Transport w/o quasiparticles

Size: px
Start display at page:

Download "Transport w/o quasiparticles"

Transcription

1 Transport w/o quasiparticles Good metals, bad metals and insulators Sean Hartnoll (Stanford) -- Caneel Bay, Jan Based on: w/ Diego Hofman w/ Aristos Donos (also work in progress with Barkeshli & Mahajan)

2 Black holes and dissipation The single most important reason that holography is useful is the unique way that black holes act as classical dissipative systems. E.g. Witczak-Krempa and Sachdev: holographic transport at quantum criticality satisfies sum rules that are obscured in a Boltzmann approach. This talk will be about transport in strongly correlated finite density systems: hj t i6=0

3 Finite density transport If the total momentum (or any other operator that overlaps with the total current) is conserved, the d.c. conductivity is infinite. The optical conductivity of a perfect metal: s 1 1 w HeVL Only alternative to breaking momentum conservation is to dilute the charge carriers. Makes spectral weight of delta function small: JJ 2 JP PP 1

4 Observed behaviors Conventional metals (sharp Drude peak) Strange metals (unconventional scalings) Bad metals (no Drude peak, violate MIR bound) Insulators (vanishing dc conductivity)

5 A conventional metal Optical conductivity in graphene by Li et al

6 Metal-insulator transitions Dramatic spectral weight transfer from Drude peak to interband scales: Itinerant to localized charge Uchida et al. 91 Nicoletti et al 11

7 Gapless insulators Quantum spin liquid candidates show a power law soft gap in the optical conductivity Herbertsmithite by Pilon et al Elsässer et al

8 A bad metal La 1.9 Sr 0.1 CuO 4 by Takenaka et al. 03, from Hussey et al. 04

9 Theory of sharp Drude peaks O(k L )= Sharp Drude peak Momentum relaxation rate! small Can treat momentum-nonconserving operators (remnant of UV lattice) as perturbations of a translationally invariant effective IR theory. E.g. Umklapp scattering in a Fermi liquid: Z 4Y i=1 d! i d 2 k i! In holographic models, often least irrelevant operator is: (k 1 ) (k 2 ) (k 3 ) (k 4 ) (k 1 + k 2 k 3 k 4 k L ) J t (k L )

10 Theory of sharp Drude peaks Framework to treat! perturbatively: Memory matrix formalism. (cf. Rosch and Andrei, 1+1) 1 (!) =, i! + M(!) 1 M(!) = Z 1/T 0 For case of scattering by a lattice d A(0)Q i! QLQ QḂ(i ). = g2 k 2 L ~P ~ P lim!!0 Im G R OO (!,k L)! g=0. (Hartnoll and Hofman, )

11 Semi-local criticality (cf. Iqbal, Liu, Mezei) Common in holography that IR geometries have z = (with or without ground state entropy). Scaling of time but not space efficient low energy dissipation in momentum-violating processes. Find e.g. dc resistivity r(t ) T 2 (k L) (Hartnoll and Hofman, ) (Confirmed numerically by Horowitz, Santos, Tong) Theories with z < do not dissipate efficiently in momentum-violating processes.

12 Making the lattice relevant Claim: (at least some) metal-insulator transitions are described by momentum-nonconserving operators becoming relevant in the effective low energy theory. (cf. Emery, Luther, Peschel, 1+1) We found a holographic realization of this mechanism. (Donos and Hartnoll, ) Simple theory S = Z d 5 x p g R F abf ab 1 4 W abw ab m 2 2 B ab a apple 2 Z B ^ F ^ W. (Chern-Simons term not essential but helps to find the IR geometries)

13 RG flow scenarios The theory has (T=0) IR geometries both with and without translation invariance (Donos and Hartnoll, )

14 A technical simplification To capture the physics without solving PDEs we use a lattice that breaks translation invariance while retaining homogeneity: B (0) =! 2! 2 + i! 3 = e ipx 1 (dx 2 + idx 3 ) (Invariant under Bianchi VII 0 algebra, cf. Nakamura-Ooguri-Park, Donos-Gauntlett, Kachru-Trivedi-...) Beyond a simplification, realization of smectic metal phases due to strong yet anisotropic lattice scattering in the IR. (cf. Emery, Fradkin, Kivelson, Lubensky)

15 Metal-insulator transition (Donos and Hartnoll, ) The metallic and insulating IR geometries are: ds 2 = r 2 dt 2 + dr2 r 2 + dx2 R 3, A =2 p 6 rdt, B =0. ds 2 = cr 2 dt 2 + dr2 cr 2 + dx2 1 r 1/3 + r2/3! r 1/3! 2 3, A =0, B = b! 2. (cf. D Hoker and Kraus) WêHVm 4 L -20 sêh4pm 3 L pêm pêm

