What's so unusual about high temperature superconductors? UBC 2005

Size: px
Start display at page:

Download "What's so unusual about high temperature superconductors? UBC 2005"

Transcription

1 What's so unusual about high temperature superconductors? UBC 2005

2 Everything Normal State - doped Mott insulator 2. Pairing Symmetry - d-wave 2. Short Coherence Length - superconducting fluctuations 3. Low Phase Stiffness - Uemura plot, phase fluctuations 4. Low Dimensionality - Kosterlitz-Thouless transition vs 3D 5. Competing Order and Phase Separation

3 Transition temperature The leap up to a very different range of superconducting transition temperature was the first sign that new physics had been discovered.

4 YBa2Cu3O7-x - first compound with Tc > 77 K 2- (CuO2 ) planes c a b CuO chains

5 YBa 2 Cu 3 O 7-x - first compound with T c > 77 K Square planar array of CuO2 is the basic building block of the high temperature superconductors. Essential physics is thought to be a square planar array of atoms with one unpaired spin electron per site

6 Superconductivity arising from an insulator RVB state is a superposition of pairs of electrons in singlet states We now know that the groundstate is an antiferromagnetic insulator driven by strong Coulomb repulsion - strongly correlated electron problem

7 O Cu CuO 2 plane (AF) + + T AF T* SC hole doping CuO 2 plane (doped)

8 Conventional Superconducting Order Parameter The superconducting state consists of bound pairs of electrons with equal, but opposite momentum (k,-k). The pairs are condensed into a state that can be denoted by a complex order parameter e iφ the magnitude appears as a gap in the spectrum of excitations near the Fermi surface. Conventional superconductors have singlet pairs ( - ) and a gap (k) that does not depend on the direction of the momentum k

9 Flux quanta in a YBCO ring with T c = 6.0K 0.3 2Φ Φ 0 Φ µm 0 Flux in YBCO rings is quantised in units of Φ 0 = hc/2e Cooper pairs

10 Unconventional Pairing One way that a pairing state can differ from the conventional superconducting state is for the pair to be in a spin triplet rather than a spin singlet (happens in superfluid 3 He, but not in the cuprates) Another way that pairing can be unconventional is for the gap to vary. _ + _ +

11 N (E)/N d-wave s-wave A conventional (s-wave) superconductor has an energy gap with no zeros imany properties acquire exponential temperature dependence exp(- /k B T) States with nodes in the gap display power law temperature dependences instead E/

12 Any property that depends on the thermal excitations out of the groundstate is strongly influenced by the presence of nodes in the energy gap. Eg. density of the superfluid n s e 2 /m* ~ 1/λ 2 determines the London penetration depth λ. Thermal excitations deplete the superfluid density and cause λ to increase. First definitive power law observed in the cuprates was linear temperature dependence of the London penetration depth in YBa 2 Cu 3 O 6.95 (Hardy et al.) λ(t) = λ(t) - λ(0) linear in T suggested lines of nodes on the fermi surface.

13 Problem - pairing states with nodes are strongly influenced by impurities 4 3 N (E)/N d-wave s-wave E/ pair-breaking by impurities generates a non-zero density of states at the fermi energy and changes the power law in the energy dependence.

14 Substituting Zn impurities for planar Cu in YBa2Cu3O6.95 changes the power law from linear to quadratic in T. Even worse - any power law faster than linear can be mistaken for an exponential if there is noise in the data and/or poor sensitivity.

15 Understanding the Solid State: Electrons in Reciprocal Space Many properties of a solids are determined by electrons near E F (conductivity, magnetoresistance, superconductivity, magnetism) Allowed electronic states Repeated-zone scheme E F Only a narrow energy slice around E F is relevant for these properties (kt=25 mev at room temperature) Second Brillouin zone First Brillouin zone Second Brillouin zone

16 ARPES: The One-Particle Spectral Function A. Damascelli, Z. Hussain, Z.-X Shen, Rev. Mod. Phys. 75, 473 (2003) Photoemission intensity: I(k,w)=I 0 M(k,w) 2 f(w) A(k,w) Single-particle spectral function S(k,w) : the self-energy captures the effects of interactions

17 Tl2201 : ARPES Results

18 Angle-Resolved Photoemission Spectroscopy (ARPES) confirmed the presence of nodes and determined their orientation with respect to the crystal axes, but is unable to show the additional broken symmetry. Fermi surface + + k y k x + + ARPES measurements of the low energy excitations in the superconducting state (Ding et al., PRB 54, 9679) node

19 Short Coherence Length In BCS theory, the coherence length is ξ 0 = hv F. π (0) This lengthscale can be though of as the spatial extent of a Cooper pair and in conventional superconductors with low T c and small energy gap (0), ξ 0 ~ 10 s of nanometres or more. ξ 0 also sets the lengthscale over which the superconducting order parameter is able to vary. One consequence of long coherence length is that the superconducting transition is well-described by mean field theory. Conversely, the small value of ξ 0 in the cuprates makes fluctuations important near T c.

