Cluster Extensions to the Dynamical Mean-Field Theory

Size: px
Start display at page:

Download "Cluster Extensions to the Dynamical Mean-Field Theory"

Transcription

1 Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods?

2 Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods? 2. Cluster extensions DCA, CDMFT and Co.

3 Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods? 2. Cluster extensions DCA, CDMFT and Co. 3. Spectral functions from the DCA

4 Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods? 2. Cluster extensions DCA, CDMFT and Co. 3. Spectral functions from the DCA 4. Summary

5 Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods? 2. Cluster extensions DCA, CDMFT and Co. 3. Spectral functions from the DCA 4. Summary Collaborators: Th. Maier, M. Jarrell

6 Standard model for e.g. TMO: One band Hubbard model

7 Standard model for e.g. TMO: One band Hubbard model Simplest possible lattice

8 Standard model for e.g. TMO: One band Hubbard model Simplest possible lattice Only one relevant orbital per site

9 Standard model for e.g. TMO: One band Hubbard model Simplest possible lattice Only one relevant orbital per site Hopping between nearest t

10 Standard model for e.g. TMO: One band Hubbard model Simplest possible lattice Only one relevant orbital per site t Hopping between nearest t and next-nearest neighbors

11 Standard model for e.g. TMO: One band Hubbard model Simplest possible lattice Only one relevant orbital per site t U Hopping between nearest t and next-nearest neighbors Coulomb correlations

12 Standard model for e.g. TMO: One band Hubbard model Simplest possible lattice Only one relevant orbital per site t U Hopping between nearest t and next-nearest neighbors Coulomb correlations H = ij,σ t ij c iσ c jσ + U i n i n i Dispersion: ɛ k = ɛ 0 2t(cos k x + cos k y ) 4t (cos k x cos k y 1) Typical parameters: t 0.25eV, t /t 0.2

13 Standard model for e.g. TMO: One band Hubbard model Simplest possible lattice Only one relevant orbital per site t U Hopping between nearest t and next-nearest neighbors Coulomb correlations H = ij,σ t ij c iσ c jσ + U i n i n i W/2 Dispersion: ɛ k = ɛ 0 2t(cos k x + cos k y ) 4t (cos k x cos k y 1) E F -W/2 Typical parameters: t 0.25eV, t /t 0.2 Γ M X M Γ Γ X

14 Standard model for e.g. TMO: One band Hubbard model Simplest possible lattice Only one relevant orbital per site t U Hopping between nearest t and next-nearest neighbors Coulomb correlations H = ij,σ t ij c iσ c jσ + U i n i n i W/2 Dispersion: ɛ k = ɛ 0 2t(cos k x + cos k y ) 4t (cos k x cos k y 1) E F -W/2 Typical parameters: t 0.25eV, t /t 0.2, U/t 8 W Γ M X M Γ Intermediate coupling Regime Γ X

15 Standard techniques Exact Diagonalization Quantum Monte-Carlo Properties of finite systems (ED: N < 20, QMC: N < 100) Density-Matrix RenormalizationGroup Dynamical Mean-Field Theory Ground state and dynamics for D = 1 Approach to local properties RenormalizationGroup Low-energy properties Perturbation Theory Resummation of sub-classes of diagrams (FLEX) Variational wave functions Ground state properties

16 Successful approach for qualitative properties: DMFT

17 Successful approach for qualitative properties: DMFT Metal-insulator transition for n = 1 Georges et al., RMP 96, Bulla et al.,prl 99 & PRB U<U c U>U c T/W metal DOS ω insulator U/W

18 Successful approach for qualitative properties: DMFT Metal-insulator transition for n = 1 Magnetism (AFM & FM) PSfrag replacements Zitzler et al., EPJ 02 U/(W+U) 1 0,8 0,6 0,4 0,2 FM AFM (??) AFM(PS) PM 0 0% 10% δ = 1 n 20% 30%

19 Successful approach for qualitative properties: DMFT Metal-insulator transition for n = 1 TP et al., PRB QP Magnetism (AFM & FM) DOS 0.4 LHB UHB Correlated metal for n < ω Problems: No dependency on dimensionality of system wrong for D = 1 Fermi liquid ubiquitous No phases with non-local order parameter e.g. d-wave sc

20 Idea: Try to combine ED, QMC and (D)MFT

21 Idea: Try to combine ED, QMC and (D)MFT FiniteSystemSimulations Numerical exact Local & non-local dynamics Thermodynamic limit

22 Idea: Try to combine ED, QMC and (D)MFT FiniteSystemSimulations DynamicalMeanFieldTheory Numerical exact Local & non-local dynamics Thermodynamic limit Thermodynamic limit Local dynamics Non-local dynamics

23 Idea: Try to combine ED, QMC and (D)MFT FiniteSystemSimulations DynamicalMeanFieldTheory Numerical exact Local & non-local dynamics Thermodynamic limit Thermodynamic limit Local dynamics Non-local dynamics Combination: Cluster MFT Hettler, TP et al., PRB 58, 7475( 98) Lichtenstein et al., PRB 62, R9283 ( 00) Kotliar et al. PRL 87, ( 01) Maier et al., RMP ( 05).

24 Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods? 2. Cluster extensions DCA, CDMFT and Co. 3. Spectral functions from the DCA 4. Summary

25 General scheme in all cluster MFT: Take into account short-ranged correlations exactly Neglect long-ranged correlations Example DCA: Reduce k-space resolution to K = 2π/L. Maier et al., RMP 05

26 General scheme in all cluster MFT: Take into account short-ranged correlations exactly Neglect long-ranged correlations Example DCA: Reduce k-space resolution to K = 2π/L. k y k x Maier et al., RMP 05

27 General scheme in all cluster MFT: Take into account short-ranged correlations exactly Neglect long-ranged correlations Example DCA: Reduce k-space resolution to K = 2π/L. k y (0, π) (π, π) Choose N c cluster points K: (0, 0) (π, 0) k x Maier et al., RMP 05