16 Spectral weight transfer (Donos and Hartnoll, ) ReHsL HA.U.L 6 4 ReHsL HA.U.L wêm wê m Metal Insulator (!)! 4/3 at T =0

17 Further comments Can compute d.c. conductivities analytically: metal: (T ) T 2 (k L), insulator: (T ) T 4/3. In between the metallic and insulating phases we found bad metals with no Drude peak and large resistivities. Mid-infrared peak in insulating phase. No immediate connection to commensurability. Insulators without underlying Mott physics?

18 Take home messages Objective: non-quasiparticle language for transport. Good metal: Effective low energy theory translation invariant up to perturbative effects of momentumnonconserving operators. Effects become relevant: metal-insulator transition. Holography precisely realizes this scenario. Simple model exhibits experimental features that are difficult to otherwise describe in a controlled way: major spectral weight transfer, bad metals, insulators with power law gaps.

Holographic Q-Lattices and Metal-Insulator Transitions

Holographic Q-Lattices and Metal-Insulator Transitions Holographic Q-Lattices and Metal-Insulator Transitions Jerome Gauntlett Aristomenis Donos Holographic tools provide a powerful framework for investigating strongly coupled systems using weakly coupled

More information

Holographic Lattices

Holographic Lattices Holographic Lattices Jerome Gauntlett with Aristomenis Donos Christiana Pantelidou Holographic Lattices CFT with a deformation by an operator that breaks translation invariance Why? Translation invariance

More information

General relativity and the cuprates

General relativity and the cuprates General relativity and the cuprates Gary T. Horowitz and Jorge E. Santos Department of Physics, University of California, Santa Barbara, CA 93106, U.S.A. E-mail: gary@physics.ucsb.edu, jss55@physics.ucsb.edu

More information

Holographic Lattices

Holographic Lattices Holographic Lattices Jerome Gauntlett with Aristomenis Donos Christiana Pantelidou Holographic Lattices CFT with a deformation by an operator that breaks translation invariance Why? Translation invariance

More information

Thermo-electric transport in holographic systems with moment

Thermo-electric transport in holographic systems with moment Thermo-electric Perugia 2015 Based on: Thermo-electric gauge/ models with, arxiv:1406.4134, JHEP 1409 (2014) 160. Analytic DC thermo-electric conductivities in with gravitons, arxiv:1407.0306, Phys. Rev.

More information

This research has been co-financed by European Union s Seventh Framework Programme (FP7-REGPOT ) under grant agreement No

This research has been co-financed by European Union s Seventh Framework Programme (FP7-REGPOT ) under grant agreement No This research has been co-financed by European Union s Seventh Framework Programme (FP7-REGPOT-2012-2013-1) under grant agreement No 316165. and the European Union (European Social Fund, ESF) and Greek

More information

Quantum phase transitions in condensed matter

Quantum phase transitions in condensed matter Quantum phase transitions in condensed matter The 8th Asian Winter School on Strings, Particles, and Cosmology, Puri, India January 11-18, 2014 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD

More information

Incoherent Transport and Black Holes Talk at Strings 2017, Tel-Aviv. Aristomenis Donos Durham University

Incoherent Transport and Black Holes Talk at Strings 2017, Tel-Aviv. Aristomenis Donos Durham University Incoherent Transport and Black Holes Talk at Strings 2017, Tel-Aviv Aristomenis Donos Durham University Holographic quantum matter Sean A. Hartnoll, 1, Andrew Lucas, 1, 2, 3, and Subir Sachdev 1 Department

More information

Disordered spacetimes in AdS/CMT. Andrew Lucas

Disordered spacetimes in AdS/CMT. Andrew Lucas Disordered spacetimes in AdS/CMT Andrew Lucas Stanford Physics Disorder in Condensed Matter and Black Holes; Leiden January 9, 2017 Advertisement 2 350 page review article on AdS/CMT, together with: Sean

More information

Optical Conductivity in the Cuprates from holography and unparticles

Optical Conductivity in the Cuprates from holography and unparticles Optical Conductivity in the Cuprates from holography and unparticles Thanks to: NSF, EFRC (DOE) Brandon Langley Garrett Vanacore Kridsangaphong Limtragool Properties all particles share? charge fixed mass!

