DMFT and beyond : IPAM, Los Angeles, Jan. 26th 2009 O. Parcollet Institut de Physique Théorique CEA-Saclay, France

Size: px
Start display at page:

Download "DMFT and beyond : IPAM, Los Angeles, Jan. 26th 2009 O. Parcollet Institut de Physique Théorique CEA-Saclay, France"

Transcription

1 DMFT and beyond : From quantum impurities to high temperature superconductors 1 IPAM, Los Angeles, Jan. 26th 29 O. Parcollet Institut de Physique Théorique CEA-Saclay, France Coll : M. Ferrero (IPhT), L. de Leo, A. Georges (CPHT, Polytechnique) M. Civelli (ILL, Grenoble), P. Cornaglia (Bariloche), G. Kotliar (Rutgers)

2 Outline 2 1. Physical motivations 2. DMFT and clusters 3. Selective Mott transition in k space 4. Two gaps in the SC phase

3 !Mott insulator Mott physics 3 Mott transition = Metal-Insulator transition due to interactions Hubbard model, a minimal model for theorists. H = t ij c iσ c jσ + Un i n i, n iσ c iσ c iσ ij,σ=, δ = 1 n + n How is a metal(superconductor) destroyed close to a Mott transition? Example : Cuprates!"#$% U/t Mott insulator!# ()!" $%? ω metal *$ &' %&% )*+,-.+/,+ %&'( /1,-.+/,+ Doped Mott insulators Anderson (1987),... $ ρ(ω) metal δ

4 Nodes and Antinodes 4 d-wave gap and order parameter (with nodes) (k) ( cos(kx ) cos(k y ) ) +...! Antinodal direction!"#$%!# () Nodal direction!" $% *$ &' %&% )*+,-.+/,+ %&'( /1,-.+/,+ $ ϕ ARPES Ding et al,1996 ky kx π

5 Fermi Arcs Spectral intensity map at Fermi level (ARPES) Bi2212 : Kanigel et al. Nature 2,447 (26) A(k, ω = ) 5 Ca2-xNaxCuO2Cl2 Quasi-Particle Shen et al. Science 37, 91 (25) No Quasi-Particle Good Fermi liquid Y Y Y M M M! M! M! Arcs shrinks for δ δ M

6 Nature of the Fermi Arcs? 6 What is the low temperature normal state? Vanishing arcs at T=? Nodal liquid? Kanigel et al. Nature 2,447 (26) M Y M Y M? Quantum oscillations in strong magnetic field (Shubnikov-de Haas) N. Doiron-Leyraud at al, Nature, 27 Low temperature, suppress SC with field Pocket Fermi surface in the normal state?! M! M! Fermi liquid with strong variations of Z, Tcoh, m* along the Fermi surface? Tcoh Antinode < T < Tcoh Node?

7 Mott insulator SC phase 7 Evolution of the superconducting gap with doping δ Non-BCS behaviour : (δ) T c (δ) PHYSICAL REVIEW B 67, !!"#$% T*!# () *$!" &' $% Tc %&% )*+,-.+/,+ %&'( /1,-.+/,+ $ δ Sutherland,23 But recent experiments suggest this is too simple...

8 Electronic Raman spectroscopy χ (ω) Ov. 92 K 4 cm 1 Ov. 92 K 417 cm 1 8 M. LeTacon, A. Sacuto, A. Georges, G. Kotliar, Y Gallais, D. Colson and A. Forget, Nature Physics, 2, 537,26 Opt. 95 K T << T c T > T c 515 cm 1 Opt. 95 K T << T c T > T c 55 cm 1 HgBa2CuO4+δ 2 set of measures, probing Nodal Region (NR) and Antinodal Region (ANR) Und. 89 K Und. 86 K 38 cm 1 34 cm 1 Und. 89 K Und. 86 K 66 cm 1 72 cm 1 Hole doping ( π, ) ( π, π) ( π, ) ( π, π) δ Γ NR B 2g ANR B 1g Γ Und. 78 K 36 cm 1 Und. 78 K No BCS fit Two energy scales in the SC phase Und. 63 K 23 cm 1 Und. 63 K Raman shift ω (cm 1 )

9 Gap at antinode (maximum) increases for δ. Two gaps in SC phase? Energy (mev) Gap close to node (slope) decreases for δ, like Tc. 8 4 E pg Pseudogap Optimal Doping Normal Metal E Superconductor sc Hole doping (x) δ T c (K) picture from arxiv: Bi ARPES 48 Bi RS-B1g 45,46 Bi SIS 34,35 Bi STM 38 Bi SIN 34 Tl ARPES 56 Tl HC 68 Y HC 67 Bi ARPES 49 Bi INS 64 Bi RS-B2g 45,46 Bi SIS 35 Tl INS 66 Y AR 69 Y INS 64 Raman experiments. M. LeTacon et al., Nature Physics, 2, 537,26 See also ARPES experiments. Tanaka et al,science 314, 191, (26) v = d (φ) dφ Still debated... for δ Node

10 Nodal-Antinodal dichotomy : summary 1 Normal phase : Fermi Arcs Quasi-particle in the nodes, pseudogap in the antinode Superconducting phase : Two behaviours of the gap of 1-particle Green function(?) Phenomenological idea : Node like an ordinary Fermi liquid/sc Antinode more like an insulator Can we understand this from a systematic microscopic calculation e.g. of Hubbard model? What is the mechanism? In this talk : DMFT approach

11 Outline Physical motivations 2. DMFT and clusters 3. Selective Mott transition in k space 4. Two gaps in the SC phase

12 Dynamical Mean Field Theory A. Georges, G. Kotliar, W. Krauth and M. Rozenberg, Rev. Mod. Phys. 68, 13, (1996) G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, OP, C. Marianetti, Rev. Mod. Phys. 78, 865 (26) Ising model (Weiss) : A single spin in an effective field. Fermionic Hubbard model (Kotliar-Georges, 92) Anderson impurity with an effective band determined self-consistently 12 H = ɛ c σc σ + Un n σ=, }{{} Local site + V kσ ξ kσ c σ + h.c. + ɛ kσ ξ kσ ξ kσ k,σ=, k,σ=, }{{} Coupled to an effective electronic bath S = Bath β Weiss field c σ(τ)g 1 σ (τ τ )c σ (τ )+ G 1 σ (iω n) iω n + ɛ k β dτun (τ)n (τ) V kσ 2 iω ɛ kσ G