20 A mean field superconducting transition has a superfluid density 1/λ 2 α (T c -T). Cuprate single crystals frequently exhibit 1/λ 3 α (T c -T). λ α (T c -T) -1/3 is the critical behaviour expected for a 2-component order parameter in 3-dimensions (3DXY) (Kamal et al. PRL 73, 1845).

21 Buckingham and Fairbank in Progress in Low Temperature Physics III, Thermal expansion coefficient of YBCO near Tc shows a transition very similar to the superfluid transition in He 4. Background thermal expansion has opposite sign in the a and b directions, allowing a subtraction that more clearly exhibits the critical behaviour. (Pasler et al. PRL 1994)

22 Low Superfluid Density and Phase Fluctuations Emery and Kivelson suggested that in the cuprates the low superfluid density is responsible for controlling the critical temperature on the underdoped side of the phase diagram. Φ disorders decreases e iφ

23 Uemura Plot for Single Crystal YBa 2 Cu 3 O 6+x T c (K ) µsr (Sonier et al.) Gd ESR, a-axis Gd ESR, b-axis (incl. CuO chains) H C1 (with κ =60) Non-linear relationship between superfluid density and T c, unlike prediction of Kosterlitz-Thouless behaviour in 2D / 2 ( m -2 ) λ µ

24 60 4 unit cell ] -1?λ - 2 [m m T 2D T 2D T 2D unit cell 10 unit cell T [K] T 2D * T 2D T 2D * T 2D T 2D * T 2D Truly low dimensional superconductivity has usually been achieved in thin films. In 2D, the superconducting transition is governed by a Kosterlitz-Thouless transition at which the phase stiffness drops abruptly due to a sudden proliferation of vortices. Bulk samples appear to behave 3-dimensionally, despite a layered structure and strong anisotropy. Zuev et al., cond. matt

25 T >> 150 C tetragonal, high temperature phase where oxygen content is set Chain oxygen ordering in T ~ 150 C Ortho-I phase, orthorhombic, but very short chain fragments no hole-doping, no Tc YBa 2 Cu 3 O 6.34 T ~ room temp., P ~ 25 kbar Ortho-III-inverse phase? Higher Tc, more perfect T ~ room temp. Ortho-II phase, chain fragments lengthen, hole-doping and Tc evolve.

26 Superfluid Density from 6 GHz Cavity Perturbation Data taken from one sample with room temperature annealing and pressure. 1/λ 2 (T=0) depends very strongly on doping No sign of 2D BKT jump or 3DXY fluctuations (Broun et al., preprint)

27 Nanoscale inhomogeneity due to dopant atoms in Bi2Sr2CaCu2O8+x McElroy et al., Science 309, 1051 (2005). Scanning tunnelling spectroscopy (STS). Inhomogeneous superconducting gap driven by random oxygen dopant atoms (x).

28 A definitive understanding of the origin of high temperature superconductivity still eludes us. However, the path has led to the invention of new ways of looking at materials - many just a short walk away in AMPEL...

29 1/2 Φ 0 flux quantum spontaneously generated in a ring of YBCO that encircles a frustrated tricrystal junction. (Kirtley, Tsuei et al.) The sign change of a d-wave order parameter as it winds around a tricrystal junction is compensated by the generation of a supercurrent with a half flux quantum in the ring.

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Origin of High-Temperature Superconductivity Nature s great puzzle C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Basic characteristics of superconductors: Perfect electrical conduction

More information

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli Department of Physics & Astronomy University of British Columbia Vancouver, B.C. Outline: Part I State-of-the-Art

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Electronic Noise Due to Thermal Stripe Switching

Electronic Noise Due to Thermal Stripe Switching Electronic Noise Due to Thermal Stripe Switching E. W. Carlson B. Phillabaum Y. L. Loh D. X. Yao Research Corporation Solid Liquid Gas www.stonecropgallery.com/artists/caleb/01-solidliquidgas.jpg Crystals

More information

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3 4D-XY Quantum Criticality in Underdoped High-T c cuprates M. Franz University of British Columbia franz@physics.ubc.ca February 22, 2005 In collaboration with: A.P. Iyengar (theory) D.P. Broun, D.A. Bonn

More information

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES studies of cuprates Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Goals of lecture Understand why gaps are important and various ways that gap

More information

A New look at the Pseudogap Phase in the Cuprates.

A New look at the Pseudogap Phase in the Cuprates. A New look at the Pseudogap Phase in the Cuprates. Patrick Lee MIT Common themes: 1. Competing order. 2. superconducting fluctuations. 3. Spin gap: RVB. What is the elephant? My answer: All of the above!