More information

UNIVERSAL BOUNDS ON DIFFUSION

UNIVERSAL BOUNDS ON DIFFUSION 9th Crete Regional Meeting in String Theory UNIVERSAL BOUNDS ON DIFFUSION with B. Gouteraux, E. Kiritsis and W.Li +... Matteo Baggioli UOC & Crete Center for Theoretical Physics Is there a miminum (Planckian)

More information

Optical Conductivity in the Cuprates: from Mottness to Scale Invariance

Optical Conductivity in the Cuprates: from Mottness to Scale Invariance Optical Conductivity in the Cuprates: from Mottness to Scale Invariance Thanks to: NSF, EFRC (DOE) Brandon Langley Garrett Vanacore Kridsangaphong Limtragool N e ( ) = 2mV cell e 2 Z 0 (!)d! optical

More information

Hydrodynamic transport in holography and in clean graphene. Andrew Lucas

Hydrodynamic transport in holography and in clean graphene. Andrew Lucas Hydrodynamic transport in holography and in clean graphene Andrew Lucas Harvard Physics Special Seminar, King s College London March 8, 2016 Collaborators 2 Subir Sachdev Harvard Physics & Perimeter Institute

More information

Holographic transport with random-field disorder. Andrew Lucas

Holographic transport with random-field disorder. Andrew Lucas Holographic transport with random-field disorder Andrew Lucas Harvard Physics Quantum Field Theory, String Theory and Condensed Matter Physics: Orthodox Academy of Crete September 1, 2014 Collaborators

More information

AC conductivity of a holographic strange metal

AC conductivity of a holographic strange metal AC conductivity of a holographic strange metal F. Peña-Benítez INFN - Perugia 1507.05633 in collaboration with Elias Kiritsis Workshop on Holography and Condensed Matter 1 motivation holography is a good

More information

Theory of Quantum Matter: from Quantum Fields to Strings

Theory of Quantum Matter: from Quantum Fields to Strings Theory of Quantum Matter: from Quantum Fields to Strings Salam Distinguished Lectures The Abdus Salam International Center for Theoretical Physics Trieste, Italy January 27-30, 2014 Subir Sachdev Talk

More information

Optical Conductivity in the Cuprates from Holography and Unparticles

Optical Conductivity in the Cuprates from Holography and Unparticles Optical Conductivity in the Cuprates from Holography and Unparticles Thanks to: NSF, EFRC (DOE) Brandon Langley Garrett Vanacore Kridsangaphong Limtragool Drude conductivity n e 2 1 m 1 i! (!) =C! 2 3

More information

Local criticality and marginal Fermi liquid in a solvable model Erez Berg

Local criticality and marginal Fermi liquid in a solvable model Erez Berg Local criticality and marginal Fermi liquid in a solvable model Erez Berg Y. Werman, D. Chowdhury, T. Senthil, and EB, arxiv:xxxx.xxxx Yochai Werman (Weizmann Berkeley) Debanjan Chowdhury (MIT) Senthil

More information

Detecting unparticles and anomalous dimensions in the Strange Metal

Detecting unparticles and anomalous dimensions in the Strange Metal Detecting unparticles and anomalous dimensions in the Strange Metal Thanks to: NSF, EFRC (DOE) Andreas Karch Brandon Langley Garrett Vanacore Kridsangaphong Limtragool Gabriele La Nave Drude metal Drude

More information

Testing Mottness/unparticles and anomalous dimensions in the Cuprates

Testing Mottness/unparticles and anomalous dimensions in the Cuprates Testing Mottness/unparticles and anomalous dimensions in the Cuprates Thanks to: NSF, EFRC (DOE) Brandon Langley Garrett Vanacore Kridsangaphong Limtragool / at what is strange about the strange metal?

More information

Quantum matter and gauge-gravity duality

Quantum matter and gauge-gravity duality Quantum matter and gauge-gravity duality Institute for Nuclear Theory, Seattle Summer School on Applications of String Theory July 18-20 Subir Sachdev HARVARD Outline 1. Conformal quantum matter 2. Compressible

More information

Spatially Modulated Phases in Holography. Jerome Gauntlett Aristomenis Donos Christiana Pantelidou

Spatially Modulated Phases in Holography. Jerome Gauntlett Aristomenis Donos Christiana Pantelidou Spatially Modulated Phases in Holography Jerome Gauntlett Aristomenis Donos Christiana Pantelidou Spatially Modulated Phases In condensed matter there is a variety of phases that are spatially modulated,

More information

Strange metal from local quantum chaos

Strange metal from local quantum chaos Strange metal from local quantum chaos John McGreevy (UCSD) hello based on work with Daniel Ben-Zion (UCSD) 2017-08-26 Compressible states of fermions at finite density The metallic states that we understand