13 G c (τ) = Tc(τ)c () Seff Gc DMFT Self-consistency Impurity Solver G 13 S eff = β c σ(τ)g 1 (τ τ )c σ (τ )+ Continuous Time QMC : Sum diagrams with Monte-Carlo Expansion in U : A.N. Rubtsov et al., Phys. Rev. B (25) Expansion around atomic limit : [P. Werner's talk] P. Werner, A. Comanac, L. de Medici, M. Troyer, A. J. Millis, PRL (26) β CT-AUX [P. Werner's talk]: E.Gull et al., EPL (28) No sign problem (1 site DMFT). Exact diagonalization M.Caffarel and W. Krauth PRL (1994) dτun (τ)n (τ)

14 Ising H = J ij DMFT equations (simplest case) σ i σ j H = ij σ Hubbard t ij c iσ c jσ + Un i n i i 14 m = σ G c (τ) = Tc(τ)c () Seff H eff = Jh eff σ S eff = β c σ(τ)g 1 (τ τ )c σ (τ )+ β dτun (τ)n (τ) h eff = zjm Σ(iω n ) G 1 (iω n) G 1 c (iω n ) ( ) 1 G 1 (iω 1 n)= + Σ(iω n ) iω n + µ ɛ k Σ(iω n ) k }{{} G lattice (k, iω n ) The self-energy on the lattice is local : in metals, Z, m*, coherence temperature, finite temperature lifetime are constant along the Fermi surface.

15 A diagrammatic point of view Σ ij = δφ δg ji De Dominicis, Martin (1964) 15 Φ Hubbard [G ij ]= 2 particle-irreducible (2PI) diagrams = φ 1 (G ii ) + φ 2 (G i,j )+ φ 3 (G i,j,g i,k,g j,k )+... i i,j i,j,k }{{}}{{} Local Non local DMFT approximation (exact in d limit) Metzner, Vollhardt (1989) Φ Hubbard (G ij ) i φ 1 (G ii ) Local 2PI diagrams of Hubbard = 2PI diagrams of Anderson impurity φ 1 (G ii )=Φ Anderson (G ii ) Kotliar, Georges (1992) DMFT sums local 2 PI diagrams, with a sign-free QMC.

16 From Mean Field to a controllable method : clusters Principle : systematic interpolation between Φ Hubbard and Φ DMFT with a finite number of sites in a self consistent bath. One way to bring control to DMFT [See also A. Lichtenstein's talk] local quantum fluctuations T. Maier et al, Rev. Mod. Phys. 77,127 (25) short range quantum fluctuations 16 G G Real space cluster (CDMFT) DMFT on a superlattice A. Lichtenstein and M. Katsnelson, PRB 62, R9283 (2) G. Kotliar et al. PRL , Reciprocal space cluster method (DCA) Cluster method in k-space : Σ piecewise constant on B.Z. M.H. Hettler, A.N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke,H.R. Krishnamurthy PRB (1998)

17 C-DMFT 17 DMFT on a superlattice of clusters. Cluster site labeling 3 t t 4 Superlattice 1 t 2 1 µ, ν 4 R,R : position of the cluster. μ,ν= cluster site labels. Φ CDMF T (G) = R Φ 4sites (G µ,r;ν,r G ρ,r;λr = ) Same equations as multiorbital DMFT (4 sites as orbitals)

18 DCA Cluster method in k-space : Σ piecewise constant on B.Z. M.H. Hettler, A.N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke,H.R. Krishnamurthy PRB (1998) 18 Example for 2x2 cluster on square lattice. Σ(k, iω n ) Σ c (k c (k), iω n ) (,!) (!,!) Cluster momenta k c (,) K (!,) k k ~ Φ DCA (G) = N sites Φ(G(k)) U(k1,k 2,k 3,k 4 )=U DCA (k 1,k 2,k 3,k 4 ) U DCA (k 1, k 2, k 3, k 4 ) = δ Kc (k 1 )+K c (k 2 ),K c (k 3 )+K c (k 4 )/N sites Cluster size = momentum resolution T. Maier et al, Rev. Mod. Phys. 77,127 (25)

19 Is DMFT a good starting point? 19 Compare to experiments... Cluster corrections small at small U, high T, large doping e.g. good for ultra-cold fermions. Why?...

20 DMFT : a good starting point for Mott physics 2 A(k, ω) Lattice Quasi-particle-peak Anderson impurity 1 π ImG c(ω) Free electrons ω Fermi liquid Mott physics : Hubbard band (localized) vs Q.P. peak (delocalized) ω Hubbard bands Abrikosov-Suhl resonance Local Fermi liquid with coherence temperature TK Nozières, 1974 DMFT : from an analogy to a mean field formalism

21 Outline Physical motivations 2. DMFT and clusters 3. Selective Mott transition in k space 4. Two gaps in the SC phase

22 Minimal cluster DMFT approach to normal phase 22 Two complementary points of view on cluster DMFT : A systematic numerical method (largest cluster) e.g. 16 sites : A. Macridin et al., PRL 97, 3641 (26) A mean field method (smallest cluster) M. Ferrero, P. S. Cornaglia, L. De Leo, O. Parcollet, G. Kotliar, A. Georges, arxiv: Ca2-xNaxCuO2Cl2 Shen et al. Science 37, 91 (25) Goal : Describe the normal phase (Fermi arcs, pseudogap) with a minimal cluster of 2 sites. Search for a simple (analytical) picture of the mechanism.

