will discuss the path integral for photons and the photon propagator more carefully using the Lorentz gauge: as in the case of scalar field we Fourier-transform

More information

Quantum Mechanics: Fundamentals

Quantum Mechanics: Fundamentals Kurt Gottfried Tung-Mow Yan Quantum Mechanics: Fundamentals Second Edition With 75 Figures Springer Preface vii Fundamental Concepts 1 1.1 Complementarity and Uncertainty 1 (a) Complementarity 2 (b) The

More information

Beta functions in quantum electrodynamics

Beta functions in quantum electrodynamics Beta functions in quantum electrodynamics based on S-66 Let s calculate the beta function in QED: the dictionary: Note! following the usual procedure: we find: or equivalently: For a theory with N Dirac

More information

FYS3510 Subatomic Physics. Exam 2016

FYS3510 Subatomic Physics. Exam 2016 FYS3510 Subatomic Physics VS 2015 Farid Ould-Saada Exam 2016 In addition to the items marked in blue, don t forget all examples and related material given in the slides, including the ones presented during

More information

Fundamentals of Neutrino Physics and Astrophysics

Fundamentals of Neutrino Physics and Astrophysics Fundamentals of Neutrino Physics and Astrophysics Carlo Giunti Istituto Nazionale di Fisica Nucleare, Sezione di Torino and Dipartimento di Fisica Teorica, Universita di Torino, Italy Chung W. Kim Korea

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu August 16 19, 018 Four Lectures The 3 rd WHEPS, August 16-4, 018, Weihai, Shandong q The Goal: The plan for my four lectures To understand the strong

More information

Part III. Interacting Field Theory. Quantum Electrodynamics (QED)

Part III. Interacting Field Theory. Quantum Electrodynamics (QED) November-02-12 8:36 PM Part III Interacting Field Theory Quantum Electrodynamics (QED) M. Gericke Physics 7560, Relativistic QM 183 III.A Introduction December-08-12 9:10 PM At this point, we have the

More information

Maxwell s equations. based on S-54. electric field charge density. current density

Maxwell s equations. based on S-54. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) 1 m N m ρ Λ QCD 0 m π m u,d In a generic physical system, there are often many scales involved. However, for a specific

More information

Anomaly. Kenichi KONISHI University of Pisa. College de France, 14 February 2006

Anomaly. Kenichi KONISHI University of Pisa. College de France, 14 February 2006 Anomaly Kenichi KONISHI University of Pisa College de France, 14 February 2006 Abstract Symmetry and quantization U A (1) anomaly and π 0 decay Origin of anomalies Chiral and nonabelian anomaly Anomally

More information

Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W W W 3

Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W W W 3 Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W 1 + 2 W 2 + 3 W 3 Substitute B = cos W A + sin W Z 0 Sum over first generation particles. up down Left handed

More information

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM Lecture 03 The Standard Model of Particle Physics Part II The Higgs Boson Properties of the SM The Standard Model So far we talked about all the particles except the Higgs If we know what the particles

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Introduction and motivation: QCD and modern high-energy physics

More information

Speculations on extensions of symmetry and interctions to GUT energies Lecture 16

Speculations on extensions of symmetry and interctions to GUT energies Lecture 16 Speculations on extensions of symmetry and interctions to GUT energies Lecture 16 1 Introduction The use of symmetry, as has previously shown, provides insight to extensions of present physics into physics

More information

Elementary Particles, Flavour Physics and all that...

Elementary Particles, Flavour Physics and all that... Elementary Particles, Flavour Physics and all that... 1 Flavour Physics The term Flavour physics was coined in 1971 by Murray Gell-Mann and his student at the time, Harald Fritzsch, at a Baskin-Robbins

More information

FYS3510 Subatomic Physics. Exam 2016

FYS3510 Subatomic Physics. Exam 2016 FYS3510 Subatomic Physics VS 2015 Farid Ould-Saada Exam 2016 In addition to the items marked in blue, don t forget all examples and related material given in the slides, including the ones presented during

More information

Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013

Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013 Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013 Rogerio Rosenfeld IFT-UNESP Lecture 1: Motivation/QFT/Gauge Symmetries/QED/QCD Lecture 2: QCD tests/electroweak

More information

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab a black box? QCD lattice QCD observables (scattering amplitudes?) in these lectures, hope to give you a look inside the box 2 these lectures how