More information

Cuprates supraconducteurs : où en est-on?

Cuprates supraconducteurs : où en est-on? Chaire de Physique de la Matière Condensée Cuprates supraconducteurs : où en est-on? Antoine Georges Cycle 2010-2011 Cours 5 30/11/2010 Cours 5-30/11/2010 Cours: Phénoménologie de la phase supraconductrice

More information

Using Disorder to Detect Order: Hysteresis and Noise of Nematic Stripe Domains in High Temperature Superconductors

Using Disorder to Detect Order: Hysteresis and Noise of Nematic Stripe Domains in High Temperature Superconductors Using Disorder to Detect Order: Hysteresis and Noise of Nematic Stripe Domains in High Temperature Superconductors Erica Carlson Karin Dahmen Eduardo Fradkin Steven Kivelson Dale Van Harlingen Michael

More information

Magnetism in correlated-electron materials

Magnetism in correlated-electron materials Magnetism in correlated-electron materials B. Keimer Max-Planck-Institute for Solid State Research focus on delocalized electrons in metals and superconductors localized electrons: Hinkov talk outline

More information

High-Temperature Superconductors: Playgrounds for Broken Symmetries

High-Temperature Superconductors: Playgrounds for Broken Symmetries High-Temperature Superconductors: Playgrounds for Broken Symmetries Gauge / Phase Reflection Time Laura H. Greene Department of Physics Frederick Seitz Materials Research Laboratory Center for Nanoscale

More information

High temperature superconductivity

High temperature superconductivity High temperature superconductivity Applications to the maglev industry Elsa Abreu April 30, 2009 Outline Historical overview of superconductivity Copper oxide high temperature superconductors Angle Resolved

More information

The High T c Superconductors: BCS or Not BCS?

The High T c Superconductors: BCS or Not BCS? The University of Illinois at Chicago The High T c Superconductors: BCS or Not BCS? Does BCS theory work for the high temperature superconductors? We take a look at the electronic excitations using angle

More information

Strongly Correlated Systems:

Strongly Correlated Systems: M.N.Kiselev Strongly Correlated Systems: High Temperature Superconductors Heavy Fermion Compounds Organic materials 1 Strongly Correlated Systems: High Temperature Superconductors 2 Superconductivity:

More information

Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution. Eran Amit. Amit Keren

Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution. Eran Amit. Amit Keren Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution Eran Amit Amit Keren Technion- Israel Institute of Technology Doping Meisner CuO 2 Spin Glass Magnetic Field

More information

Phenomenology of High Tc Cuprates II. Pseudogap in Underdoped Cuprates

Phenomenology of High Tc Cuprates II. Pseudogap in Underdoped Cuprates Lecture # 2 1 Phenomenology of High Tc Cuprates II Pseudogap in Underdoped Cuprates Mohit Randeria Ohio State University 2014 Boulder School on Modern aspects of Superconductivity T T* Strange metal Mott

More information

Neutron scattering from quantum materials

Neutron scattering from quantum materials Neutron scattering from quantum materials Bernhard Keimer Max Planck Institute for Solid State Research Max Planck UBC UTokyo Center for Quantum Materials Detection of bosonic elementary excitations in

More information

Electron Doped Cuprates

Electron Doped Cuprates Electron Doped Cuprates Daniela Lindner High temperature superconductivity in the copper-oxide ceramics obtains upon hole or electron doping the parent Mott insulating material. While the pairing symmetry

More information

Universal scaling relation in high-temperature superconductors

Universal scaling relation in high-temperature superconductors SLAC-PUB-10699 cond-mat/0404216 September 2004 Universal scaling relation in high-temperature superconductors C. C. Homes 1, S. V. Dordevic 1, M. Strongin 1, D. A. Bonn 2, Ruixing Liang 2, W. N. Hardy

More information

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity Mike Norman Materials Science Division Argonne National Laboratory & Center for Emergent Superconductivity Physics 3, 86

More information

Can superconductivity emerge out of a non Fermi liquid.

Can superconductivity emerge out of a non Fermi liquid. Can superconductivity emerge out of a non Fermi liquid. Andrey Chubukov University of Wisconsin Washington University, January 29, 2003 Superconductivity Kamerling Onnes, 1911 Ideal diamagnetism High Tc

More information

FROM NODAL LIQUID TO NODAL INSULATOR

FROM NODAL LIQUID TO NODAL INSULATOR FROM NODAL LIQUID TO NODAL INSULATOR Collaborators: Urs Ledermann and Maurice Rice John Hopkinson (Toronto) GORDON, 2004, Oxford Doped Mott insulator? Mott physics: U Antiferro fluctuations: J SC fluctuations