23 Orbital selective transition in k-space M. Ferrero, P. S. Cornaglia, L. De Leo, O. Parcollet, G. Kotliar, A. Georges, arxiv: DCA method with two patches of equal volume β β S eff = dτdτ c µ(τ)g 1,µν (τ, τ )c ν (τ )+ dτun µ n µ (τ) G 1 ± (iω n)= 1 + Σ ± (iω n ) iω n + µ ɛ(k) Σ ± (iω n ) Using even/odd basis µ =1, 2 c ± =(c 1 ± c 2 )/ 2 Two cluster momenta : (,) and ( CTQMC solution using Werner s et al algorithm k P ± 1 π ky (,) π ( ) kx Antinodes Nodes Fermi surface Inner patch P+ Outer patch P-

24 Orbital selective transition in k-space 24 At high doping/temperature, DMFT not corrected by cluster terms. Around 16%, orbital corresponding to outer patch P- becomes insulating : μ - Σ_() reaches the band edge of P- patch Quasi-particles only exists in the inner patch.8.6 " ! Gap of the outer Green function G_ Re "() " + " ! band edge of P- patch µ#" - β=2 Statistical weight FIG. 1: (Color online) Left: real part of Σ ± () doping level, computed with RISB (lines) and S

25 Orbital selective transition in k-space Ordinary slave boson mean field : RVB theory of cuprates c σ = bf σ, Anderson, Science (1987), G. Kotliar, J. Liu Phys. Rev. B 38, 5142 (1988) f σf σ + b b = 1 σ 25 Low energy solution of 1 site DMFT (Brinkman-Rice) No k dependence of Σ! Here, low energy is given by Rotationnally Invariant Slave Bosons F.Lechermann, A. Georges, G. Kotliar, OP, PRB (27) Re "() " + " - µ#" - β=2 Line = RISB Dots = QMC Statistical weight Cluster : k dependency as a multiorbital problem + RISB : slave bosons for multiorbital problem Cluster + RISB = a slave boson method with k dependency!

26 Orbital selective transition in k-space 26 With CTQMC and Rotationnally Invariant Slave Bosons methods, it is possible to compute the relative weight of various cluster states. Singlet state dominates at low doping Some similarities with RVB approach Anderson, Science (1987), G. Kotliar, J. Liu Phys. Rev. B 38, 5142 (1988) but here self-energy depends on k (impossible to get with ordinary slave bosons). Re "() " + " - µ#" - Statistical weight S β=2 E T ! !

27 Minimal cluster approach to Fermi Arcs M. Ferrero, P. S. Cornaglia, L. De Leo, O. Parcollet, G. Kotliar, A. Georges, arxiv: Spectral function at Fermi level (DCA + interpolation...) Maximum contrast around 1 % Doping A(k, ω = ) DMFT metal " ky 6%!"!" " kx " ky 14%!"!" " kx A(#,) / A(,) " ky 1%!"!" " kx # [degrees] as a minimal clu space differentiati of its simplicity, moderate numeric derstanding can such as rotationa culated STM and the phenomenolo The low-doping r tion. Mott phys of coherent quas tative agreement the weak/interme VB-DMFT, this s selective transitio We thank F. Le useful discussions

28 Comparison with larger clusters π ky (,) π ( ) kx Antinodes Nodes Fermi surface Inner patch P+ Outer patch P- Only two cluster momenta : (,) and ( far from Fermi surface!

29 Compare with 8 sites calculations E. Gull, P. Werner and A.J. Millis, OP 29 Solution of 8 sites DCA with CTAUX algorithm Doping driven transition 2 steps transition : sector C before sector B n! (sector) "t=4, B "t=4, C "t=2, B "t=2, C !/t B δ C Free Fermi surface A B D C Patches for 8 sites clusters

30 Compare with 8 sites calculations (II) E. Gull, P. Werner and A.J. Millis, OP Similar mechanism : Re Σ() getting large, out of bands 3 Re! (sector B) δ!/t=.35!/t=.4!/t=.5!/t=.625!/t=.75!/t=.875!/t=1!/t=1.1!/t=1.25 Re! (sector C) δ!/t=.35!/t=.4!/t=.5!/t=.625!/t=.75!/t=.875!/t=1!/t=1.1!/t= " n B A B D C " n C Confirmation of the picture found in 2 sites

31 Test interpolation M. Ferrero, P. S. Cornaglia, L. De Leo, O. Parcollet, G. Kotliar, A. Georges, arxiv: Interpolate the self-energy and the cumulant at (π,) and compare with 4 sites DCA at (π,) (black curve) Σ(k, ω) = Σ + (ω)α + (k)+σ (ω)α (k) M(k, ω) = M + (ω)α + (k)+m (ω)α (k) 31 1! α ± (k) = 1 2 {1 ± 1 2 [cos(k x) + cos(k y )]} #(i$ n ) Re# Im#!=.8 k=(%,) $ n Cumulant interpolation is a lot better

32 Outline Physical motivations 2. DMFT and clusters 3. Selective Mott transition in k space 4. Two gaps in the SC phase

33 d-sc phase in cluster DMFT CDMFT and DCA have a phase diagram with AF and d-sc A. Lichtenstein and M. Katsnelson, PRB 62, R9283 (2); M. Jarrell et al, PRL 85,1524 (21) 33 Large Clusters at U/D=1 (DCA), up to 26 sites : Tc.23t T. Maier et al., PRL 95, 2371 (25) Smallest cluster : 2x2 plaquette p= c 1 c 2 -p Plaquette cluster 3 t p t 4 -p 1 t 2 Here : a minimal cluster approach : Two gaps picture? Doping dependence of the gap? p

34 Gap at antinode (maximum) increases for δ. Two gaps in SC phase : reminder Energy (mev) Gap close to node (slope) decreases for δ, like Tc. 8 4 E pg Pseudogap Optimal Doping Normal Metal E Superconductor sc Hole doping (x) δ T c (K) picture from arxiv: Bi ARPES 48 Bi RS-B1g 45,46 Bi SIS 34,35 Bi STM 38 Bi SIN 34 Tl ARPES 56 Tl HC 68 Y HC 67 Bi ARPES 49 Bi INS 64 Bi RS-B2g 45,46 Bi SIS 35 Tl INS 66 Y AR 69 Y INS 64 Raman experiments. M. LeTacon et al., Nature Physics, 2, 537,26 See also ARPES experiments. Tanaka et al,science 314, 191, (26) v = d (φ) dφ Still debated... for δ Node