28 General scheme in all cluster MFT: Take into account short-ranged correlations exactly Neglect long-ranged correlations Example DCA: Reduce k-space resolution to K = 2π/L. k y (0, π) (π, π) Choose N c cluster points K: (0, 0) (π, 0) k x K Maier et al., RMP 05

29 General scheme in all cluster MFT: Take into account short-ranged correlations exactly Neglect long-ranged correlations Example DCA: Reduce k-space resolution to K = 2π/L. k y (0, π) k (π, π) Choose N c cluster points K: Σ( k, z) (0, 0) (π, 0) k x K Maier et al., RMP 05

30 General scheme in all cluster MFT: Take into account short-ranged correlations exactly Neglect long-ranged correlations Example DCA: Reduce k-space resolution to K = 2π/L. k y (0, π) k (π, π) Choose N c cluster points K: Σ( k, z) = Σ( K + k, z) k K (0, 0) (π, 0) k x K Maier et al., RMP 05

31 General scheme in all cluster MFT: Take into account short-ranged correlations exactly Neglect long-ranged correlations Example DCA: Reduce k-space resolution to K = 2π/L. k y (0, π) k (π, π) Choose N c cluster points K: Σ( k, z) = Σ( K + k, z) Σ( K, z) k K (0, 0) (π, 0) k x K Maier et al., RMP 05

32 General scheme in all cluster MFT: Take into account short-ranged correlations exactly Neglect long-ranged correlations Example DCA: Reduce k-space resolution to K = 2π/L. k y (0, π) k (π, π) Choose N c cluster points K: Σ( k, z) = Σ( K + k, z) Σ( K, z) k (0, 0) K (π, 0) k x coarse graining: Ḡ( K, z) = N c G( K N + k, z) k K Maier et al., RMP 05

33 General scheme in all cluster MFT: Take into account short-ranged correlations exactly Neglect long-ranged correlations Example DCA: Reduce k-space resolution to K = 2π/L. k y (0, π) k (π, π) Choose N c cluster points K: Σ( k, z) = Σ( K + k, z) Σ( K, z) k (0, 0) K (π, 0) k x coarse graining: Ḡ( K, z) = N c G( K N + k, z) k K effective periodic cluster model Maier et al., RMP 05

34 Practical implementation: Initial guess for Σ(K)

35 Practical implementation: Initial guess for Σ(K) Ḡ(K) = N c N 1 k ω ɛ K+k + µ Σ(K)

36 Practical implementation: G 1 (K) = Ḡ 1 (K) + Σ(K) Initial guess for Σ(K) Ḡ(K) = N c N k 1 ω ɛ K+k + µ Σ(K)

37 Practical implementation: Cluster Solver G(K) G c (K) G 1 (K) = Ḡ 1 (K) + Σ(K) Initial guess for Σ(K) Ḡ(K) = N c N k 1 ω ɛ K+k + µ Σ(K)

38 Practical implementation: Cluster Solver G(K) G c (K) G 1 (K) = Ḡ 1 (K) + Σ(K) Σ(K) = G 1 (K) G c (K) 1 Ḡ(K) = N c N k 1 ω ɛ K+k + µ Σ(K)

39 Practical implementation: Cluster Solver G(K) G c (K) G 1 (K) = Ḡ 1 (K) + Σ(K) Σ(K) = G 1 (K) G c (K) 1 Ḡ(K) = N c N k 1 ω ɛ K+k + µ Σ(K) Exact limits: N c = 1 DMFT, N c = N exact

40 Other realizations: Define cluster in real space Lichtenstein et al., PRB 00; Kotliar et al. PRL 01 Neglect self-consistency cluster perturbation-theory Gros & Valenti, Ann. der Physik 94; Sénéchal et al., PRL 00 Unifying framework: Self-energy functional theory Potthoff, EPJ 03; Dahnken et al., 03 General problem: Reconstruct full k-dependence from coarse-grained self-energy e.g. DCA: interpolate Σ(K, z) Σ(k, z)

41 Schematic structure of effective cluster:

42 Schematic structure of effective cluster: Dynamical mean-field: infinitely many degrees of freedom (noninteracting)

43 Schematic structure of effective cluster: Dynamical mean-field: infinitely many degrees of freedom (noninteracting) Method of choice: Hirsch-Fye QMC

44 Schematic structure of effective cluster: Dynamical mean-field: infinitely many degrees of freedom (noninteracting) Method of choice: Hirsch-Fye QMC

45 Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods? 2. Cluster extensions DCA, CDMFT and Co. 3. Spectral functions from the DCA 4. Summary

46 2D Hubbard Modell: N c = 1 vs. N c > 1 (t = 0)

47 Maier, TP et al., EPJ B 13 ( 00) 2D Hubbard Modell: N c = 1 vs. N c > 1 (t = 0) 0.2 U=0 N(ω) t ω/t

48 Maier, TP et al., EPJ B 13 ( 00) 2D Hubbard Modell: N c = 1 vs. N c > 1 (t = 0) 0.2 U=0 N c = 1, U = W/2, t = 0 T=0.80t T N = 0.34t N(ω) t ω/t ω/t

49 Maier, TP et al., EPJ B 13 ( 00) 2D Hubbard Modell: N c = 1 vs. N c > 1 (t = 0) 0.2 U=0 N c = 1, U = W/2, t = 0 T=0.80t T=0.40t T N = 0.34t N(ω) t ω/t ω/t

50 Maier, TP et al., EPJ B 13 ( 00) 2D Hubbard Modell: N c = 1 vs. N c > 1 (t = 0) 0.2 U=0 N c = 1, U = W/2, t = 0 T=0.80t T=0.40t T N = 0.34t T=0.31t N(ω) t ω/t ω/t N c = 1: No precursor of AF

51 Maier, TP et al., EPJ B 13 ( 00) 2D Hubbard Modell: N c = 1 vs. N c > 1 (t = 0) 0.2 U=0 N c = 1, U = W/2, t = 0 T=0.80t T=0.40t T N = 0.34t T=0.31t N c = 4, U = W/2, t = 0 T=0.80t T N = 0.21t N(ω) t ω/t ω/t ω/t N c = 1: No precursor of AF