More information

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee Chern-Simons Theory and Its Applications The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee Maxwell Theory Maxwell Theory: Gauge Transformation and Invariance Gauss Law Charge Degrees of

More information

Weak interactions and vector bosons

Weak interactions and vector bosons Weak interactions and vector bosons What do we know now about weak interactions? Theory of weak interactions Fermi's theory of weak interactions V-A theory Current - current theory, current algebra W and

More information

Scattering Amplitudes

Scattering Amplitudes Scattering Amplitudes LECTURE 1 Jaroslav Trnka Center for Quantum Mathematics and Physics (QMAP), UC Davis ICTP Summer School, June 2017 Particle experiments: our probe to fundamental laws of Nature Theorist

More information

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab the light meson spectrum relatively simple models of hadrons: bound states of constituent quarks and antiquarks the quark model empirical meson

More information

g abφ b = g ab However, this is not true for a local, or space-time dependant, transformations + g ab

g abφ b = g ab However, this is not true for a local, or space-time dependant, transformations + g ab Yang-Mills theory Modern particle theories, such as the Standard model, are quantum Yang- Mills theories. In a quantum field theory, space-time fields with relativistic field equations are quantized and,

More information

Stephen Blaha, Ph.D. M PubHsMtw

Stephen Blaha, Ph.D. M PubHsMtw Quantum Big Bang Cosmology: Complex Space-time General Relativity, Quantum Coordinates,"Dodecahedral Universe, Inflation, and New Spin 0, 1 / 2,1 & 2 Tachyons & Imagyons Stephen Blaha, Ph.D. M PubHsMtw

More information

Acknowledgements An introduction to unitary symmetry The search for higher symmetries p. 1 The eight-baryon puzzle p. 1 The elimination of

Acknowledgements An introduction to unitary symmetry The search for higher symmetries p. 1 The eight-baryon puzzle p. 1 The elimination of Preface p. xiii Acknowledgements p. xiv An introduction to unitary symmetry The search for higher symmetries p. 1 The eight-baryon puzzle p. 1 The elimination of G[subscript 0] p. 4 SU(3) and its representations

More information

Fundamental Particles and Forces

Fundamental Particles and Forces Fundamental Particles and Forces A Look at the Standard Model and Interesting Theories André Gras PHYS 3305 SMU 1 Overview Introduction to Fundamental Particles and Forces Brief History of Discovery The

More information

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York Many thanks to my colleagues, A. Deshpande, F. Gelis, B. Surrow

More information

Introduction to perturbative QCD and factorization

Introduction to perturbative QCD and factorization Introduction to perturbative QCD and factorization Part 1 M. Diehl Deutsches Elektronen-Synchroton DESY Ecole Joliot Curie 2018 DESY Plan of lectures 0. Brief introduction 1. Renormalisation, running coupling,

More information

Particle Physics 2018 Final Exam (Answers with Words Only)

Particle Physics 2018 Final Exam (Answers with Words Only) Particle Physics 2018 Final Exam (Answers with Words Only) This was a hard course that likely covered a lot of new and complex ideas. If you are feeling as if you could not possibly recount all of the

More information

Special Relativity from Soft Gravitons

Special Relativity from Soft Gravitons Special Relativity from Soft Gravitons Mark Hertzberg, Tufts University CosPA, December 14, 2017 with McCullen Sandora, PRD 96 084048 (1704.05071) Can the laws of special relativity be violated in principle?

More information

Introduction to the Standard Model of particle physics

Introduction to the Standard Model of particle physics Introduction to the Standard Model of particle physics I. Schienbein Univ. Grenoble Alpes/LPSC Grenoble Laboratoire de Physique Subatomique et de Cosmologie Summer School in Particle and Astroparticle

More information

The Electro-Strong Interaction

The Electro-Strong Interaction The Electro-Strong Interaction Taking into account the Planck Distribution Law of the electromagnetic oscillators, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Lattice

More information

Lecture 6:Feynman diagrams and QED

Lecture 6:Feynman diagrams and QED Lecture 6:Feynman diagrams and QED 0 Introduction to current particle physics 1 The Yukawa potential and transition amplitudes 2 Scattering processes and phase space 3 Feynman diagrams and QED 4 The weak