35 CDMFT result (4 sites) 35 M. Civelli, M.Capone, A. Georges, K. Haule, O. Parcollet, T Stanescu, G. Kotliar, PRL (28) A(k, ω) Z nod δ Nodes ( ω v = Z nod k Σ ano (k) t'=-.3t; U = 12t; ED solver full gap ) vnod 2 k2 + v2 k2 sc = Antinodes 2 tot 2 nor sc (k) Z anod Σ ano (k) Σano= v = d (φ) dφ Node.2.1 tot /t nor /t sc /t= ( 2 tot - 2 nor ).5 /t sc /t= Z anod Σ ano /t ( δ ) ω kσ (ω) = εk Σ nor σ (k, ω) Σ ano (k, ω) Σ ano (k, ω) ω + ε k + Σ nor σ (k, ω) G 1

36 Conclusion 36 Clusters : a systematic expansion around DMFT Useful for Mott physics A lot of recent progress on methods to solve DMFT equations. Strong differences between Nodes and Antinodes : Normal phase : destruction of quasi-particles at antinodes in a transition selective in k-space. SC phase : two components SC gap.

Mott transition : beyond Dynamical Mean Field Theory

Mott transition : beyond Dynamical Mean Field Theory Mott transition : beyond Dynamical Mean Field Theory O. Parcollet 1. Cluster methods. 2. CDMFT 3. Mott transition in frustrated systems : hot-cold spots. Coll: G. Biroli (SPhT), G. Kotliar (Rutgers) Ref:

More information

O. Parcollet CEA-Saclay FRANCE

O. Parcollet CEA-Saclay FRANCE Cluster Dynamical Mean Field Analysis of the Mott transition O. Parcollet CEA-Saclay FRANCE Dynamical Breakup of the Fermi Surface in a doped Mott Insulator M. Civelli, M. Capone, S. S. Kancharla, O.P.,

More information

Introduction to DMFT

Introduction to DMFT Introduction to DMFT Lecture 2 : DMFT formalism 1 Toulouse, May 25th 2007 O. Parcollet 1. Derivation of the DMFT equations 2. Impurity solvers. 1 Derivation of DMFT equations 2 Cavity method. Large dimension

More information

Introduction to DMFT

Introduction to DMFT Introduction to DMFT Lecture 3 : Introduction to cluster methods 1 Toulouse, June 13th 27 O. Parcollet SPhT, CEA-Saclay 1. Cluster DMFT methods. 2. Application to high-tc superconductors. General references

More information

De l atome au. supraconducteur à haute température critique. O. Parcollet Institut de Physique Théorique CEA-Saclay, France

De l atome au. supraconducteur à haute température critique. O. Parcollet Institut de Physique Théorique CEA-Saclay, France De l atome au 1 supraconducteur à haute température critique O. Parcollet Institut de Physique Théorique CEA-Saclay, France Quantum liquids Quantum many-body systems, fermions (or bosons), with interactions,

More information

Diagrammatic Monte Carlo methods for Fermions

Diagrammatic Monte Carlo methods for Fermions Diagrammatic Monte Carlo methods for Fermions Philipp Werner Department of Physics, Columbia University PRL 97, 7645 (26) PRB 74, 15517 (26) PRB 75, 8518 (27) PRB 76, 235123 (27) PRL 99, 12645 (27) PRL

More information

Cluster Extensions to the Dynamical Mean-Field Theory

Cluster Extensions to the Dynamical Mean-Field Theory Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods? Thomas Pruschke Institut für Theoretische Physik Universität

More information

Dual fermion approach to unconventional superconductivity and spin/charge density wave

Dual fermion approach to unconventional superconductivity and spin/charge density wave June 24, 2014 (ISSP workshop) Dual fermion approach to unconventional superconductivity and spin/charge density wave Junya Otsuki (Tohoku U, Sendai) in collaboration with H. Hafermann (CEA Gif-sur-Yvette,

More information

Pseudogap opening and formation of Fermi arcs as an orbital-selective Mott transition in momentum space

Pseudogap opening and formation of Fermi arcs as an orbital-selective Mott transition in momentum space PHYSICAL REVIEW B 8, 645 9 Pseudogap opening and formation of Fermi arcs as an orbital-selective Mott transition in momentum space Michel Ferrero,, Pablo S. Cornaglia,,3 Lorenzo De Leo, Olivier Parcollet,

More information

Diagrammatic Monte Carlo simulation of quantum impurity models

Diagrammatic Monte Carlo simulation of quantum impurity models Diagrammatic Monte Carlo simulation of quantum impurity models Philipp Werner ETH Zurich IPAM, UCLA, Jan. 2009 Outline Continuous-time auxiliary field method (CT-AUX) Weak coupling expansion and auxiliary

More information

An efficient impurity-solver for the dynamical mean field theory algorithm

An efficient impurity-solver for the dynamical mean field theory algorithm Papers in Physics, vol. 9, art. 95 (217) www.papersinphysics.org Received: 31 March 217, Accepted: 6 June 217 Edited by: D. Domínguez Reviewed by: A. Feiguin, Northeastern University, Boston, United States.

More information

Continuous time QMC methods

Continuous time QMC methods Continuous time QMC methods Matthias Troyer (ETH Zürich) Philipp Werner (Columbia ETHZ) Emanuel Gull (ETHZ Columbia) Andy J. Millis (Columbia) Olivier Parcollet (Paris) Sebastian Fuchs, Thomas Pruschke

More information

FROM NODAL LIQUID TO NODAL INSULATOR

FROM NODAL LIQUID TO NODAL INSULATOR FROM NODAL LIQUID TO NODAL INSULATOR Collaborators: Urs Ledermann and Maurice Rice John Hopkinson (Toronto) GORDON, 2004, Oxford Doped Mott insulator? Mott physics: U Antiferro fluctuations: J SC fluctuations

More information

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory From utzwiller Wave Functions to Dynamical Mean-Field Theory Dieter Vollhardt Autumn School on Correlated Electrons DMFT at 25: Infinite Dimensions Forschungszentrum Jülich, September 15, 2014 Supported