More information

arxiv: v3 [cond-mat.str-el] 28 Aug 2013

arxiv: v3 [cond-mat.str-el] 28 Aug 2013 Non-Fermi liquids and the Wiedemann-Franz law Raghu Mahajan, Maissam Barkeshli, Sean A. Hartnoll Department of Physics, Stanford University, arxiv:1304.4249v3 [cond-mat.str-el] 28 Aug 2013 Stanford, CA

More information

Metal-insulator Transition by Holographic Charge Density Waves

Metal-insulator Transition by Holographic Charge Density Waves Metal-insulator Transition by Holographic Charge Density Waves Chao Niu (IHEP, CAS) Based mainly on arxiv:1404.0777 with: Yi Ling, Jianpin Wu, Zhuoyu Xian and Hongbao Zhang (May 9, 2014) Outlines 1. Introduction

More information

Holography of compressible quantum states

Holography of compressible quantum states Holography of compressible quantum states New England String Meeting, Brown University, November 18, 2011 sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Compressible quantum

More information

Recent Developments in Holographic Superconductors. Gary Horowitz UC Santa Barbara

Recent Developments in Holographic Superconductors. Gary Horowitz UC Santa Barbara Recent Developments in Holographic Superconductors Gary Horowitz UC Santa Barbara Outline 1) Review basic ideas behind holographic superconductors 2) New view of conductivity and the zero temperature limit

More information

Superfluid-insulator transition

Superfluid-insulator transition Superfluid-insulator transition Ultracold 87 Rb atoms - bosons M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). T Quantum critical T KT Superfluid Insulator 0 g c

More information

Holographic Lattices Give the Graviton an Effective Mass

Holographic Lattices Give the Graviton an Effective Mass Holographic Lattices Give the Graviton an Effective Mass Mike Blake, 1 David Tong, 1 and David Vegh 1 Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA,

More information

Holographic matter at finite chemical potential

Holographic matter at finite chemical potential Holographic matter at finite chemical potential Talk at NumHol 2016 Santiago de Compostela, Spain Aristomenis Donos Durham University Base on work with: J. P. Gauntlett, E. Banks, T. Griffin, L. Melgar,

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals PCTS, Princeton, October 26, 2012 Subir Sachdev Talk online at sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Complex entangled

More information

3. Quantum matter without quasiparticles

3. Quantum matter without quasiparticles 1. Review of Fermi liquid theory Topological argument for the Luttinger theorem 2. Fractionalized Fermi liquid A Fermi liquid co-existing with topological order for the pseudogap metal 3. Quantum matter

More information

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford)

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford) Wilsonian and large N theories of quantum critical metals Srinivas Raghu (Stanford) Collaborators and References R. Mahajan, D. Ramirez, S. Kachru, and SR, PRB 88, 115116 (2013). A. Liam Fitzpatrick, S.

More information

Transport bounds for condensed matter physics. Andrew Lucas

Transport bounds for condensed matter physics. Andrew Lucas Transport bounds for condensed matter physics Andrew Lucas Stanford Physics High Energy Physics Seminar, University of Washington May 2, 2017 Collaborators 2 Julia Steinberg Harvard Physics Subir Sachdev

More information

Using general relativity to study condensed matter. Gary Horowitz UC Santa Barbara

Using general relativity to study condensed matter. Gary Horowitz UC Santa Barbara Using general relativity to study condensed matter Gary Horowitz UC Santa Barbara Outline A. Review general relativity and black holes B. Gauge/gravity duality C. Using general relativity to study superconductivity

More information

An Upper Bound on Transport

An Upper Bound on Transport An Upper Bound on Transport Sean Hartnoll (Stanford) From Quantum Fields to Condensed Matter @ Long Island August 2017 Unconventional transport Unconventional transport regimes are ubiquitous and represent

More information

Charge transport in holography with momentum dissipation

Charge transport in holography with momentum dissipation Preprint typeset in JHEP style - HYPER VERSION NORDITA-014-7 Charge transport in holography with momentum dissipation arxiv:1401.5436v4 [hep-th] Dec 016 B. Goutéraux a a Nordita, KTH Royal Institute of

More information

Metals without quasiparticles

Metals without quasiparticles Metals without quasiparticles A. Review of Fermi liquid theory B. A non-fermi liquid: the Ising-nematic quantum critical point C. Fermi surfaces and gauge fields Metals without quasiparticles A. Review

More information

Theory of metallic transport in strongly coupled matter. 2. Memory matrix formalism. Andrew Lucas

Theory of metallic transport in strongly coupled matter. 2. Memory matrix formalism. Andrew Lucas Theory of metallic transport in strongly coupled matter 2. Memory matrix formalism Andrew Lucas Stanford Physics Geometry and Holography for Quantum Criticality; Asia-Pacific Center for Theoretical Physics

More information

Is the composite fermion a Dirac particle?