More information

Lectures on Quantum Mechanics

Lectures on Quantum Mechanics Lectures on Quantum Mechanics Steven Weinberg The University of Texas at Austin CAMBRIDGE UNIVERSITY PRESS Contents PREFACE page xv NOTATION xviii 1 HISTORICAL INTRODUCTION 1 1.1 Photons 1 Black-body radiation

More information

Nuclear and Particle Physics

Nuclear and Particle Physics Nuclear and Particle Physics W. S. С Williams Department of Physics, University of Oxford and St Edmund Hall, Oxford CLARENDON PRESS OXFORD 1991 Contents 1 Introduction 1.1 Historical perspective 1 1.2

More information

Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books

Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books Burgess-Moore, Chapter Weiberg, Chapter 5 Donoghue, Golowich, Holstein Chapter 1, 1 Free field Lagrangians

More information

Symmetries, Groups Theory and Lie Algebras in Physics

Symmetries, Groups Theory and Lie Algebras in Physics Symmetries, Groups Theory and Lie Algebras in Physics M.M. Sheikh-Jabbari Symmetries have been the cornerstone of modern physics in the last century. Symmetries are used to classify solutions to physical

More information

Quantum Chromodynamics at LHC

Quantum Chromodynamics at LHC Quantum Chromodynamics at LHC Zouina Belghobsi LPTh, Université de Jijel EPAM-2011, TAZA 26 Mars 03 Avril Today s high energy colliders past, present and future proton/antiproton colliders Tevatron (1987

More information

Relativistic Waves and Quantum Fields

Relativistic Waves and Quantum Fields Relativistic Waves and Quantum Fields (SPA7018U & SPA7018P) Gabriele Travaglini December 10, 2014 1 Lorentz group Lectures 1 3. Galileo s principle of Relativity. Einstein s principle. Events. Invariant

More information

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst Electroweak Physics Krishna S. Kumar University of Massachusetts, Amherst Acknowledgements: M. Grunewald, C. Horowitz, W. Marciano, C. Quigg, M. Ramsey-Musolf, www.particleadventure.org Electroweak Physics

More information

Critical lines and points. in the. QCD phase diagram

Critical lines and points. in the. QCD phase diagram Critical lines and points in the QCD phase diagram Understanding the phase diagram Phase diagram for m s > m u,d quark-gluon plasma deconfinement quark matter : superfluid B spontaneously broken nuclear

More information

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer Franz Schwabl QUANTUM MECHANICS Translated by Ronald Kates Second Revised Edition With 122Figures, 16Tables, Numerous Worked Examples, and 126 Problems ff Springer Contents 1. Historical and Experimental

More information

Paul Langacker. The Standard Model and Beyond, Second Edition

Paul Langacker. The Standard Model and Beyond, Second Edition Paul Langacker The Standard Model and Beyond, Second Edition Contents Preface xi Chapter 1 Notation and Conventions 1 1.1 PROBLEMS 5 Chapter 2 Review of Perturbative Field Theory 7 2.1 CREATION AND ANNIHILATION

More information

Beyond the Standard Model

Beyond the Standard Model Beyond the Standard Model The Standard Model Problems with the Standard Model New Physics Supersymmetry Extended Electroweak Symmetry Grand Unification References: 2008 TASI lectures: arxiv:0901.0241 [hep-ph]

More information

Electroweak Theory & Neutrino Scattering

Electroweak Theory & Neutrino Scattering Electroweak Theory & 01.12.2005 Electroweak Theory & Contents Glashow-Weinberg-Salam-Model Electroweak Theory & Contents Glashow-Weinberg-Salam-Model Electroweak Theory & Contents Glashow-Weinberg-Salam-Model

More information

The cosmological constant puzzle

The cosmological constant puzzle The cosmological constant puzzle Steven Bass Cosmological constant puzzle: Accelerating Universe: believed to be driven by energy of nothing (vacuum) Vacuum energy density (cosmological constant or dark

More information

Beyond Feynman Diagrams Lecture 2. Lance Dixon Academic Training Lectures CERN April 24-26, 2013

Beyond Feynman Diagrams Lecture 2. Lance Dixon Academic Training Lectures CERN April 24-26, 2013 Beyond Feynman Diagrams Lecture 2 Lance Dixon Academic Training Lectures CERN April 24-26, 2013 Modern methods for trees 1. Color organization (briefly) 2. Spinor variables 3. Simple examples 4. Factorization