More information

Quantum impurity models Algorithms and applications

Quantum impurity models Algorithms and applications 1 Quantum impurity models Algorithms and applications Collège de France, 5 Mai 21 O. Parcollet Institut de Physique Théorique CEA-Saclay, France Motivations : why do we need specific algorithms? A few

More information

Dynamical mean field approach to correlated lattice systems in and out of equilibrium

Dynamical mean field approach to correlated lattice systems in and out of equilibrium Dynamical mean field approach to correlated lattice systems in and out of equilibrium Philipp Werner University of Fribourg, Switzerland Kyoto, December 2013 Overview Dynamical mean field approximation

More information

Superconductivity, antiferromagnetism and Mott critical point in the BEDT family

Superconductivity, antiferromagnetism and Mott critical point in the BEDT family Superconductivity, antiferromagnetism and Mott critical point in the BEDT family A.-M. Tremblay P. Sémon, G. Sordi, K. Haule, B. Kyung, D. Sénéchal ISCOM 2013, 14 19 July 2013 Half-filled band: Not always

More information

Quantum Cluster Methods (CPT/CDMFT)

Quantum Cluster Methods (CPT/CDMFT) Quantum Cluster Methods (CPT/CDMFT) David Sénéchal Département de physique Université de Sherbrooke Sherbrooke (Québec) Canada Autumn School on Correlated Electrons Forschungszentrum Jülich, Sept. 24,

More information

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity Mike Norman Materials Science Division Argonne National Laboratory & Center for Emergent Superconductivity Physics 3, 86

More information

A New look at the Pseudogap Phase in the Cuprates.

A New look at the Pseudogap Phase in the Cuprates. A New look at the Pseudogap Phase in the Cuprates. Patrick Lee MIT Common themes: 1. Competing order. 2. superconducting fluctuations. 3. Spin gap: RVB. What is the elephant? My answer: All of the above!

More information

Electronic correlations in models and materials. Jan Kuneš

Electronic correlations in models and materials. Jan Kuneš Electronic correlations in models and materials Jan Kuneš Outline Dynamical-mean field theory Implementation (impurity problem) Single-band Hubbard model MnO under pressure moment collapse metal-insulator

More information

Quantum Oscillations in underdoped cuprate superconductors

Quantum Oscillations in underdoped cuprate superconductors Quantum Oscillations in underdoped cuprate superconductors Aabhaas Vineet Mallik Journal Club Talk 4 April, 2013 Aabhaas Vineet Mallik (Journal Club Talk) Quantum Oscillations in underdoped cuprate superconductors

More information

Diagrammatic extensions of (E)DMFT: Dual boson

Diagrammatic extensions of (E)DMFT: Dual boson Diagrammatic extensions of (E)DMFT: Dual boson IPhT, CEA Saclay, France ISSP, June 25, 2014 Collaborators Mikhail Katsnelson (University of Nijmegen, The Netherlands) Alexander Lichtenstein (University

More information

Magnetic Moment Collapse drives Mott transition in MnO

Magnetic Moment Collapse drives Mott transition in MnO Magnetic Moment Collapse drives Mott transition in MnO J. Kuneš Institute of Physics, Uni. Augsburg in collaboration with: V. I. Anisimov, A. V. Lukoyanov, W. E. Pickett, R. T. Scalettar, D. Vollhardt,

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Spin and orbital freezing in unconventional superconductors

Spin and orbital freezing in unconventional superconductors Spin and orbital freezing in unconventional superconductors Philipp Werner University of Fribourg Kyoto, November 2017 Spin and orbital freezing in unconventional superconductors In collaboration with:

More information

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018 High Tc superconductivity in cuprates: Determination of pairing interaction Han-Yong Choi / SKKU SNU Colloquium May 30 018 It all began with Discovered in 1911 by K Onnes. Liquid He in 1908. Nobel prize

More information

Optical conductivity and kinetic energy of the superconducting state: A cluster dynamical mean field study

Optical conductivity and kinetic energy of the superconducting state: A cluster dynamical mean field study January 27 EPL, 77 (27) 277 doi: 1.129/295-575/77/277 www.epljournal.org Optical conductivity and kinetic energy of the superconducting state: A cluster dynamical mean field study K. Haule and G. Kotliar

More information

Continuous-time quantum Monte Carlo algorithms for impurity problems

Continuous-time quantum Monte Carlo algorithms for impurity problems Continuous-time quantum Monte Carlo algorithms for impurity problems Michel Ferrero Centre de Physique Théorique Ecole Polytechnique, France Quantum Monte Carlo methods at work for novel phases of matter

More information

The High T c Superconductors: BCS or Not BCS?

The High T c Superconductors: BCS or Not BCS? The University of Illinois at Chicago The High T c Superconductors: BCS or Not BCS? Does BCS theory work for the high temperature superconductors? We take a look at the electronic excitations using angle

More information

PHYSICAL REVIEW B 80,

PHYSICAL REVIEW B 80, PHYSICAL REVIEW B 8, 6526 29 Finite-temperature exact diagonalization cluster dynamical mean-field study of the two-dimensional Hubbard model: Pseudogap, non-fermi-liquid behavior, and particle-hole asymmetry

More information

First-order Mott transition at zero temperature in two dimensions: Variational plaquette study

First-order Mott transition at zero temperature in two dimensions: Variational plaquette study January 2009 EPL, 85 (2009) 17002 doi: 10.1209/0295-5075/85/17002 www.epljournal.org First-order Mott transition at zero temperature in two dimensions: ariational plaquette study M. Balzer 1, B. Kyung

More information

A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra

A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra M. Jarrell, A. Macridin, Th. Maier, D.J. Scalapino Thanks to T. Devereaux, A. Lanzara, W. Meevasana, B. Moritz, G. A. Sawatzky,

More information

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models Local moment approach to the multi - orbital single impurity Anderson and Hubbard models Anna Kauch Institute of Theoretical Physics Warsaw University PIPT/Les Houches Summer School on Quantum Magnetism

More information

w2dynamics : operation and applications

w2dynamics : operation and applications w2dynamics : operation and applications Giorgio Sangiovanni ERC Kick-off Meeting, 2.9.2013 Hackers Nico Parragh (Uni Wü) Markus Wallerberger (TU) Patrik Gunacker (TU) Andreas Hausoel (Uni Wü) A solver