52 Maier, TP et al., EPJ B 13 ( 00) 2D Hubbard Modell: N c = 1 vs. N c > 1 (t = 0) 0.2 U=0 N c = 1, U = W/2, t = 0 T=0.80t T=0.40t T N = 0.34t T=0.31t N c = 4, U = W/2, t = 0 T=0.80t T=0.40t T N = 0.21t N(ω) t ω/t ω/t ω/t N c = 1: No precursor of AF

53 Maier, TP et al., EPJ B 13 ( 00) 2D Hubbard Modell: N c = 1 vs. N c > 1 (t = 0) 0.2 U=0 N c = 1, U = W/2, t = 0 T=0.80t T=0.40t T N = 0.34t T=0.31t N c = 4, U = W/2, t = 0 T=0.80t T=0.40t T N = 0.21t T=0.17t N(ω) t ω/t ω/t ω/t N c = 1: No precursor of AF N c = 4: pseudo gap in paramagnet

54 Spectral functions Maier, TP et al., PRB 66 ( 02) N c = 16, U = W = 8t, t = 0.2t, t = 0.25eV

55 M Γ X Spectral functions Maier, TP et al., PRB 66 ( 02) N c = 16, U = W = 8t, t = 0.2t, t = 0.25eV ImΣ(ω+iδ) n = 0.80, T = 370K k a k b ω M X k b (c) Γ M k a (a) X Γ (b)

56 M Γ X Spectral functions Maier, TP et al., PRB 66 ( 02) N c = 16, U = W = 8t, t = 0.2t, t = 0.25eV ImΣ(ω+iδ) n = 0.80, T = 370K k a k b ω M X k b (c) Γ M k a (a) X Γ (b) well defined quasi particles weak k-dependence of Σ( k, ω)

57 M Γ X Spectral functions Maier, TP et al., PRB 66 ( 02) N c = 16, U = W = 8t, t = 0.2t, t = 0.25eV n = 0.80, T = 370K well defined quasi particles weak k-dependence of Σ( k, ω) reduced quasi-particle bandwidth

58 M Γ X Spectral functions Maier, TP et al., PRB 66 ( 02) N c = 16, U = W = 8t, t = 0.2t, t = 0.25eV ImΣ(ω+iδ) n = 0.80, T = 370K k a k b ω M X k b (c) Γ M k a (a) X Γ (b) well defined quasi particles weak k-dependence of Σ( k, ω) reduced quasi-particle bandwidth

59 M Q Γ X Spectral functions Maier, TP et al., PRB 66 ( 02) N c = 16, U = W = 8t, t = 0.2t, t = 0.25eV n = 0.80, T = 370K M X k b (c) n = 0.95, T = 370K M X k b (c) ImΣ(ω+iδ) k a -1.5 ImΣ(ω+iδ) k b ω k a k b ω Γ M k a (a) X Γ (b) Γ M k a (a) X Γ (b) well defined quasi particles weak k-dependence of Σ( k, ω) reduced quasi-particle bandwidth overdamping of structures near X

60 M Q Γ X Spectral functions Maier, TP et al., PRB 66 ( 02) N c = 16, U = W = 8t, t = 0.2t, t = 0.25eV n = 0.80, T = 370K M X k b (c) n = 0.95, T = 370K M X k b (c) ImΣ(ω+iδ) k a -1.5 ImΣ(ω+iδ) k b ω k a k b ω Γ M k a (a) X Γ (b) Γ M k a (a) X Γ (b) well defined quasi particles weak k-dependence of Σ( k, ω) reduced quasi-particle bandwidth overdamping of structures near X strong k-dependence of Σ( k, ω) non-fl Σ( k, ω) near X?

61 Fermi surface Maier, TP et al., PRB 66 ( 02) N c = 16, U = W, t = 0.2, T = 370K n = 0.95 n = 0.90 n = 0.85 n = 0.80 n 0.9 Small FS for n 1 Hole pockets? n 0.9 Large FS for n < 0.9 free-electron like FS

62 Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods? 2. Cluster extensions DCA, CDMFT and Co. 3. Spectral functions from the DCA 4. Summary

63 Aspects of cluster MFT Interpolation between finite system simulations and DMFT Thermodynamic limit for dynamics Systematic inclusion of short- and mid-ranged correlations Sensible results Reduction of transition temperatures Fluctuation induced precursors of order in spectra Nontrivial k-dependent renormalization of single-particle properties

O. Parcollet CEA-Saclay FRANCE

O. Parcollet CEA-Saclay FRANCE Cluster Dynamical Mean Field Analysis of the Mott transition O. Parcollet CEA-Saclay FRANCE Dynamical Breakup of the Fermi Surface in a doped Mott Insulator M. Civelli, M. Capone, S. S. Kancharla, O.P.,

More information

Magnetic Moment Collapse drives Mott transition in MnO

Magnetic Moment Collapse drives Mott transition in MnO Magnetic Moment Collapse drives Mott transition in MnO J. Kuneš Institute of Physics, Uni. Augsburg in collaboration with: V. I. Anisimov, A. V. Lukoyanov, W. E. Pickett, R. T. Scalettar, D. Vollhardt,

More information

16 Dynamical Mean-Field Approximation and Cluster Methods for Correlated Electron Systems

16 Dynamical Mean-Field Approximation and Cluster Methods for Correlated Electron Systems 16 Dynamical Mean-Field Approximation and Cluster Methods for Correlated Electron Systems Thomas Pruschke Institute for Theoretical Physics, University of Göttingen, 37077 Göttingen, Germany pruschke@theorie.physik.uni-goettingen.de

More information

Mott transition : beyond Dynamical Mean Field Theory

Mott transition : beyond Dynamical Mean Field Theory Mott transition : beyond Dynamical Mean Field Theory O. Parcollet 1. Cluster methods. 2. CDMFT 3. Mott transition in frustrated systems : hot-cold spots. Coll: G. Biroli (SPhT), G. Kotliar (Rutgers) Ref:

More information

Introduction to DMFT

Introduction to DMFT Introduction to DMFT Lecture 2 : DMFT formalism 1 Toulouse, May 25th 2007 O. Parcollet 1. Derivation of the DMFT equations 2. Impurity solvers. 1 Derivation of DMFT equations 2 Cavity method. Large dimension

More information

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Frithjof B. Anders Institut für Theoretische Physik Universität Bremen Göttingen, December

More information

Diagrammatic Monte Carlo methods for Fermions

Diagrammatic Monte Carlo methods for Fermions Diagrammatic Monte Carlo methods for Fermions Philipp Werner Department of Physics, Columbia University PRL 97, 7645 (26) PRB 74, 15517 (26) PRB 75, 8518 (27) PRB 76, 235123 (27) PRL 99, 12645 (27) PRL

More information

Electronic correlations in models and materials. Jan Kuneš

Electronic correlations in models and materials. Jan Kuneš Electronic correlations in models and materials Jan Kuneš Outline Dynamical-mean field theory Implementation (impurity problem) Single-band Hubbard model MnO under pressure moment collapse metal-insulator

More information

Quantum Cluster Methods (CPT/CDMFT)

Quantum Cluster Methods (CPT/CDMFT) Quantum Cluster Methods (CPT/CDMFT) David Sénéchal Département de physique Université de Sherbrooke Sherbrooke (Québec) Canada Autumn School on Correlated Electrons Forschungszentrum Jülich, Sept. 24,

More information

An efficient impurity-solver for the dynamical mean field theory algorithm

An efficient impurity-solver for the dynamical mean field theory algorithm Papers in Physics, vol. 9, art. 95 (217) www.papersinphysics.org Received: 31 March 217, Accepted: 6 June 217 Edited by: D. Domínguez Reviewed by: A. Feiguin, Northeastern University, Boston, United States.

More information

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory From utzwiller Wave Functions to Dynamical Mean-Field Theory Dieter Vollhardt Autumn School on Correlated Electrons DMFT at 25: Infinite Dimensions Forschungszentrum Jülich, September 15, 2014 Supported

More information

Role of Hund Coupling in Two-Orbital Systems

Role of Hund Coupling in Two-Orbital Systems Role of Hund Coupling in Two-Orbital Systems Gun Sang Jeon Ewha Womans University 2013-08-30 NCTS Workshop on Quantum Condensation (QC13) collaboration with A. J. Kim, M.Y. Choi (SNU) Mott-Hubbard Transition

More information

NiO - hole doping and bandstructure of charge transfer insulator

NiO - hole doping and bandstructure of charge transfer insulator NiO - hole doping and bandstructure of charge transfer insulator Jan Kuneš Institute for Physics, Uni. Augsburg Collaboration: V. I. Anisimov S. L. Skornyakov A. V. Lukoyanov D. Vollhardt Outline NiO -

More information

Numerical Studies of the 2D Hubbard Model

Numerical Studies of the 2D Hubbard Model arxiv:cond-mat/0610710v1 [cond-mat.str-el] 25 Oct 2006 Numerical Studies of the 2D Hubbard Model D.J. Scalapino Department of Physics, University of California, Santa Barbara, CA 93106-9530, USA Abstract

More information

A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra

A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra M. Jarrell, A. Macridin, Th. Maier, D.J. Scalapino Thanks to T. Devereaux, A. Lanzara, W. Meevasana, B. Moritz, G. A. Sawatzky,

More information

Dynamical mean field approach to correlated lattice systems in and out of equilibrium

Dynamical mean field approach to correlated lattice systems in and out of equilibrium Dynamical mean field approach to correlated lattice systems in and out of equilibrium Philipp Werner University of Fribourg, Switzerland Kyoto, December 2013 Overview Dynamical mean field approximation

More information

Quantum Cluster Simulations of Low D Systems

Quantum Cluster Simulations of Low D Systems Quantum Cluster Simulations of Low D Systems Electronic Correlations on Many Length Scales M. Jarrell, University of Cincinnati High Perf. QMC Hybrid Method SP Sep. in 1D NEW MEM SP Sep. in 1D 2-Chain

More information

Numerical Methods in Quantum Many-body Theory. Gun Sang Jeon Pyeong-chang Summer Institute 2014

Numerical Methods in Quantum Many-body Theory. Gun Sang Jeon Pyeong-chang Summer Institute 2014 Numerical Methods in Quantum Many-body Theory Gun Sang Jeon 2014-08-25 Pyeong-chang Summer Institute 2014 Contents Introduction to Computational Physics Monte Carlo Methods: Basics and Applications Numerical

More information

Nano-DMFT : the electronic structure of small, strongly correlated, systems

Nano-DMFT : the electronic structure of small, strongly correlated, systems Nano-DMFT : the electronic structure of small, strongly correlated, systems Nanoscale Dynamical Mean-Field Theory for Molecules and Mesoscopic Devices in the Strong-Correlation Regime Author: S. Florens,

More information

Spin and orbital freezing in unconventional superconductors

Spin and orbital freezing in unconventional superconductors Spin and orbital freezing in unconventional superconductors Philipp Werner University of Fribourg Kyoto, November 2017 Spin and orbital freezing in unconventional superconductors In collaboration with:

More information

Dual fermion approach to unconventional superconductivity and spin/charge density wave

Dual fermion approach to unconventional superconductivity and spin/charge density wave June 24, 2014 (ISSP workshop) Dual fermion approach to unconventional superconductivity and spin/charge density wave Junya Otsuki (Tohoku U, Sendai) in collaboration with H. Hafermann (CEA Gif-sur-Yvette,

More information

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES N.M.Plakida Joint Institute for Nuclear Research, Dubna, Russia CORPES, Dresden, 26.05.2005 Publications and collaborators: N.M. Plakida,

More information

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy Computational strongly correlated materials R. Torsten Clay Physics & Astronomy Current/recent students Saurabh Dayal (current PhD student) Wasanthi De Silva (new grad student 212) Jeong-Pil Song (finished

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 11 Aug 2003

arxiv:cond-mat/ v1 [cond-mat.str-el] 11 Aug 2003 Phase diagram of the frustrated Hubbard model R. Zitzler, N. ong, h. Pruschke, and R. Bulla Center for electronic correlations and magnetism, heoretical Physics III, Institute of Physics, University of