More information

Tunneling Spectra of Hole-Doped YBa 2 Cu 3 O 6+δ

Tunneling Spectra of Hole-Doped YBa 2 Cu 3 O 6+δ 67 Chapter 4 Tunneling Spectra of Hole-Doped YBa 2 Cu 3 O 6+δ 1 4.1 Introduction The proximity of cuprate superconductors to the Mott insulating phase gives rise to novel superconducting behavior enriched

More information

Nernst effect in high T c superconductors

Nernst effect in high T c superconductors Nernst effect in high T c superconductors Yayu Wang Department of Physics, Tsinghua University Outline Introduction to the Nernst effect Nernst effect in underdoped cuprates High field Nernst effect and

More information

Twenty years have passed since the discovery of the first copper-oxide high-temperature superconductor

Twenty years have passed since the discovery of the first copper-oxide high-temperature superconductor 1 Chapter 1 Introduction Twenty years have passed since the discovery of the first copper-oxide high-temperature superconductor La 2 x Ba x CuO 4 in 1986, and the intriguing physics of cuprate superconductors

More information

Quantum Choreography: Exotica inside Crystals

Quantum Choreography: Exotica inside Crystals Quantum Choreography: Exotica inside Crystals U. Toronto - Colloquia 3/9/2006 J. Alicea, O. Motrunich, T. Senthil and MPAF Electrons inside crystals: Quantum Mechanics at room temperature Quantum Theory

More information

Intertwined Orders in High Temperature Superconductors

Intertwined Orders in High Temperature Superconductors Intertwined Orders in High Temperature Superconductors! Eduardo Fradkin University of Illinois at Urbana-Champaign! Talk at SCES@60 Institute for Condensed Matter Theory University of Illinois at Urbana-Champaign

More information

The Role of Charge Order in the Mechanism of High Temperature Superconductivity

The Role of Charge Order in the Mechanism of High Temperature Superconductivity The Role of Charge Order in the Mechanism of High Temperature Superconductivity Eduardo Fradkin Department of Physics University of Illinois at Urbana-Champaign Steven Kivelson, UCLA/Stanford Enrico Arrigoni,

More information

Tuning order in cuprate superconductors

Tuning order in cuprate superconductors Tuning order in cuprate superconductors arxiv:cond-mat/0201401 v1 23 Jan 2002 Subir Sachdev 1 and Shou-Cheng Zhang 2 1 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120,

More information

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Physica Scripta T109, 61 (2004). Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli Department of Physics & Astronomy University of British Columbia Vancouver,

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003 arxiv:cond-mat/0305637v1 [cond-mat.supr-con] 28 May 2003 The superconducting state in a single CuO 2 layer: Experimental findings and scenario Rushan Han, Wei Guo School of Physics, Peking University,

More information

Vortex Imaging in Unconventional Superconductors

Vortex Imaging in Unconventional Superconductors Magnetic imaging Vortex Imaging in Unconventional Superconductors P.J. Curran, W.M.A. Desoky, V.V. Khotkevych & S.J. Bending Department of Physics, University of Bath, Bath BA2 7AY, UK A. Gibbs & A.P.

More information

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique Dynamics of fluctuations in high temperature superconductors far from equilibrium L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique Superconductors display amazing properties: Dissipation-less

More information

μsr Studies on Magnetism and Superconductivity

μsr Studies on Magnetism and Superconductivity The 14 th International Conference on Muon Spin Rotation, Relaxation and Resonance (μsr217) School (June 25-3, 217, Sapporo) μsr Studies on Magnetism and Superconductivity Y. Koike Dept. of Applied Physics,

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies on-line at http://pantheon.yale.edu/~subir

More information

High-T c superconductors

High-T c superconductors High-T c superconductors Parent insulators Carrier doping Band structure and Fermi surface Pseudogap, superconducting gap, superfluid Nodal states Bilayer, trilayer Stripes High-T c superconductors Parent

More information

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST Laboratoire National des Champs Magnétiques Intenses Toulouse Collaborations D. Vignolles B. Vignolle C. Jaudet J.

More information

Order and quantum phase transitions in the cuprate superconductors

Order and quantum phase transitions in the cuprate superconductors Order and quantum phase transitions in the cuprate superconductors Subir Sachdev Department of Physics, Yale University, P.O. Box 208120, New Haven CT 06520-8120 March 26, 2003 Abstract This is a summary

More information

YBCO. CuO 2. the CuO 2. planes is controlled. from deviation from. neutron. , blue star for. Hg12011 (this work) for T c = 72

YBCO. CuO 2. the CuO 2. planes is controlled. from deviation from. neutron. , blue star for. Hg12011 (this work) for T c = 72 Supplementary Figure 1 Crystal structures and joint phase diagram of Hg1201 and YBCO. (a) Hg1201 features tetragonal symmetry and one CuO 2 plane per primitive cell. In the superconducting (SC) doping