More information

Topological order in the pseudogap metal

Topological order in the pseudogap metal HARVARD Topological order in the pseudogap metal High Temperature Superconductivity Unifying Themes in Diverse Materials 2018 Aspen Winter Conference Aspen Center for Physics Subir Sachdev January 16,

More information

Continuous Time Monte Carlo methods for fermions

Continuous Time Monte Carlo methods for fermions Continuous Time Monte Carlo methods for fermions Alexander Lichtenstein University of Hamburg In collaboration with A. Rubtsov (Moscow University) P. Werner (ETH Zurich) Outline Calculation of Path Integral

More information

Resonating Valence Bond point of view in Graphene

Resonating Valence Bond point of view in Graphene Resonating Valence Bond point of view in Graphene S. A. Jafari Isfahan Univ. of Technology, Isfahan 8456, Iran Nov. 29, Kolkata S. A. Jafari, Isfahan Univ of Tech. RVB view point in graphene /2 OUTLINE

More information

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES studies of cuprates Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Goals of lecture Understand why gaps are important and various ways that gap

More information

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3 4D-XY Quantum Criticality in Underdoped High-T c cuprates M. Franz University of British Columbia franz@physics.ubc.ca February 22, 2005 In collaboration with: A.P. Iyengar (theory) D.P. Broun, D.A. Bonn

More information

A brief Introduction of Fe-based SC

A brief Introduction of Fe-based SC Part I: Introduction A brief Introduction of Fe-based SC Yunkyu Bang (Chonnam National Univ., Kwangju, Korea) Lecture 1: Introduction 1. Overview 2. What is sign-changing s-wave gap : +/-s-wave gap Lecture

More information

Theoretical Study of High Temperature Superconductivity

Theoretical Study of High Temperature Superconductivity Theoretical Study of High Temperature Superconductivity T. Yanagisawa 1, M. Miyazaki 2, K. Yamaji 1 1 National Institute of Advanced Industrial Science and Technology (AIST) 2 Hakodate National College

More information

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Krzysztof Byczuk Institute of Physics, Augsburg University Institute of Theoretical Physics, Warsaw University October

More information

arxiv:cond-mat/ v2 [cond-mat.supr-con] 1 Dec 2005

arxiv:cond-mat/ v2 [cond-mat.supr-con] 1 Dec 2005 Systematic study of d-wave superconductivity in the 2D repulsive Hubbard model arxiv:cond-mat/0504529v2 [cond-mat.supr-con] 1 Dec 2005 T.A. Maier, 1 M. Jarrell, 2 T.C. Schulthess, 1 P. R. C. Kent, 3 and

More information

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES N.M.Plakida Joint Institute for Nuclear Research, Dubna, Russia CORPES, Dresden, 26.05.2005 Publications and collaborators: N.M. Plakida,

More information

Inversion Techniques for STM Data Analyses

Inversion Techniques for STM Data Analyses Inversion Techniques for STM Data Analyses Sumiran Pujari University of Kentucky September 30, 2014 Outline of the Talk Philosophy of Inversion Projects : 1 Quasiparticle Echoes 2 Quasiparticle Lifetimes

More information

Quantum simulations, adiabatic transformations,

Quantum simulations, adiabatic transformations, Quantum simulations, adiabatic transformations, and resonating valence bond states Aspen June 2009 Simon Trebst Microsoft Station Q UC Santa Barbara Ulrich Schollwöck Matthias Troyer Peter Zoller High

More information

NiO - hole doping and bandstructure of charge transfer insulator

NiO - hole doping and bandstructure of charge transfer insulator NiO - hole doping and bandstructure of charge transfer insulator Jan Kuneš Institute for Physics, Uni. Augsburg Collaboration: V. I. Anisimov S. L. Skornyakov A. V. Lukoyanov D. Vollhardt Outline NiO -

More information

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay I- Similarities between phase diagram and quantum critical points Quantum Criticality in 3 Families of Superconductors L. Taillefer,

More information

Multisite versus multiorbital Coulomb correlations studied within finite-temperature exact diagonalization dynamical mean-field theory

Multisite versus multiorbital Coulomb correlations studied within finite-temperature exact diagonalization dynamical mean-field theory PHYSICAL REVIEW B 78, 165123 28 Multisite versus multiorbital Coulomb correlations studied within finite-temperature exact diagonalization dynamical mean-field theory A. Liebsch, 1 H. Ishida, 2 and J.

More information

Introduction to SDFunctional and C-DMFT

Introduction to SDFunctional and C-DMFT Introduction to SDFunctional and C-DMFT A. Lichtenstein University of Hamburg In collaborations with: M. Katsnelson, V. Savkin, L. Chioncel, L. Pourovskii (Nijmegen) A. Poteryaev, S. Biermann, M. Rozenberg,

More information

Cuprates supraconducteurs : où en est-on?

Cuprates supraconducteurs : où en est-on? Chaire de Physique de la Matière Condensée Cuprates supraconducteurs : où en est-on? Antoine Georges Cycle 2010-2011 Cours 5 30/11/2010 Cours 5-30/11/2010 Cours: Phénoménologie de la phase supraconductrice

More information

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST Laboratoire National des Champs Magnétiques Intenses Toulouse Collaborations D. Vignolles B. Vignolle C. Jaudet J.