More information

Introduction to SDFunctional and C-DMFT

Introduction to SDFunctional and C-DMFT Introduction to SDFunctional and C-DMFT A. Lichtenstein University of Hamburg In collaborations with: M. Katsnelson, V. Savkin, L. Chioncel, L. Pourovskii (Nijmegen) A. Poteryaev, S. Biermann, M. Rozenberg,

More information

An introduction to the dynamical mean-field theory. L. V. Pourovskii

An introduction to the dynamical mean-field theory. L. V. Pourovskii An introduction to the dynamical mean-field theory L. V. Pourovskii Nordita school on Photon-Matter interaction, Stockholm, 06.10.2016 OUTLINE The standard density-functional-theory (DFT) framework An

More information

arxiv:cond-mat/ v2 [cond-mat.supr-con] 1 Dec 2005

arxiv:cond-mat/ v2 [cond-mat.supr-con] 1 Dec 2005 Systematic study of d-wave superconductivity in the 2D repulsive Hubbard model arxiv:cond-mat/0504529v2 [cond-mat.supr-con] 1 Dec 2005 T.A. Maier, 1 M. Jarrell, 2 T.C. Schulthess, 1 P. R. C. Kent, 3 and

More information

Topological order in the pseudogap metal

Topological order in the pseudogap metal HARVARD Topological order in the pseudogap metal High Temperature Superconductivity Unifying Themes in Diverse Materials 2018 Aspen Winter Conference Aspen Center for Physics Subir Sachdev January 16,

More information

The Hubbard model out of equilibrium - Insights from DMFT -

The Hubbard model out of equilibrium - Insights from DMFT - The Hubbard model out of equilibrium - Insights from DMFT - t U Philipp Werner University of Fribourg, Switzerland KITP, October 212 The Hubbard model out of equilibrium - Insights from DMFT - In collaboration

More information

MOTTNESS AND STRONG COUPLING

MOTTNESS AND STRONG COUPLING MOTTNESS AND STRONG COUPLING ROB LEIGH UNIVERSITY OF ILLINOIS Rutgers University April 2008 based on various papers with Philip Phillips and Ting-Pong Choy PRL 99 (2007) 046404 PRB 77 (2008) 014512 PRB

More information

First-order Mott transition at zero temperature in two dimensions: Variational plaquette study

First-order Mott transition at zero temperature in two dimensions: Variational plaquette study January 2009 EPL, 85 (2009) 17002 doi: 10.1209/0295-5075/85/17002 www.epljournal.org First-order Mott transition at zero temperature in two dimensions: ariational plaquette study M. Balzer 1, B. Kyung

More information

FROM NODAL LIQUID TO NODAL INSULATOR

FROM NODAL LIQUID TO NODAL INSULATOR FROM NODAL LIQUID TO NODAL INSULATOR Collaborators: Urs Ledermann and Maurice Rice John Hopkinson (Toronto) GORDON, 2004, Oxford Doped Mott insulator? Mott physics: U Antiferro fluctuations: J SC fluctuations

More information

How to model holes doped into a cuprate layer

How to model holes doped into a cuprate layer How to model holes doped into a cuprate layer Mona Berciu University of British Columbia With: George Sawatzky and Bayo Lau Hadi Ebrahimnejad, Mirko Moller, and Clemens Adolphs Stewart Blusson Institute

More information

Quantum Monte Carlo study of strongly correlated electrons: Cellular dynamical mean-field theory

Quantum Monte Carlo study of strongly correlated electrons: Cellular dynamical mean-field theory Quantum Monte Carlo study of strongly correlated electrons: Cellular dynamical mean-field theory B. Kyung, 1 G. Kotliar, 2 and A.-M. S. Tremblay 1 1 Département de physique and Regroupement québécois sur

More information

Recent advances on Hubbard models using quantum cluster methods

Recent advances on Hubbard models using quantum cluster methods Recent advances on Hubbard models using quantum cluster methods David Sénéchal Département de physique Faculté des sciences Université de Sherbrooke 213 CAP Congress, Université de Montréal May 27, 213

More information

Surprises in Correlated Electron Physics

Surprises in Correlated Electron Physics Vol. 111 (2007) ACTA PHYSICA POLONICA A No. 4 Proceedings of the XII National School Correlated Electron Systems..., Ustroń 2006 Surprises in Correlated Electron Physics K. Byczuk a,b, W. Hofstetter c,

More information

Metal-insulator transitions

Metal-insulator transitions Metal-insulator transitions Bandwidth control versus fillig control Strongly correlated Fermi liquids Spectral weight transfer and mass renormalization Bandwidth control Filling control Chemical potential

More information

Computational Approaches to Quantum Critical Phenomena ( ) ISSP. Fermion Simulations. July 31, Univ. Tokyo M. Imada.

Computational Approaches to Quantum Critical Phenomena ( ) ISSP. Fermion Simulations. July 31, Univ. Tokyo M. Imada. Computational Approaches to Quantum Critical Phenomena (2006.7.17-8.11) ISSP Fermion Simulations July 31, 2006 ISSP, Kashiwa Univ. Tokyo M. Imada collaboration T. Kashima, Y. Noda, H. Morita, T. Mizusaki,

More information

Surprises in correlated electron physics

Surprises in correlated electron physics Surprises in correlated electron physics K. Byczuk 1,, W. Hofstetter 3, M. Kollar 1, and D. Vollhardt 1 (1) Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute for Physics,

More information

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Krzysztof Byczuk Institute of Physics, Augsburg University Institute of Theoretical Physics, Warsaw University October

More information

Mott physics: from basic concepts to iron superconductors

Mott physics: from basic concepts to iron superconductors Mott physics: from basic concepts to iron superconductors E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Outline Mott physics: Basic concepts (single orbital & half filling) - Mott