More information

The Remarkable Superconducting Stripe Phase of the High Tc Superconductor La2-xBaxCuO4 near x=1/8

The Remarkable Superconducting Stripe Phase of the High Tc Superconductor La2-xBaxCuO4 near x=1/8 The Remarkable Superconducting Stripe Phase of the High Tc Superconductor La2-xBaxCuO4 near x=1/8 Eduardo Fradkin University of Illinois at Urbana-Champaign Seminar at the Department of Physics Harvard

More information

Citation PHYSICAL REVIEW LETTERS (2000), 85( RightCopyright 2000 American Physical So

Citation PHYSICAL REVIEW LETTERS (2000), 85(   RightCopyright 2000 American Physical So Title Discriminating the superconducting Bi2Sr2CaCu2O8+delta by interlayer t Author(s) Suzuki, M; Watanabe, T Citation PHYSICAL REVIEW LETTERS (2), 85( Issue Date 2-11-27 URL http://hdl.handle.net/2433/39919

More information

Demonstration Some simple theoretical models Materials How to make superconductors Some applications

Demonstration Some simple theoretical models Materials How to make superconductors Some applications Superconductivity Demonstration Some simple theoretical models Materials How to make superconductors Some applications How do we show superconductivity? Superconductors 1. have an electrical resistivity

More information

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Phase diagram

More information

Quantum magnetism and the theory of strongly correlated electrons

Quantum magnetism and the theory of strongly correlated electrons Quantum magnetism and the theory of strongly correlated electrons Johannes Reuther Freie Universität Berlin Helmholtz Zentrum Berlin? Berlin, April 16, 2015 Johannes Reuther Quantum magnetism () Berlin,

More information

Striping in Cuprates. Michael Bertolli. Solid State II Elbio Dagotto Spring 2008 Department of Physics, Univ. of Tennessee

Striping in Cuprates. Michael Bertolli. Solid State II Elbio Dagotto Spring 2008 Department of Physics, Univ. of Tennessee Striping in Cuprates Michael Bertolli Solid State II Elbio Dagotto Spring 2008 Department of Physics, Univ. of Tennessee Outline Introduction Basics of Striping Implications to Superconductivity Experimental

More information

A comparison of µsr and thermopower in Hg 1:2:0:1 high-t c cuprates

A comparison of µsr and thermopower in Hg 1:2:0:1 high-t c cuprates Hyperfine Interactions 105 (1997) 119 124 119 A comparison of µsr and thermopower in Hg 1:2:0:1 high-t c cuprates B. Nachumi a,a.keren a, K. Kojima a,m.larkin a, G.M. Luke a,j.merrin a, W.D. Wu a,y.j.uemura

More information

Exact results concerning the phase diagram of the Hubbard Model

Exact results concerning the phase diagram of the Hubbard Model Steve Kivelson Apr 15, 2011 Freedman Symposium Exact results concerning the phase diagram of the Hubbard Model S.Raghu, D.J. Scalapino, Li Liu, E. Berg H. Yao, W-F. Tsai, A. Lauchli G. Karakonstantakis,

More information

A brief Introduction of Fe-based SC

A brief Introduction of Fe-based SC Part I: Introduction A brief Introduction of Fe-based SC Yunkyu Bang (Chonnam National Univ., Kwangju, Korea) Lecture 1: Introduction 1. Overview 2. What is sign-changing s-wave gap : +/-s-wave gap Lecture

More information

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay I- Similarities between phase diagram and quantum critical points Quantum Criticality in 3 Families of Superconductors L. Taillefer,

More information

Angle Resolved Photoemission Spectroscopy. Dan Dessau University of Colorado, Boulder

Angle Resolved Photoemission Spectroscopy. Dan Dessau University of Colorado, Boulder Angle Resolved Photoemission Spectroscopy Dan Dessau University of Colorado, Boulder Dessau@Colorado.edu Photoemission Spectroscopy sample hn Energy High K.E. Low B.E. e - analyzer E F e- hν Density of

More information

Theoretical Study of High Temperature Superconductivity

Theoretical Study of High Temperature Superconductivity Theoretical Study of High Temperature Superconductivity T. Yanagisawa 1, M. Miyazaki 2, K. Yamaji 1 1 National Institute of Advanced Industrial Science and Technology (AIST) 2 Hakodate National College

More information

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Jaeger, Orr, Goldman, Kuper (1986) Dissipation driven QCP s Haviland, Liu, and Goldman Phys. Rev.

More information

How spin, charge and superconducting orders intertwine in the cuprates

How spin, charge and superconducting orders intertwine in the cuprates How spin, charge and superconducting orders intertwine in the cuprates Eduardo Fradkin University of Illinois at Urbana-Champaign Talk at the Kavli Institute for Theoretical Physics Program on Higher temperature

More information

High Temperature Superconductivity - After 20 years, where are we at?