More information

Lecture 11 Perturbative calculation

Lecture 11 Perturbative calculation M.Krawczyk, AFZ Particles and Universe 11 1 Particles and Universe Lecture 11 Perturbative calculation Maria Krawczyk, Aleksander F. Żarnecki Faculty of Physics UW I.Theory of elementary particles description

More information

Elementary Particles and Their Interactions

Elementary Particles and Their Interactions Elementary Particles and Their Interactions Springer-Verlag Berlin Heidelberg GmbH Quang Ho-Kim Xuan-Yem Pham Elementary Particles and Their Interactions Concepts and Phenomena With 116 Figures, 36 Tables,

More information

Heavy Hidden-Flavour Molecules in a Finite Volume

Heavy Hidden-Flavour Molecules in a Finite Volume Heavy Hidden-Flavour Molecules in a Finite Volume Carlos Hidalgo-Duque (IFIC, CSIC Universitat de València) M. Albaladejo, J. Nieves, E. Oset XVI International Conference on Hadron Spectroscopy Marriott

More information

Lecture 10. September 28, 2017

Lecture 10. September 28, 2017 Lecture 10 September 28, 2017 The Standard Model s QCD theory Comments on QED calculations Ø The general approach using Feynman diagrams Ø Example of a LO calculation Ø Higher order calculations and running

More information

Pions are Special Contents Chiral Symmetry and Its Breaking Symmetries and Conservation Laws Goldstone Theorem The Potential Linear Sigma Model Wigner

Pions are Special Contents Chiral Symmetry and Its Breaking Symmetries and Conservation Laws Goldstone Theorem The Potential Linear Sigma Model Wigner Lecture 3 Pions as Goldstone Bosons of Chiral Symmetry Breaking Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Pions are Special Contents Chiral Symmetry and Its Breaking Symmetries and

More information

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach)

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach) The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach) IPM school and workshop on recent developments in Particle Physics (IPP11) 2011, Tehran, Iran Sedigheh Deldar, University

More information

Fundamental Forces. David Morrissey. Key Concepts, March 15, 2013

Fundamental Forces. David Morrissey. Key Concepts, March 15, 2013 Fundamental Forces David Morrissey Key Concepts, March 15, 2013 Not a fundamental force... Also not a fundamental force... What Do We Mean By Fundamental? Example: Electromagnetism (EM) electric forces

More information

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9 Preface v Chapter 1 Introduction 1 1.1 Prerequisites and textbooks......................... 1 1.2 Physical phenomena and theoretical tools................. 5 1.3 The path integrals..............................

More information

electrodynamics and Lorentz violation

electrodynamics and Lorentz violation Vacuum Cherenkov radiation in Lorentz violating quantum electrodynamics and experimental limits on the scale of Lorentz violation Damiano Anselmi (IHEP/CAS, Beijing, & Pisa University) Lorentz symmetry

More information

A Superfluid Universe

A Superfluid Universe A Superfluid Universe Lecture 2 Quantum field theory & superfluidity Kerson Huang MIT & IAS, NTU Lecture 2. Quantum fields The dynamical vacuum Vacuumscalar field Superfluidity Ginsburg Landau theory BEC

More information

Lecture 8. September 21, General plan for construction of Standard Model theory. Choice of gauge symmetries for the Standard Model

Lecture 8. September 21, General plan for construction of Standard Model theory. Choice of gauge symmetries for the Standard Model Lecture 8 September 21, 2017 Today General plan for construction of Standard Model theory Properties of SU(n) transformations (review) Choice of gauge symmetries for the Standard Model Use of Lagrangian

More information

Physics 4213/5213 Lecture 1

Physics 4213/5213 Lecture 1 August 28, 2002 1 INTRODUCTION 1 Introduction Physics 4213/5213 Lecture 1 There are four known forces: gravity, electricity and magnetism (E&M), the weak force, and the strong force. Each is responsible

More information

4. The Standard Model

4. The Standard Model 4. The Standard Model Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 4. The Standard Model 1 In this section... Standard Model particle content Klein-Gordon equation Antimatter Interaction