More information

Superconductivity, antiferromagnetism and Mott critical point in the BEDT family

Superconductivity, antiferromagnetism and Mott critical point in the BEDT family Superconductivity, antiferromagnetism and Mott critical point in the BEDT family A.-M. Tremblay P. Sémon, G. Sordi, K. Haule, B. Kyung, D. Sénéchal ISCOM 2013, 14 19 July 2013 Half-filled band: Not always

More information

Diagrammatic Monte Carlo simulation of quantum impurity models

Diagrammatic Monte Carlo simulation of quantum impurity models Diagrammatic Monte Carlo simulation of quantum impurity models Philipp Werner ETH Zurich IPAM, UCLA, Jan. 2009 Outline Continuous-time auxiliary field method (CT-AUX) Weak coupling expansion and auxiliary

More information

Inelastic light scattering and the correlated metal-insulator transition

Inelastic light scattering and the correlated metal-insulator transition Inelastic light scattering and the correlated metal-insulator transition Jim Freericks (Georgetown University) Tom Devereaux (University of Waterloo) Ralf Bulla (University of Augsburg) Funding: National

More information

Strong Correlation Effects in Fullerene Molecules and Solids

Strong Correlation Effects in Fullerene Molecules and Solids Strong Correlation Effects in Fullerene Molecules and Solids Fei Lin Physics Department, Virginia Tech, Blacksburg, VA 2461 Fei Lin (Virginia Tech) Correlations in Fullerene SESAPS 211, Roanoke, VA 1 /

More information

The Gutzwiller Density Functional Theory

The Gutzwiller Density Functional Theory The Gutzwiller Density Functional Theory Jörg Bünemann, BTU Cottbus I) Introduction 1. Model for an H 2 -molecule 2. Transition metals and their compounds II) Gutzwiller variational theory 1. Gutzwiller

More information

Diagrammatic Green s Functions Approach to the Bose-Hubbard Model

Diagrammatic Green s Functions Approach to the Bose-Hubbard Model Diagrammatic Green s Functions Approach to the Bose-Hubbard Model Matthias Ohliger Institut für Theoretische Physik Freie Universität Berlin 22nd of January 2008 Content OVERVIEW CONSIDERED SYSTEM BASIC

More information

Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universität Stuttgart

Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universität Stuttgart Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universität Stuttgart Outline 1. Organic Conductors basics and development 2.

More information

arxiv:cond-mat/ v2 [cond-mat.str-el] 24 Feb 2006

arxiv:cond-mat/ v2 [cond-mat.str-el] 24 Feb 2006 Applications of Cluster Perturbation Theory Using Quantum Monte Carlo Data arxiv:cond-mat/0512406v2 [cond-mat.str-el] 24 Feb 2006 Fei Lin, Erik S. Sørensen, Catherine Kallin and A. John Berlinsky Department

More information

Magnetism and Superconductivity on Depleted Lattices

Magnetism and Superconductivity on Depleted Lattices Magnetism and Superconductivity on Depleted Lattices 1. Square Lattice Hubbard Hamiltonian: AF and Mott Transition 2. Quantum Monte Carlo 3. The 1/4 depleted (Lieb) lattice and Flat Bands 4. The 1/5 depleted

More information

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Phase diagram

More information

Transfer of spectral weight in spectroscopies of correlated electron systems

Transfer of spectral weight in spectroscopies of correlated electron systems PHYSICAL REVIEW B VOLUME 54, NUMBER 12 15 SEPTEMBER 1996-II Transfer of spectral weight in spectroscopies of correlated electron systems M. J. Rozenberg* Laboratoire de Physique Théorique, Ecole Normale

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

IMPACT ionization and thermalization in photo-doped Mott insulators

IMPACT ionization and thermalization in photo-doped Mott insulators IMPACT ionization and thermalization in photo-doped Mott insulators Philipp Werner (Fribourg) in collaboration with Martin Eckstein (Hamburg) Karsten Held (Vienna) Cargese, September 16 Motivation Photo-doping:

More information

Dynamical Mean Field within Iterative Perturbation Theory

Dynamical Mean Field within Iterative Perturbation Theory Vol. 111 (2007) ACTA PHYSICA POLONICA A No. 5 Proceedings of the XII National School Correlated Electron Systems..., Ustroń 2006 Dynamical Mean Field within Iterative Perturbation Theory B. Radzimirski

More information

Magnetism and Superconductivity in Decorated Lattices

Magnetism and Superconductivity in Decorated Lattices Magnetism and Superconductivity in Decorated Lattices Mott Insulators and Antiferromagnetism- The Hubbard Hamiltonian Illustration: The Square Lattice Bipartite doesn t mean N A = N B : The Lieb Lattice

More information

Strength of the spin fluctuation mediated pairing interaction in YBCO 6.6

Strength of the spin fluctuation mediated pairing interaction in YBCO 6.6 Universität Tübingen Lehrstuhl für Theoretische Festkörperphysik Strength of the spin fluctuation mediated pairing interaction in YBCO 6.6 Thomas Dahm Institut für Theoretische Physik Universität Tübingen

More information

Dynamical cluster approximation: Nonlocal dynamics of correlated electron systems

Dynamical cluster approximation: Nonlocal dynamics of correlated electron systems PHYSICAL REVIEW B VOLUME 61, NUMBER 19 15 MAY 2-I Dynamical cluster approximation: Nonlocal dynamics of correlated electron systems M. H. Hettler* Department of Physics, University of Cincinnati, Cincinnati,

More information

Mott insulators. Mott-Hubbard type vs charge-transfer type

Mott insulators. Mott-Hubbard type vs charge-transfer type Mott insulators Mott-Hubbard type vs charge-transfer type Cluster-model description Chemical trend Band theory Self-energy correction Electron-phonon interaction Mott insulators Mott-Hubbard type vs charge-transfer

More information

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme SIEW-ANN CHEONG and C. L. HENLEY, LASSP, Cornell U March 25, 2004 Support: NSF grants DMR-9981744, DMR-0079992 The Big Picture GOAL Ground

More information

From Materials to Models and Back. Dieter Vollhardt

From Materials to Models and Back. Dieter Vollhardt From Materials to Models and Back Dieter Vollhardt 28 th Edgar Lüscher Seminar, Klosters; February 8, 2017 From Materials to Models and Back - The Need for Models in Condensed Matter Physics - Outline:

More information

Effect of next-nearest-neighbour interaction on d x 2 y2-wave superconducting phase in 2D t-j model

Effect of next-nearest-neighbour interaction on d x 2 y2-wave superconducting phase in 2D t-j model PRAMANA c Indian Academy of Sciences Vol. 74, No. 1 journal of January 2010 physics pp. 115 121 Effect of next-nearest-neighbour interaction on d x 2 y2-wave superconducting phase in 2D t-j model N S MONDAL

More information

Diagrammatic extensions of (E)DMFT: Dual boson

Diagrammatic extensions of (E)DMFT: Dual boson Diagrammatic extensions of (E)DMFT: Dual boson IPhT, CEA Saclay, France ISSP, June 25, 2014 Collaborators Mikhail Katsnelson (University of Nijmegen, The Netherlands) Alexander Lichtenstein (University

More information

Theory of carbon-based magnetism

Theory of carbon-based magnetism Theory of carbon-based magnetism Mikhail Katsnelson Theory of Condensed Matter Institute for Molecules and Materials RU Outline sp magnetism in general: why it is interesting? Defect-induced magnetism

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 2 Apr 2004

arxiv:cond-mat/ v1 [cond-mat.str-el] 2 Apr 2004 Quantum Cluster Theories arxiv:cond-mat/4455v1 [cond-mat.str-el] 2 Apr 24 Contents Thomas Maier Computational Science and Math Division, Oak Ridge ational Laboratory, Oak Ridge, T 37831-6114 Mark Jarrell

More information

College of Chemistry, Peking University, Beijing, China. Fritz-Haber-Institut der MPG, Berlin, Germany

College of Chemistry, Peking University, Beijing, China. Fritz-Haber-Institut der MPG, Berlin, Germany KITP Program Excitations in Condensed Matter Localized and Itinerant States in a Unified Picture beyond Density Functional Theory Hong Jiang 1, Patrick Rinke 2 and Matthias Scheffler 2 1 College of Chemistry,

More information

DMFT for correlated bosons and boson-fermion mixtures

DMFT for correlated bosons and boson-fermion mixtures DMFT for correlated bosons and boson-fermion mixtures Workshop on Recent developments in dynamical mean-field theory ETH ürich, September 29, 2009 Dieter Vollhardt Supported by Deutsche Forschungsgemeinschaft

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

PHYSICAL REVIEW B 80,

PHYSICAL REVIEW B 80, PHYSICAL REVIEW B 8, 6526 29 Finite-temperature exact diagonalization cluster dynamical mean-field study of the two-dimensional Hubbard model: Pseudogap, non-fermi-liquid behavior, and particle-hole asymmetry

More information

Quantum impurities in a bosonic bath

Quantum impurities in a bosonic bath Ralf Bulla Institut für Theoretische Physik Universität zu Köln 27.11.2008 contents introduction quantum impurity systems numerical renormalization group bosonic NRG spin-boson model bosonic single-impurity

More information

UNIVERSITY OF CINCINNATI

UNIVERSITY OF CINCINNATI UNIVERSITY OF CINCINNATI Date: October 13, 2008 I, D.G. Sumith P. Doluweera hereby submit this work as part of the requirements Doctor of Philosophy for the degree of: in: Physics It is entitled: Effect

More information

De l atome au. supraconducteur à haute température critique. O. Parcollet Institut de Physique Théorique CEA-Saclay, France

De l atome au. supraconducteur à haute température critique. O. Parcollet Institut de Physique Théorique CEA-Saclay, France De l atome au 1 supraconducteur à haute température critique O. Parcollet Institut de Physique Théorique CEA-Saclay, France Quantum liquids Quantum many-body systems, fermions (or bosons), with interactions,

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

Continuous time QMC methods

Continuous time QMC methods Continuous time QMC methods Matthias Troyer (ETH Zürich) Philipp Werner (Columbia ETHZ) Emanuel Gull (ETHZ Columbia) Andy J. Millis (Columbia) Olivier Parcollet (Paris) Sebastian Fuchs, Thomas Pruschke

More information

Theory of magnetic interactions in real materials. Mikhail Katsnelson

Theory of magnetic interactions in real materials. Mikhail Katsnelson Theory of magnetic interactions in real materials Mikhail Katsnelson Outline 1. Introduction 2. Exchange interactions from first principles 3. Beyond DFT: correlated systems and LDA+DMFT 4. Applications:

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Quantum Cluster Methods: An introduction

Quantum Cluster Methods: An introduction Quantum Cluster Methods: An introduction David Sénéchal Département de physique, Université de Sherbrooke International summer school on New trends in computational approaches for many-body systems May

More information

Introduction to DMFT

Introduction to DMFT Introduction to DMFT Lecture 3 : Introduction to cluster methods 1 Toulouse, June 13th 27 O. Parcollet SPhT, CEA-Saclay 1. Cluster DMFT methods. 2. Application to high-tc superconductors. General references

More information

Metal-insulator transition with Gutzwiller-Jastrow wave functions

Metal-insulator transition with Gutzwiller-Jastrow wave functions Metal-insulator transition with Gutzwiller-Jastrow wave functions Odenwald, July 20, 2010 Andrea Di Ciolo Institut für Theoretische Physik, Goethe Universität Frankfurt Metal-insulator transition withgutzwiller-jastrow

More information

Hole dynamics in frustrated antiferromagnets: Coexistence of many-body and free-like excitations

Hole dynamics in frustrated antiferromagnets: Coexistence of many-body and free-like excitations Hole dynamics in frustrated antiferromagnets: Coexistence of many-body and free-like excitations Collaborators: Luis O. Manuel Instituto de Física Rosario Rosario, Argentina Adolfo E. Trumper (Rosario)

More information

DMFT and beyond : IPAM, Los Angeles, Jan. 26th 2009 O. Parcollet Institut de Physique Théorique CEA-Saclay, France