More information

Quantum dynamics in many body systems

Quantum dynamics in many body systems Quantum dynamics in many body systems Eugene Demler Harvard University Collaborators: David Benjamin (Harvard), Israel Klich (U. Virginia), D. Abanin (Perimeter), K. Agarwal (Harvard), E. Dalla Torre (Harvard)

More information

Mott collapse and statistical quantum criticality

Mott collapse and statistical quantum criticality Mott collapse and statistical quantum criticality Jan Zaanen J. Zaanen and B.J. Overbosch, arxiv: 0911.4070 (Phil.Trans.Roy.Soc. A, in press) 1 2 Who to blame 3 Plan 1. The idea of Mott collapse 2. Mottness

More information

Nano-DMFT : the electronic structure of small, strongly correlated, systems

Nano-DMFT : the electronic structure of small, strongly correlated, systems Nano-DMFT : the electronic structure of small, strongly correlated, systems Nanoscale Dynamical Mean-Field Theory for Molecules and Mesoscopic Devices in the Strong-Correlation Regime Author: S. Florens,

More information

High-T c superconductors

High-T c superconductors High-T c superconductors Parent insulators Carrier doping Band structure and Fermi surface Pseudogap, superconducting gap, superfluid Nodal states Bilayer, trilayer Stripes High-T c superconductors Parent

More information

Phenomenology of High Tc Cuprates II. Pseudogap in Underdoped Cuprates

Phenomenology of High Tc Cuprates II. Pseudogap in Underdoped Cuprates Lecture # 2 1 Phenomenology of High Tc Cuprates II Pseudogap in Underdoped Cuprates Mohit Randeria Ohio State University 2014 Boulder School on Modern aspects of Superconductivity T T* Strange metal Mott

More information

Fluctuating exchange theory of dynamical electron correlations and magnetism

Fluctuating exchange theory of dynamical electron correlations and magnetism Fluctuating exchange theory of dynamical electron correlations and magnetism Václav Drchal Institute of Physics ASCR, Praha, Czech Republic Grant Agency of ASCR: project IAA11616 Workshop Frontiers in

More information

Mott physics: from basic concepts to iron superconductors

Mott physics: from basic concepts to iron superconductors Mott physics: from basic concepts to iron superconductors E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Outline Mott physics: Basic concepts (single orbital & half filling) - Mott

More information

Zhiping Yin. Department of Physics, Rutgers University Collaborators: G. Kotliar, K. Haule

Zhiping Yin. Department of Physics, Rutgers University Collaborators: G. Kotliar, K. Haule DFT+DMFT to Correlated Electronic Structures: Recent Developments and Applications to Iron-based Superconductors Zhiping Yin Department of Physics, Rutgers University Collaborators: G. Kotliar, K. Haule

More information

(Cluster) Dynamical Mean Field Theory: insights into physics of cuprates and other materials

(Cluster) Dynamical Mean Field Theory: insights into physics of cuprates and other materials (Cluster) Dynamical Mean Field Theory: insights into physics of cuprates and other materials A. J. Millis Three talks presented at Emergence of Inhomogeneous Phases in Strongly Correlated Electron Systems

More information

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy Computational strongly correlated materials R. Torsten Clay Physics & Astronomy Current/recent students Saurabh Dayal (current PhD student) Wasanthi De Silva (new grad student 212) Jeong-Pil Song (finished

More information

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli Department of Physics & Astronomy University of British Columbia Vancouver, B.C. Outline: Part I State-of-the-Art

More information

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Frithjof B. Anders Institut für Theoretische Physik Universität Bremen Göttingen, December

More information

Superconductivity due to massless boson exchange.

Superconductivity due to massless boson exchange. Superconductivity due to massless boson exchange. Andrey Chubukov University of Wisconsin Consultations Artem Abanov Mike Norman Joerg Schmalian Boris Altshuler Emil Yuzbashyan Texas A&M ANL ISU Columbia

More information

Orbital magnetic field effects in spin liquid with spinon Fermi sea: Possible application to (ET)2Cu2(CN)3

Orbital magnetic field effects in spin liquid with spinon Fermi sea: Possible application to (ET)2Cu2(CN)3 Orbital magnetic field effects in spin liquid with spinon Fermi sea: Possible application to (ET)2Cu2(CN)3 Olexei Motrunich (KITP) PRB 72, 045105 (2005); PRB 73, 155115 (2006) with many thanks to T.Senthil

More information

High Tc superconductivity in doped Mott insulators

High Tc superconductivity in doped Mott insulators Lecture # 3 1 High Tc superconductivity in doped Mott insulators Mohit Randeria Ohio State University 2014 Boulder School on Modern aspects of Superconductivity In collaboration with: A.Paramekanti, Toronto

More information

Supraconductivité à haute température dans les cuprates et les organiques: Où en est-on?

Supraconductivité à haute température dans les cuprates et les organiques: Où en est-on? Supraconductivité à haute température dans les cuprates et les organiques: Où en est-on? André-Marie Tremblay Collège de France, 9, 16, 23 et 30 mars 2015 17h00 à 18h30 Two pillars of Condensed Matter

More information

F. Rullier-Albenque 1, H. Alloul 2 1

F. Rullier-Albenque 1, H. Alloul 2 1 Distinct Ranges of Superconducting Fluctuations and Pseudogap in Cuprates Glassy29-2/7/29 F. Rullier-Albenque 1, H. Alloul 2 1 Service de Physique de l Etat Condensé, CEA, Saclay, France 2 Physique des

More information

The Hubbard model out of equilibrium - Insights from DMFT -

The Hubbard model out of equilibrium - Insights from DMFT - The Hubbard model out of equilibrium - Insights from DMFT - t U Philipp Werner University of Fribourg, Switzerland KITP, October 212 The Hubbard model out of equilibrium - Insights from DMFT - In collaboration

More information

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Phase diagram

More information

Can superconductivity emerge out of a non Fermi liquid.

Can superconductivity emerge out of a non Fermi liquid. Can superconductivity emerge out of a non Fermi liquid. Andrey Chubukov University of Wisconsin Washington University, January 29, 2003 Superconductivity Kamerling Onnes, 1911 Ideal diamagnetism High Tc

More information

Simulations of Quantum Dimer Models

Simulations of Quantum Dimer Models Simulations of Quantum Dimer Models Didier Poilblanc Laboratoire de Physique Théorique CNRS & Université de Toulouse 1 A wide range of applications Disordered frustrated quantum magnets Correlated fermions

More information

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu Quantum criticality in the cuprate superconductors Talk online: sachdev.physics.harvard.edu The cuprate superconductors Destruction of Neel order in the cuprates by electron doping, R. K. Kaul, M. Metlitksi,

More information

High Temperature Superconductivity - After 20 years, where are we at?