High Temperature Superconductivity - After 20 years, where are we at? High Temperature Superconductivity - After 20 years, where are we at? Michael Norman Materials Science Division Argonne National Laboratory Norman and Pepin, Rep. Prog. Phys. (2003) Norman, Pines, and

More information

Determining the Order Parameter of Unconventional Superconductors by Josephson Interferometry

Determining the Order Parameter of Unconventional Superconductors by Josephson Interferometry The Josephson Effect Half-Centennial Symposium University of Cambridge --- June 23, 212 Determining the Order Parameter of Unconventional Superconductors by Josephson Interferometry - - Dale J. Van Harlingen

More information

J. D. Thompson with Tuson Park, Zohar Nussinov, John L. Sarrao Los Alamos National Laboratory and Sang-Wook Cheong Rutgers University

J. D. Thompson with Tuson Park, Zohar Nussinov, John L. Sarrao Los Alamos National Laboratory and Sang-Wook Cheong Rutgers University Dielectric Glassiness in Hole-Doped but Insulating Cuprates and Nickelates J. D. Thompson with Tuson Park, Zohar Nussinov, John L. Sarrao Los Alamos National Laboratory and Sang-Wook Cheong Rutgers University

More information

Pairing symmetry in iron based superconductors

Pairing symmetry in iron based superconductors Pairing symmetry in iron based superconductors Caizhi Xu Department of Physics University of Illinois Urbana Champaign Abstract: Iron-based superconductor is a new type of unconventional superconductors.

More information

Emergent gauge fields and the high temperature superconductors

Emergent gauge fields and the high temperature superconductors HARVARD Emergent gauge fields and the high temperature superconductors Unifying physics and technology in light of Maxwell s equations The Royal Society, London November 16, 2015 Subir Sachdev Talk online:

More information

Recent Advances in High-Temperature Superconductivity

Recent Advances in High-Temperature Superconductivity Recent Advances in High-Temperature Superconductivity Nai-Chang Yeh After more than 15 years of intense research since the discovery of high-temperature superconductivity [1], many interesting physical

More information

requires going beyond BCS theory to include inelastic scattering In conventional superconductors we use Eliashberg theory to include the electron-

requires going beyond BCS theory to include inelastic scattering In conventional superconductors we use Eliashberg theory to include the electron- MECHANISM requires going beyond BCS theory to include inelastic scattering In conventional superconductors we use Eliashberg theory to include the electron- A serious limitation of BCS theory is that it

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS A11046W1 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2015 Wednesday, 17 June, 2.30

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

Scanning Tunnelling Microscopy Observations of Superconductivity

Scanning Tunnelling Microscopy Observations of Superconductivity Department of physics Seminar I a Scanning Tunnelling Microscopy Observations of Superconductivity Author: Tim Verbovšek Mentor: dr. Rok Žitko Co-Mentor: dr. Erik Zupanič Ljubljana, February 013 Abstract

More information

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Anatoli Polkovnikov Boston University Ehud Altman Weizmann Vladimir Gritsev Harvard Mikhail

More information

Syro Université Paris-Sud and de Physique et Chimie Industrielles - Paris

Syro Université Paris-Sud and de Physique et Chimie Industrielles - Paris Introductory lectures on Angle-resolved photoemission spectroscopy (ARPES) and its application to the experimental study of the electronic structure of solids Andrés s Felipe Santander-Syro Syro Université

More information

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018 High Tc superconductivity in cuprates: Determination of pairing interaction Han-Yong Choi / SKKU SNU Colloquium May 30 018 It all began with Discovered in 1911 by K Onnes. Liquid He in 1908. Nobel prize

More information

Superconducting Stripes

Superconducting Stripes Superconducting Stripes By: Nick Vence I. Introduction In 1972 Bardeen, Cooper, and Schrieffer shared the Nobel prize in physics for describing a mechanism of superconductivity. Their BCS theory describes

More information

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Introduction to Superconductivity Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Meissner Effect Magnetic field expelled. Superconducting surface current ensures

More information

Valence Bonds in Random Quantum Magnets

Valence Bonds in Random Quantum Magnets Valence Bonds in Random Quantum Magnets theory and application to YbMgGaO 4 Yukawa Institute, Kyoto, November 2017 Itamar Kimchi I.K., Adam Nahum, T. Senthil, arxiv:1710.06860 Valence Bonds in Random Quantum

More information

Signatures of the precursor superconductivity above T c

Signatures of the precursor superconductivity above T c Dresden, 18 April 2007 Signatures of the precursor superconductivity above T c T. DOMANSKI M. Curie-Skłodowska University, 20-031 Lublin, Poland http://kft.umcs.lublin.pl/doman Outline Outline Introduction