Is the composite fermion a Dirac particle? Is the composite fermion a Dirac particle? Dam T. Son GGI conference Gauge/gravity duality 2015 Ref.: 1502.03446 Plan Plan Fractional quantum Hall effect Plan Fractional quantum Hall effect Composite fermion

More information

Non-relativistic holography

Non-relativistic holography University of Amsterdam AdS/CMT, Imperial College, January 2011 Why non-relativistic holography? Gauge/gravity dualities have become an important new tool in extracting strong coupling physics. The best

More information

Holographic superconductors

Holographic superconductors Holographic superconductors Sean Hartnoll Harvard University Work in collaboration with Chris Herzog and Gary Horowitz : 0801.1693, 0810.1563. Frederik Denef : 0901.1160. Frederik Denef and Subir Sachdev

More information

Hydrodynamic Modes of Incoherent Black Holes

Hydrodynamic Modes of Incoherent Black Holes Hydrodynamic Modes of Incoherent Black Holes Vaios Ziogas Durham University Based on work in collaboration with A. Donos, J. Gauntlett [arxiv: 1707.xxxxx, 170x.xxxxx] 9th Crete Regional Meeting on String

More information

Theory of metallic transport in strongly coupled matter. 4. Magnetotransport. Andrew Lucas

Theory of metallic transport in strongly coupled matter. 4. Magnetotransport. Andrew Lucas Theory of metallic transport in strongly coupled matter 4. Magnetotransport Andrew Lucas Stanford Physics Geometry and Holography for Quantum Criticality; Asia-Pacific Center for Theoretical Physics August

More information

Quantum phase transitions in condensed matter

Quantum phase transitions in condensed matter Quantum phase transitions in condensed matter The 8th Asian Winter School on Strings, Particles, and Cosmology, Puri, India January 11-18, 2014 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD

More information

Quantum oscillations & black hole ringing

Quantum oscillations & black hole ringing Quantum oscillations & black hole ringing Sean Hartnoll Harvard University Work in collaboration with Frederik Denef : 0901.1160. Frederik Denef and Subir Sachdev : 0908.1788, 0908.2657. Sept. 09 ASC,

More information

Quantum criticality of Fermi surfaces

Quantum criticality of Fermi surfaces Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface

More information

Is the composite fermion a Dirac particle?

Is the composite fermion a Dirac particle? Is the composite fermion a Dirac particle? Dam T. Son (University of Chicago) Cold atoms meet QFT, 2015 Ref.: 1502.03446 Plan Plan Composite fermion: quasiparticle of Fractional Quantum Hall Effect (FQHE)

More information

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter Complex entangled states of quantum matter, not adiabatically connected to independent particle states Gapped quantum matter Z2 Spin liquids, quantum Hall states Conformal quantum matter Graphene, ultracold

More information

Momentum relaxation in holographic massive gravity

Momentum relaxation in holographic massive gravity Momentum relaxation in holographic massive gravity Richard Davison Lorentz Institute, Leiden Based on 1306.5792 [hep-th] Gauge/Gravity Duality 2013, Munich July 30 th 2013 Introduction and motivation We

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies on-line at http://pantheon.yale.edu/~subir

More information

2015 Summer School on Emergent Phenomena in Quantum Materials. Program Overview

2015 Summer School on Emergent Phenomena in Quantum Materials. Program Overview Emergent Phenomena in Quantum Materials Program Overview Each talk to be 45min with 15min Q&A. Monday 8/3 8:00AM Registration & Breakfast 9:00-9:10 Welcoming Remarks 9:10-10:10 Eugene Demler Harvard University

More information

Stability of semi-metals : (partial) classification of semi-metals

Stability of semi-metals : (partial) classification of semi-metals : (partial) classification of semi-metals Eun-Gook Moon Department of Physics, UCSB EQPCM 2013 at ISSP, Jun 20, 2013 Collaborators Cenke Xu, UCSB Yong Baek, Kim Univ. of Toronto Leon Balents, KITP B.J.