High Temperature Superconductivity - After 20 years, where are we at? High Temperature Superconductivity - After 20 years, where are we at? Michael Norman Materials Science Division Argonne National Laboratory Norman and Pepin, Rep. Prog. Phys. (2003) Norman, Pines, and

More information

Lattice modulation experiments with fermions in optical lattices and more

Lattice modulation experiments with fermions in optical lattices and more Lattice modulation experiments with fermions in optical lattices and more Nonequilibrium dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University Rajdeep Sensarma Harvard

More information

Strongly Correlated Systems:

Strongly Correlated Systems: M.N.Kiselev Strongly Correlated Systems: High Temperature Superconductors Heavy Fermion Compounds Organic materials 1 Strongly Correlated Systems: High Temperature Superconductors 2 Superconductivity:

More information

Disordered Ultracold Gases

Disordered Ultracold Gases Disordered Ultracold Gases 1. Ultracold Gases: basic physics 2. Methods: disorder 3. Localization and Related Measurements Brian DeMarco, University of Illinois bdemarco@illinois.edu Localization & Related

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Topological Kondo Insulators!

Topological Kondo Insulators! Topological Kondo Insulators! Maxim Dzero, University of Maryland Collaborators: Kai Sun, University of Maryland Victor Galitski, University of Maryland Piers Coleman, Rutgers University Main idea Kondo

More information

Review of typical behaviours observed in strongly correlated systems. Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN, F14050 Caen.

Review of typical behaviours observed in strongly correlated systems. Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN, F14050 Caen. Review of typical behaviours observed in strongly correlated systems Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN, F14050 Caen. Introduction : Major part of solid state physics of the second part

More information

A typical medium approach to Anderson localization in correlated systems.

A typical medium approach to Anderson localization in correlated systems. A typical medium approach to Anderson localization in correlated systems. N.S.Vidhyadhiraja Theoretical Sciences Unit Jawaharlal Nehru center for Advanced Scientific Research Bangalore, India Outline Models

More information

1 G. Kotliar: Lecture 2

1 G. Kotliar: Lecture 2 1 G. Kotliar: Lecture 2 In the previous lecture, following some motivation to study strongly correlated electron systems, we introduced a general methodology for constructing mean field theories. To apply

More information

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates arxiv:0905.1096, To appear in New. J. Phys. Erez Berg 1, Steven A. Kivelson 1, Doug J. Scalapino 2 1 Stanford University, 2

More information

Signatures of the precursor superconductivity above T c

Signatures of the precursor superconductivity above T c Dresden, 18 April 2007 Signatures of the precursor superconductivity above T c T. DOMANSKI M. Curie-Skłodowska University, 20-031 Lublin, Poland http://kft.umcs.lublin.pl/doman Outline Outline Introduction

More information

Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universität Stuttgart

Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universität Stuttgart Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universität Stuttgart Outline 1. Organic Conductors basics and development 2.

More information

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) New perspectives in superconductors E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) E. Bascones leni@icmm.csic.es Outline Talk I: Correlations in iron superconductors Introduction

More information

Quantum Monte Carlo study of strongly correlated electrons: Cellular dynamical mean-field theory

Quantum Monte Carlo study of strongly correlated electrons: Cellular dynamical mean-field theory Quantum Monte Carlo study of strongly correlated electrons: Cellular dynamical mean-field theory B. Kyung, 1 G. Kotliar, 2 and A.-M. S. Tremblay 1 1 Département de physique and Regroupement québécois sur

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

What's so unusual about high temperature superconductors? UBC 2005

What's so unusual about high temperature superconductors? UBC 2005 What's so unusual about high temperature superconductors? UBC 2005 Everything... 1. Normal State - doped Mott insulator 2. Pairing Symmetry - d-wave 2. Short Coherence Length - superconducting fluctuations

More information

Quantum Spin-Metals in Weak Mott Insulators

Quantum Spin-Metals in Weak Mott Insulators Quantum Spin-Metals in Weak Mott Insulators MPA Fisher (with O. Motrunich, Donna Sheng, Simon Trebst) Quantum Critical Phenomena conference Toronto 9/27/08 Quantum Spin-metals - spin liquids with Bose

More information

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering DE-FG02-08ER46544 Overview

More information

An introduction to Dynamical Mean Field Theory (DMFT) and DFT+DMFT

An introduction to Dynamical Mean Field Theory (DMFT) and DFT+DMFT An introduction to Dynamical Mean Field Theory (DMFT) and DFT+DMFT B. Amadon CEA, DAM, DIF, F-9297 Arpajon, France International summer School in electronic structure Theory: electron correlation in Physics

More information

arxiv: v1 [cond-mat.str-el] 18 May 2010

arxiv: v1 [cond-mat.str-el] 18 May 2010 Strength of Correlations in electron and hole doped cuprates Cédric Weber, 1 Kristjan Haule, 1 and Gabriel Kotliar 1 1 Department of Physics, Rutgers University, Piscataway, NJ 08854, USA arxiv:1005.3095v1

More information

Role of Hund Coupling in Two-Orbital Systems

Role of Hund Coupling in Two-Orbital Systems Role of Hund Coupling in Two-Orbital Systems Gun Sang Jeon Ewha Womans University 2013-08-30 NCTS Workshop on Quantum Condensation (QC13) collaboration with A. J. Kim, M.Y. Choi (SNU) Mott-Hubbard Transition

More information

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346 Excitonic Condensation in Systems of Strongly Correlated Electrons Jan Kuneš and Pavel Augustinský DFG FOR1346 Motivation - unconventional long-range order incommensurate spin spirals complex order parameters

More information

Strength of the spin fluctuation mediated pairing interaction in YBCO 6.6

Strength of the spin fluctuation mediated pairing interaction in YBCO 6.6 Universität Tübingen Lehrstuhl für Theoretische Festkörperphysik Strength of the spin fluctuation mediated pairing interaction in YBCO 6.6 Thomas Dahm Institut für Theoretische Physik Universität Tübingen

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

Impurity-Induced States in 2DEG and d-wave Superconductors

Impurity-Induced States in 2DEG and d-wave Superconductors Impurity-Induced States in 2DEG and d-wave Superconductors Symposium on Quantum Phenomena Condensed Matter Theory Center Physics Department, University of Maryland September 27th-28th 2007 Enrico Rossi

More information