More information

High Tc superconductivity in doped Mott insulators

High Tc superconductivity in doped Mott insulators Lecture # 3 1 High Tc superconductivity in doped Mott insulators Mohit Randeria Ohio State University 2014 Boulder School on Modern aspects of Superconductivity In collaboration with: A.Paramekanti, Toronto

More information

Superconductivity and Electron Correlations in Ruthenates

Superconductivity and Electron Correlations in Ruthenates University of St Andrews School of Physics and Astronomy Superconductivity and Electron Correlations in Ruthenates Andy Mackenzie University of St Andrews, UK Key collaborator: Yoshi Maeno, Kyoto University

More information

Tunneling Spectroscopy of PCCO

Tunneling Spectroscopy of PCCO Tunneling Spectroscopy of PCCO Neesha Anderson and Amlan Biswas Department of Physics, University of Florida, Gainesville, Florida Abstract A point-contact probe capable of operating down to temperatures

More information

Foundations of Condensed Matter Physics

Foundations of Condensed Matter Physics Foundations of Condensed Matter Physics PHY1850F 2005 www.physics.utoronto.ca/~wei/phy1850f.html Physics 1850F Foundations of Condensed Matter Physics Webpage: www.physics.utoronto.ca/~wei/phy1850f.html

More information

Quantum simulations, adiabatic transformations,

Quantum simulations, adiabatic transformations, Quantum simulations, adiabatic transformations, and resonating valence bond states Aspen June 2009 Simon Trebst Microsoft Station Q UC Santa Barbara Ulrich Schollwöck Matthias Troyer Peter Zoller High

More information

Nanoelectronics 14. [( ) k B T ] 1. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture.

Nanoelectronics 14. [( ) k B T ] 1. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture. Nanoelectronics 14 Atsufumi Hirohata Department of Electronics 09:00 Tuesday, 27/February/2018 (P/T 005) Quick Review over the Last Lecture Function Fermi-Dirac distribution f ( E) = 1 exp E µ [( ) k B

More information

Uemura plot as a certificate of two-dimensional character of superconducting transition for quisi-two-dimensional HTS

Uemura plot as a certificate of two-dimensional character of superconducting transition for quisi-two-dimensional HTS Uemura plot as a certificate of two-dimensional character of superconducting transition for quisi-two-dimensional HTS arxiv:cond-mat/0102293v1 16 Feb 2001 G.Sergeeva National Science Center Kharkov Institute

More information

April Schafroth s bosons? 2. BCS paired electrons? 3. Lattice Bosons?! -- new paradigm of metallic conductivity

April Schafroth s bosons? 2. BCS paired electrons? 3. Lattice Bosons?! -- new paradigm of metallic conductivity April 2011 1. Schafroth s bosons? 2. BCS paired electrons? 3. Lattice Bosons?! -- new paradigm of metallic conductivity Energy transport solar cells nuclear energy wind energy 15% of electric power is

More information

Vortex lattice pinning in high-temperature superconductors.

Vortex lattice pinning in high-temperature superconductors. Vortex lattice ning in high-temperature superconductors. Victor Vakaryuk. Abstract. Vortex matter in high temperature superconductors has many peculiar properties such as melting of the vortex lattice,

More information

The fate of the Wigner crystal in solids part II: low dimensional materials. S. Fratini LEPES-CNRS, Grenoble. Outline

The fate of the Wigner crystal in solids part II: low dimensional materials. S. Fratini LEPES-CNRS, Grenoble. Outline The fate of the Wigner crystal in solids part II: low dimensional materials S. Fratini LEPES-CNRS, Grenoble G. Rastelli (Università dell Aquila, Italy) P. Quémerais (LEPES-CNRS Grenoble) Outline competing

More information

Thermodynamics of D-Wave Pairing in Cuprate Superconductors

Thermodynamics of D-Wave Pairing in Cuprate Superconductors Journal of Low Temperature Physics, VoL 105, Nos. 3/4, 1996 Thermodynamics of D-Wave Pairing in Cuprate Superconductors Sergei P. Kruchinin and Stamatis K. Patapis* Bogolyubov Institute for Theoretical

More information

CDWs in ARPES. A momentum space picture of Fermi surface instabilities in crystalline solids. Physics 250, UC Davis Inna Vishik

CDWs in ARPES. A momentum space picture of Fermi surface instabilities in crystalline solids. Physics 250, UC Davis Inna Vishik CDWs in ARPES A momentum space picture of Fermi surface instabilities in crystalline solids Physics 250, UC Davis Inna Vishik Goals of this lecture Review CDW concepts from previous lecture Practice interpreting

More information

Electronic Liquid Crystal Phases in Strongly Correlated Systems

Electronic Liquid Crystal Phases in Strongly Correlated Systems Electronic Liquid Crystal Phases in Strongly Correlated Systems Eduardo Fradkin University of Illinois at Urbana-Champaign Talk at the workshop Large Fluctuations and Collective Phenomena in Disordered