More information

Talk online at

Talk online at Talk online at http://sachdev.physics.harvard.edu Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic

More information

Quantum bosons for holographic superconductors

Quantum bosons for holographic superconductors Quantum bosons for holographic superconductors Sean Hartnoll Harvard University Work in collaboration with Chris Herzog and Gary Horowitz : 0801.1693, 0810.1563. Frederik Denef : 0901.1160. Frederik Denef

More information

Theory of the Nernst effect near the superfluid-insulator transition

Theory of the Nernst effect near the superfluid-insulator transition Theory of the Nernst effect near the superfluid-insulator transition Sean Hartnoll (KITP), Christopher Herzog (Washington), Pavel Kovtun (KITP), Marcus Mueller (Harvard), Subir Sachdev (Harvard), Dam Son

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

7.4. Why we have two different types of materials: conductors and insulators?

7.4. Why we have two different types of materials: conductors and insulators? Phys463.nb 55 7.3.5. Folding, Reduced Brillouin zone and extended Brillouin zone for free particles without lattices In the presence of a lattice, we can also unfold the extended Brillouin zone to get

More information

Dynamics, phase transitions and holography

Dynamics, phase transitions and holography Dynamics, phase transitions and holography Jakub Jankowski with R. A. Janik, H. Soltanpanahi Phys. Rev. Lett. 119, no. 26, 261601 (2017) Faculty of Physics, University of Warsaw Phase structure at strong

More information

Quantum matter & black hole ringing

Quantum matter & black hole ringing Quantum matter & black hole ringing Sean Hartnoll Harvard University Work in collaboration with Chris Herzog and Gary Horowitz : 0801.1693, 0810.1563. Frederik Denef : 0901.1160. Frederik Denef and Subir

More information

Effective field theory, holography, and non-equilibrium physics. Hong Liu

Effective field theory, holography, and non-equilibrium physics. Hong Liu Effective field theory, holography, and non-equilibrium physics Hong Liu Equilibrium systems Microscopic description low energy effective field theory: Macroscopic phenomena Renormalization group, universality

More information

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering DE-FG02-08ER46544 Overview

More information

Hydrodynamic transport in the Dirac fluid in graphene. Andrew Lucas

Hydrodynamic transport in the Dirac fluid in graphene. Andrew Lucas Hydrodynamic transport in the Dirac fluid in graphene Andrew Lucas Harvard Physics Condensed Matter Seminar, MIT November 4, 2015 Collaborators 2 Subir Sachdev Harvard Physics & Perimeter Institute Philip

More information

Quantum Matter with Classical Spacetime

Quantum Matter with Classical Spacetime Can we understand d-electrons with warped spacetime? Quantum Matter with Classical Spacetime Sang-Jin Sin (Hanyang) 2014.09.17 Postech 溫故知新 Brief history of physics revolution Revolution 1.0: first law

More information

Metal-Insulator Transitions in a model for magnetic Weyl semimetal and graphite under high magnetic field

Metal-Insulator Transitions in a model for magnetic Weyl semimetal and graphite under high magnetic field Metal-Insulator Transitions in a model for magnetic Weyl semimetal and graphite under high magnetic field Disorder-driven quantum phase transition in Weyl fermion semimetal Luo, Xu, Ohtsuki and RS, ArXiv:1710.00572v2,

More information

Mean field theories of quantum spin glasses

Mean field theories of quantum spin glasses Mean field theories of quantum spin glasses Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Talk online: Sachdev Classical Sherrington-Kirkpatrick model H = JS S i j ij i j J ij : a

More information

dynamics of broken symmetry Julian Sonner Non-Equilibrium and String Theory workshop Ann Arbor, 20 Oct 2012

dynamics of broken symmetry Julian Sonner Non-Equilibrium and String Theory workshop Ann Arbor, 20 Oct 2012 dynamics of broken symmetry Julian Sonner Non-Equilibrium and String Theory workshop Ann Arbor, 20 Oct 2012 1207.4194, 12xx.xxxx in collaboration with Jerome Gauntlett & Toby Wiseman Benjamin Simons Miraculous

More information

Holographic vortex pair annihilation in superfluid turbulence

Holographic vortex pair annihilation in superfluid turbulence Holographic vortex pair annihilation in superfluid turbulence Vrije Universiteit Brussel and International Solvay Institutes Based mainly on arxiv:1412.8417 with: Yiqiang Du and Yu Tian(UCAS,CAS) Chao

More information

Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universität Stuttgart

Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universität Stuttgart Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universität Stuttgart Outline 1. Organic Conductors basics and development 2.

More information

AdS/CFT and holographic superconductors

AdS/CFT and holographic superconductors AdS/CFT and holographic superconductors Toby Wiseman (Imperial) In collaboration with Jerome Gauntlett and Julian Sonner [ arxiv:0907.3796 (PRL 103:151601, 2009), arxiv:0912.0512 ] and work in progress

More information

Can superconductivity emerge out of a non Fermi liquid.