DMFT and beyond : IPAM, Los Angeles, Jan. 26th 2009 O. Parcollet Institut de Physique Théorique CEA-Saclay, France DMFT and beyond : From quantum impurities to high temperature superconductors 1 IPAM, Los Angeles, Jan. 26th 29 O. Parcollet Institut de Physique Théorique CEA-Saclay, France Coll : M. Ferrero (IPhT),

More information

The Mott Metal-Insulator Transition

The Mott Metal-Insulator Transition Florian Gebhard The Mott Metal-Insulator Transition Models and Methods With 38 Figures Springer 1. Metal Insulator Transitions 1 1.1 Classification of Metals and Insulators 2 1.1.1 Definition of Metal

More information

Topological order in quantum matter

Topological order in quantum matter HARVARD Topological order in quantum matter Stanford University Subir Sachdev November 30, 2017 Talk online: sachdev.physics.harvard.edu Mathias Scheurer Wei Wu Shubhayu Chatterjee arxiv:1711.09925 Michel

More information

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3 4D-XY Quantum Criticality in Underdoped High-T c cuprates M. Franz University of British Columbia franz@physics.ubc.ca February 22, 2005 In collaboration with: A.P. Iyengar (theory) D.P. Broun, D.A. Bonn

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 4 Jul 2000

arxiv:cond-mat/ v1 [cond-mat.str-el] 4 Jul 2000 EPJ manuscript No. (will be inserted by the editor) arxiv:cond-mat/742v1 [cond-mat.str-el] 4 Jul 2 Phase diagram of the three-dimensional Hubbard model at half filling R. Staudt 1, M. Dzierzawa 1, and

More information

Demystifying the Strange Metal in High-temperature. Superconductors: Composite Excitations

Demystifying the Strange Metal in High-temperature. Superconductors: Composite Excitations Demystifying the Strange Metal in High-temperature Superconductors: Composite Excitations Thanks to: T.-P. Choy, R. G. Leigh, S. Chakraborty, S. Hong PRL, 99, 46404 (2007); PRB, 77, 14512 (2008); ibid,

More information

Linearized dynamical mean-field theory for the Mott-Hubbard transition

Linearized dynamical mean-field theory for the Mott-Hubbard transition Eur. Phys. J. B 13, 257 264 (2000) THE EUROPEAN PHYSICAL JOURNAL B c EDP Sciences Società Italiana di Fisica Springer-Verlag 2000 Linearized dynamical mean-field theory for the Mott-Hubbard transition

More information

Superconducting properties of carbon nanotubes

Superconducting properties of carbon nanotubes Superconducting properties of carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf A. De Martino, F. Siano Overview Superconductivity in ropes of nanotubes

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Mar 2006

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Mar 2006 Non-Fermi-liquid phases in the two-band Hubbard model: Finite-temperature exact diagonalization study of Hund s rule coupling A. Liebsch and T. A. Costi Institut für Festkörperforschung, Forschungszentrum

More information

Pseudogap and high-temperature superconductivity from weak to strong coupling. Towards a quantitative theory Review Article

Pseudogap and high-temperature superconductivity from weak to strong coupling. Towards a quantitative theory Review Article LOW TEMPERATURE PHYSICS VOLUME 32, NUMBER 4-5 APRIL-MAY 2006 Pseudogap and high-temperature superconductivity from weak to strong coupling. Towards a quantitative theory Review Article A.-M. S. Tremblay,

More information

Seconde partie: Quelques questions liées au transport dans les matériaux à fortes corrélations électroniques

Seconde partie: Quelques questions liées au transport dans les matériaux à fortes corrélations électroniques ``Enseigner la recherche en train de se faire Chaire de Physique de la Matière Condensée Seconde partie: Quelques questions liées au transport dans les matériaux à fortes corrélations électroniques Antoine

More information

Theoretical and experimental study of aromatic hydrocarbon superconductors

Theoretical and experimental study of aromatic hydrocarbon superconductors Workshop on correlations, criticality, and coherence in quantum systems Theoretical and experimental study of aromatic hydrocarbon superconductors Zhongbing Huang 1 Hubei University, Wuhan, China 2 Beijing

More information

Dynamical Mean-Field Theory for Correlated Electron Materials Dieter Vollhardt

Dynamical Mean-Field Theory for Correlated Electron Materials Dieter Vollhardt Center for Electronic Correlations and Magnetism University of Augsburg Dynamical Mean-Field Theory for Correlated Electron Materials Dieter Vollhardt XXIII Latin American Symposium on Solid State Physics

More information

Examples of Lifshitz topological transition in interacting fermionic systems

Examples of Lifshitz topological transition in interacting fermionic systems Examples of Lifshitz topological transition in interacting fermionic systems Joseph Betouras (Loughborough U. Work in collaboration with: Sergey Slizovskiy (Loughborough, Sam Carr (Karlsruhe/Kent and Jorge

More information

Metal - Insulator transitions: overview, classification, descriptions

Metal - Insulator transitions: overview, classification, descriptions Metal - Insulator transitions: overview, classification, descriptions Krzysztof Byczuk Institute of Physics, Augsburg University http://www.physik.uni-augsburg.de/theo3/kbyczuk/index.html January 19th,

More information

Mott metal-insulator transition on compressible lattices

Mott metal-insulator transition on compressible lattices Mott metal-insulator transition on compressible lattices Markus Garst Universität zu Köln T p in collaboration with : Mario Zacharias (Köln) Lorenz Bartosch (Frankfurt) T c Mott insulator p c T metal pressure

More information

Tunable frustration as a discriminator of antiferromagnetic signatures in cold atoms

Tunable frustration as a discriminator of antiferromagnetic signatures in cold atoms Tunable frustration as a discriminator of antiferromagnetic signatures in cold atoms Nils Bl umer and Elena Gorelik Institut f ur Physik, Johannes Gutenberg-Universit at Mainz TR 49: Condensed matter systems

More information

Intermediate valence in Yb Intermetallic compounds

Intermediate valence in Yb Intermetallic compounds Intermediate valence in Yb Intermetallic compounds Jon Lawrence University of California, Irvine This talk concerns rare earth intermediate valence (IV) metals, with a primary focus on certain Yb-based

More information