More information

Principles of Electron Tunneling Spectroscopy

Principles of Electron Tunneling Spectroscopy Principles of Electron Tunneling Spectroscopy Second Edition E. L. Wolf Polytechnic Institute of New York University, USA OXFORD UNIVERSITY PRESS Contents 1 Introduction 1.1 Concepts of quantum mechanical

More information

Nernst effect in vortex-liquid state of cuprates

Nernst effect in vortex-liquid state of cuprates Boulder School for Condensed Matter and Materials Physics 2008 Talk 2 Nernst effect in vortex-liquid state of cuprates 1. Introduction to the Nernst effect 2. Vortex signal above Tc 3. Loss of long-range

More information

The Current Experimental Status of the High-Tc Problem. R. L. Greene

The Current Experimental Status of the High-Tc Problem. R. L. Greene The Current Experimental Status of the High-Tc Problem R. L. Greene Center for Nanophysics and Advanced Materials (CNAM) University of Maryland, College Park ACP April 19, 2017 Supported by the NSF and

More information

Low energy excitations in cuprates: an ARPES perspective. Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan.

Low energy excitations in cuprates: an ARPES perspective. Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan. Low energy excitations in cuprates: an ARPES perspectie Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan. 15, 2014 Acknowledgements Shen Group Professor Zhi-Xun Shen Dr.

More information

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors?

More information

Quantum noise studies of ultracold atoms

Quantum noise studies of ultracold atoms Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli Polkovnikov Funded by NSF,

More information

Emergent light and the high temperature superconductors

Emergent light and the high temperature superconductors HARVARD Emergent light and the high temperature superconductors Pennsylvania State University State College, January 21, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu Maxwell's equations:

More information

Talk online at

Talk online at Talk online at http://sachdev.physics.harvard.edu Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic

More information

Superfluid vortex with Mott insulating core

Superfluid vortex with Mott insulating core Superfluid vortex with Mott insulating core Congjun Wu, Han-dong Chen, Jiang-ping Hu, and Shou-cheng Zhang (cond-mat/0211457) Department of Physics, Stanford University Department of Applied Physics, Stanford

More information

Electronic structure calculations results from LDA+U method

Electronic structure calculations results from LDA+U method Electronic structure calculations results from LDA+U method Vladimir I. Anisimov Institute of Metal Physics Ekaterinburg, Russia LDA+U method applications Mott insulators Polarons and stripes in cuprates

More information

Vortex Checkerboard. Chapter Low-T c and Cuprate Vortex Phenomenology

Vortex Checkerboard. Chapter Low-T c and Cuprate Vortex Phenomenology 63 Chapter 4 Vortex Checkerboard There is no need to invoke alternative order parameters to explain observed DOS modulations in optimally doped Bi 2 Sr 2 CaCu 2 O 8+δ. To continue the search for interesting

More information

A momentum-dependent perspective on quasiparticle interference in Bi 2 Sr 2 CaCu 2 O 8+δ

A momentum-dependent perspective on quasiparticle interference in Bi 2 Sr 2 CaCu 2 O 8+δ SLAC-PUB-14004 A momentum-dependent perspective on quasiparticle interference in Bi 2 Sr 2 CaCu 2 O 8+δ I. M. Vishik, 1,2 B. Moritz, 2 E. A. Nowadnick, 1,2 W. S. Lee, 1,2 K. Tanaka, 3 T. Sasagawa, 4 T.

More information

Electronic Liquid Crystal Phases in Strongly Correlated Systems

Electronic Liquid Crystal Phases in Strongly Correlated Systems Electronic Liquid Crystal Phases in Strongly Correlated Systems Eduardo Fradkin University of Illinois at Urbana-Champaign Talk at the workshop Materials and the Imagination, Aspen Center of Physics, January

More information

Chapter 2 Superconducting Gap Structure and Magnetic Penetration Depth

Chapter 2 Superconducting Gap Structure and Magnetic Penetration Depth Chapter 2 Superconducting Gap Structure and Magnetic Penetration Depth Abstract The BCS theory proposed by J. Bardeen, L. N. Cooper, and J. R. Schrieffer in 1957 is the first microscopic theory of superconductivity.

More information

Learning about order from noise

Learning about order from noise Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli

More information

The Nernst effect in high-temperature superconductors

The Nernst effect in high-temperature superconductors The Nernst effect in high-temperature superconductors Iddo Ussishkin (University of Minnesota) with Shivaji Sondhi David Huse Vadim Oganesyan Outline Introduction: - High-temperature superconductors: physics

More information

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment Harald Ibach Hans Lüth SOLID-STATE PHYSICS An Introduction to Theory and Experiment With 230 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents

More information