Can superconductivity emerge out of a non Fermi liquid. Can superconductivity emerge out of a non Fermi liquid. Andrey Chubukov University of Wisconsin Washington University, January 29, 2003 Superconductivity Kamerling Onnes, 1911 Ideal diamagnetism High Tc

More information

Tuning order in cuprate superconductors

Tuning order in cuprate superconductors Tuning order in cuprate superconductors arxiv:cond-mat/0201401 v1 23 Jan 2002 Subir Sachdev 1 and Shou-Cheng Zhang 2 1 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120,

More information

The Role of Charge Order in the Mechanism of High Temperature Superconductivity

The Role of Charge Order in the Mechanism of High Temperature Superconductivity The Role of Charge Order in the Mechanism of High Temperature Superconductivity Eduardo Fradkin Department of Physics University of Illinois at Urbana-Champaign Steven Kivelson, UCLA/Stanford Enrico Arrigoni,

More information

Semiclassical Electron Transport

Semiclassical Electron Transport Semiclassical Electron Transport Branislav K. Niolić Department of Physics and Astronomy, University of Delaware, U.S.A. PHYS 64: Introduction to Solid State Physics http://www.physics.udel.edu/~bniolic/teaching/phys64/phys64.html

More information

Holographic Kondo and Fano Resonances

Holographic Kondo and Fano Resonances Holographic Kondo and Fano Resonances Andy O Bannon Disorder in Condensed Matter and Black Holes Lorentz Center, Leiden, the Netherlands January 13, 2017 Credits Johanna Erdmenger Würzburg Carlos Hoyos

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals University of Cologne, June 8, 2012 Subir Sachdev Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World, chair D.J. Gross. arxiv:1203.4565

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

SYK models and black holes

SYK models and black holes SYK models and black holes Black Hole Initiative Colloquium Harvard, October 25, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Wenbo Fu, Harvard Yingfei Gu, Stanford Richard Davison,

More information

Quantum critical metals and their instabilities. Srinivas Raghu (Stanford)

Quantum critical metals and their instabilities. Srinivas Raghu (Stanford) Quantum critical metals and their instabilities Srinivas Raghu (Stanford) Collaborators and References R. Mahajan, D. Ramirez, S. Kachru, and SR, PRB 88, 115116 (2013). A. Liam Fitzpatrick, S. Kachru,

More information

Quantum mechanics without particles

Quantum mechanics without particles Quantum mechanics without particles Institute Lecture, Indian Institute of Technology, Kanpur January 21, 2014 sachdev.physics.harvard.edu HARVARD Outline 1. Key ideas from quantum mechanics 2. Many-particle

More information

Quantum critical dynamics: CFT, Monte Carlo & holography. William Witczak-Krempa Perimeter Institute

Quantum critical dynamics: CFT, Monte Carlo & holography. William Witczak-Krempa Perimeter Institute Quantum critical dynamics: CFT, Monte Carlo & holography William Witczak-Krempa Perimeter Institute Toronto, HEP seminar, Jan. 12 2015 S. Sachdev @Harvard / PI E. Sorensen @McMaster E. Katz @Boston U.

More information

Holography and Mottness: a Discrete Marriage

Holography and Mottness: a Discrete Marriage Holography and Mottness: a Discrete Marriage Thanks to: NSF, EFRC (DOE) Ka Wai Lo M. Edalati R. G. Leigh Mott Problem emergent gravity Mott Problem What interacting problems can we solve in quantum mechanics?

More information

NEW HORIZONS IN QUANTUM MATTER

NEW HORIZONS IN QUANTUM MATTER The 34 th Jerusalem School in Theoretical Physics NEW HORIZONS IN QUANTUM MATTER 27.12, 2016 5.1, 2017 Photo credit Frans Lanting / www.lanting.com Modern quantum materials realize a remarkably rich set

More information

J. McGreevy, arxiv Wednesday, April 18, 2012

J. McGreevy, arxiv Wednesday, April 18, 2012 r J. McGreevy, arxiv0909.0518 Consider the metric which transforms under rescaling as x i ζx i t ζ z t ds ζ θ/d ds. This identifies z as the dynamic critical exponent (z = 1 for relativistic quantum critical

More information

Hydrodynamics in the Dirac fluid in graphene. Andrew Lucas

Hydrodynamics in the Dirac fluid in graphene. Andrew Lucas Hydrodynamics in the Dirac fluid in graphene Andrew Lucas Stanford Physics Fluid flows from graphene to planet atmospheres; Simons Center for Geometry and Physics March 20, 2017 Collaborators 2 Subir Sachdev

More information

Subir Sachdev Research Accomplishments

Subir Sachdev Research Accomplishments Subir Sachdev Research Accomplishments Theory for the quantum phase transition involving loss of collinear antiferromagnetic order in twodimensional quantum antiferromagnets (N. Read and S. Sachdev, Phys.