More information

QCD, Factorization, and the Soft-Collinear Effective Theory

QCD, Factorization, and the Soft-Collinear Effective Theory QCD Factorization and the Soft-Collinear Effective Theory Iain W. Stewart MIT The 9th International Conference on B Physics at Hadron Machines Oct. 14-18 (Beauty 2003) Iain Stewart p.1 Outline Motiviation

More information

Luciano Maiani: Lezione Fermi 11. Quantum Electro Dynamics, QED. Renormalization

Luciano Maiani: Lezione Fermi 11. Quantum Electro Dynamics, QED. Renormalization Luciano Maiani: Lezione Fermi 11. Quantum Electro Dynamics, QED. Renormalization 1. Divergences in classical ED, the UV cutoff 2. Renormalization! 3. The electron anomaly 4. The muon anomaly 5. Conclusions

More information

INTRODUCTION TO NUCLEAR AND PARTICLE PHYSICS

INTRODUCTION TO NUCLEAR AND PARTICLE PHYSICS INTRODUCTION TO NUCLEAR AND PARTICLE PHYSICS ASHOK DAS THOMAS FERBEL University of Rochester JOHN WILEY & SONS, INC. NEW YORK CHICHESTER BRISBANE TORONTO SINGAPORE CONTENTS Preface and Introduction Apologies

More information

Quark Model of Hadrons

Quark Model of Hadrons Quark Model of Hadrons mesons baryons symmetric antisymmetric mixed symmetry Quark Model of Hadrons 2 Why do quarks have color? ground state baryons orbital wave function = symmetic with L=0 SU(3) f x

More information

The Proton Radius Puzzle and the Electro-Strong Interaction

The Proton Radius Puzzle and the Electro-Strong Interaction The Proton Radius Puzzle and the Electro-Strong Interaction The resolution of the Proton Radius Puzzle is the diffraction pattern, giving another wavelength in case of muonic hydrogen oscillation for the

More information

FACULTY OF SCIENCE. High Energy Physics. WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON

FACULTY OF SCIENCE. High Energy Physics. WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON FACULTY OF SCIENCE High Energy Physics WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON AIM: To explore nature on the smallest length scales we can achieve Current status (10-20 m)

More information

9 Quantum Field Theory for Children

9 Quantum Field Theory for Children 101 9 Quantum Field Theory for Children The theories (known and hypothetical) needed to describe the (very) early universe are quantum field theories (QFT). The fundamental entities of these theories are

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction The book Introduction to Modern Physics: Theoretical Foundations starts with the following two paragraphs [Walecka (2008)]: At the end of the 19th century, one could take pride in

More information

GROUP THEORY IN PHYSICS

GROUP THEORY IN PHYSICS GROUP THEORY IN PHYSICS Wu-Ki Tung World Scientific Philadelphia Singapore CONTENTS CHAPTER 1 CHAPTER 2 CHAPTER 3 CHAPTER 4 PREFACE INTRODUCTION 1.1 Particle on a One-Dimensional Lattice 1.2 Representations

More information

Particle Physics. experimental insight. Paula Eerola Division of High Energy Physics 2005 Spring Semester Based on lectures by O. Smirnova spring 2002

Particle Physics. experimental insight. Paula Eerola Division of High Energy Physics 2005 Spring Semester Based on lectures by O. Smirnova spring 2002 experimental insight e + e - W + W - µνqq Paula Eerola Division of High Energy Physics 2005 Spring Semester Based on lectures by O. Smirnova spring 2002 Lund University I. Basic concepts Particle physics

More information

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS Class Mechanics My office (for now): Dantziger B Room 121 My Phone: x85200 Office hours: Call ahead, or better yet, email... Even better than office

More information

Fundamental Symmetries - l

Fundamental Symmetries - l National Nuclear Physics Summer School MIT, Cambridge, MA July 18-29 2016 Fundamental Symmetries - l Vincenzo Cirigliano Los Alamos National Laboratory Goal of these lectures Introduce the field of nuclear

More information

Electroweak Theory: 2

Electroweak Theory: 2 Electroweak Theory: 2 Introduction QED The Fermi theory The standard model Precision tests CP violation; K and B systems Higgs physics Prospectus STIAS (January, 2011) Paul Langacker (IAS) 31 References

More information

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions.

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Overview The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Our understanding is about to take a giant leap.. the Large Hadron Collider

More information