More information

The Role of Charge Order in the Mechanism of High Temperature Superconductivity

The Role of Charge Order in the Mechanism of High Temperature Superconductivity The Role of Charge Order in the Mechanism of High Temperature Superconductivity Talk at the Oak Ridge National Laboratory, March 28, 2008 Eduardo Fradkin Department of Physics University of Illinois at

More information

Quantum spin liquids and the Mott transition. T. Senthil (MIT)

Quantum spin liquids and the Mott transition. T. Senthil (MIT) Quantum spin liquids and the Mott transition T. Senthil (MIT) Friday, December 9, 2011 Band versus Mott insulators Band insulators: even number of electrons per unit cell; completely filled bands Mott

More information

Electrical Transport in Nanoscale Systems

Electrical Transport in Nanoscale Systems Electrical Transport in Nanoscale Systems Description This book provides an in-depth description of transport phenomena relevant to systems of nanoscale dimensions. The different viewpoints and theoretical

More information

The Dirac composite fermions in fractional quantum Hall effect. Dam Thanh Son (University of Chicago) Nambu Memorial Symposium March 12, 2016

The Dirac composite fermions in fractional quantum Hall effect. Dam Thanh Son (University of Chicago) Nambu Memorial Symposium March 12, 2016 The Dirac composite fermions in fractional quantum Hall effect Dam Thanh Son (University of Chicago) Nambu Memorial Symposium March 12, 2016 A story of a symmetry lost and recovered Dam Thanh Son (University

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

Non-Equilibrium Steady States Beyond Integrability

Non-Equilibrium Steady States Beyond Integrability Non-Equilibrium Steady States Beyond Integrability Joe Bhaseen TSCM Group King s College London Beyond Integrability: The Mathematics and Physics of Integrability and its Breaking in Low-Dimensional Strongly

More information

Disordered metals without quasiparticles, and charged black holes

Disordered metals without quasiparticles, and charged black holes HARVARD Disordered metals without quasiparticles, and charged black holes String Theory: Past and Present (SpentaFest) International Center for Theoretical Sciences, Bengaluru January 11-13, 2017 Subir

More information

A Solvable Irrelevant

A Solvable Irrelevant A Solvable Irrelevant Deformation of AdS $ / CFT * A. Giveon, N. Itzhaki, DK arxiv: 1701.05576 + to appear Strings 2017, Tel Aviv Introduction QFT is usually thought of as an RG flow connecting a UV fixed

More information

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability Subir Sachdev sachdev.physics.harvard.edu HARVARD y x Fermi surface with full square lattice symmetry y x Spontaneous

More information

Lifshitz Geometries in String and M-Theory

Lifshitz Geometries in String and M-Theory Lifshitz Geometries in String and M-Theory Jerome Gauntlett Aristomenis Donos Aristomenis Donos, Nakwoo Kim, Oscar Varela (to appear) AdS/CMT The AdS/CFT correspondence is a powerful tool to study strongly

More information

The Oxford Solid State Basics

The Oxford Solid State Basics The Oxford Solid State Basics Steven H. Simon University of Oxford OXFORD UNIVERSITY PRESS Contents 1 About Condensed Matter Physics 1 1.1 What Is Condensed Matter Physics 1 1.2 Why Do We Study Condensed

More information

Asymptotic Symmetries and Holography

Asymptotic Symmetries and Holography Asymptotic Symmetries and Holography Rashmish K. Mishra Based on: Asymptotic Symmetries, Holography and Topological Hair (RKM and R. Sundrum, 1706.09080) Unification of diverse topics IR structure of QFTs,

More information

Relativistic magnetotransport in graphene

Relativistic magnetotransport in graphene Relativistic magnetotransport in graphene Markus Müller in collaboration with Lars Fritz (Harvard) Subir Sachdev (Harvard) Jörg Schmalian (Iowa) Landau Memorial Conference June 6, 008 Outline Relativistic

More information

Under The Dome. Doped holographic superconductors with broken translational symmetry

Under The Dome. Doped holographic superconductors with broken translational symmetry Prepared for submission to JHEP Under The Dome arxiv:1510.06363v1 [hep-th] 21 Oct 2015 Doped holographic superconductors with broken translational symmetry Matteo Baggioli, a,b Mikhail Goykhman c a Institut

More information