The Mott Metal-Insulator Transition

Size: px
Start display at page:

Download "The Mott Metal-Insulator Transition"

Transcription

1 Florian Gebhard The Mott Metal-Insulator Transition Models and Methods With 38 Figures Springer

2 1. Metal Insulator Transitions Classification of Metals and Insulators Definition of Metal and Insulator Classes of Insulators Gap Criterion for the Insulator Electrical Conductivity at Low Temperature Gap at Finite Temperature Types of Metal-Insulator Transitions Quantum Phase Transition Thermodynamic Phase Transition Band, Peierls, and Anderson Insulators Band Insulators Peierls Insulators Anderson Insulators Mott Insulators: Basic Theoretical Concepts Electron-Electron Interaction in Metals Exchange and Correlations Magnetic Moments Slater Insulator Mott Insulator Mott-Hubbard Insulator Mott-Heisenberg Insulator Mott Insulators: Some Experimental Observations Wigner Insulator Verwey Insulator Multi-Band Mott Insulator Charge-Transfer Insulator Whither Theory? Hubbard Model Electronic Many-Particle Problem Hamilton Operator of Solid-State Physics Hamilton Operator of the Electronic Problem 51

3 X Contents 2.2 Band Structure Calculations Independent Electrons Hartree Theory Local Density Approximation Improvements to the Local Density Approximation Derivation of the Hubbard Model Second Quantization Hubbard Model Hubbard Model and Real Materials Polymers Transition Metals and Their Oxides Fullerenes High-Temperature Superconductors Heavy Fermion Materials Liquid Helium Relevance of the Hubbard Model Model Properties Model Parameters Model Variants Symmetries Basic Properties of the Hubbard Model Magnetism Approximate Methods Hartree-Fock Theory Method and Exact Statements Slater's Theory of the Antiferromagnet Stoner's Theory of the Ferromagnet Simplified Hartree-Fock Phase Diagram Advantages and Problems Improvements Local Density Approximation Site Occupation Functional Theory Site Occupation Local Density Approximation XQ Local Density Approximation LSDA with Self-Interaction Corrections Green-Function Decoupling Method Atomic Limit and Hubbard Bands Hubbard-I Approximation Advantages and Problems Improvements Alloy-Analogy Approximation Hubbard-III Approximation Advantages and Problems Improvements 108

4 XI 3.4 Variational Wave Functions Gutzwiller-Correlated Wave Functions Variational Characterization of an Insulator Exact Statements Gutzwiller Wave Function in One Dimension Variational Wave Functions in Infinite Dimensions Brinkman-Rice Transition Expansion Around the Limit of Infinite Dimensions Variational Phase Diagram in Infinite Dimensions Extensions and Improvements Advantages and Problems Slave Boson Approach Slave Bosons and Functional Integrals Kotliar-Ruckenstein Slave Bosons Kotliar-Ruckenstein Approximation Advantages and Problems Barnes-Coleman Slave Bosons and Approximation Advantages and Problems One-Dimensional Hubbard Models Hubbard Model with Nearest-Neighbor Hopping Two-Electron Problem for Two Lattice Sites General Two-Electron Problem in One Dimension Bethe Ansatz for the IV-Electron Problem Ground-State Energy at Half Band-Filling MetaHnsulator Transition at Half Band-Filling Drude Weight Below Half Band-Filling MetaHnsulator Transition Approaching Half Filling Hubbard Model with Long-Range Hopping Basic Properties General Two-Electron Problem in One Dimension Effective Hamiltonian for the JV-Electron Problem Ground-State Energy and MetaHnsulator Transition Thermodynamic Properties Hubbard Model with Variable-Range Hopping Basic Properties General Two-Electron Problem in One Dimension S Matrix and Generalized Lieb-Wu Equations Ground-State Energy at Half Band-Filling MetaHnsulator Transition at Half Band-Filling Mott-Hubbard Transition in One Dimension gr-ology Hamiltonian Perfect Nesting in One Dimension Long-Range Hopping Comparison with Basic Theoretical Concepts 182

5 Hubbard Model in Infinite Dimensions Limit of Infinite Dimensions Spin Models in Infinite Dimensions Non-Interacting Itinerant Electrons Generalized Mean-Field Approaches Mean-Field Spin Models Random Dispersion Approximation Simplifications in Infinite Dimensions Position-Space Collapse of Diagrams Irrelevance of Momentum Conservation Effective Models with Single-Site Interaction Analytical Results in Infinite Dimensions Perturbation Theory for Small Interactions Perturbation Theory for Large Interactions Variational Wave Functions Falicov-Kimball Model Spinless Fermions Approximate Solutions of the Hubbard Model Model Specifications Constraints on Approximate Treatments Quantum Monte-Carlo Calculations Exact Diagonalization Studies Iterated Perturbation Theory Non-Crossing Approximation Local Moments in Hubbard's Approximations Local-Moment Approach Metal-Insulator Transitions Mott-Heisenberg Insulator Correlated Metal Mott-Hubbard Insulator Mott-Hubbard Transition Comparison with Basic Theoretical Concepts 240 Further Models with Hubbard Interaction Degenerate and Extended Hubbard Models Band-Degenerate Hubbard Model in One Dimension Extended Hubbard Model Generalized Hubbard Models Models with Conserved Double Occupancies Bond-Charge Interactions and Harris-Lange Model Harris-Lange Model in One Dimension Montorsi-Rasetti Model Supersymmetric Hubbard Model Models with Commuting Operators Hubbard Model with Infinite-Range Hopping 256

6 XIII Stoner Model with Long-Range Hopping Landau-Hubbard Model Conclusions 263 Appendix 267 A.l Calculations for Hartree-Fock Theory 267 A.1.1 Diagonalization of the Hartree-Fock Hamiltonian 267 A.1.2 Ground-State Properties for Half Band-Filling 268 A.2 Green Functions and Hubbard-I Approximation 270 A.2.1 Green Functions 270 A.2.2 Hubbard-I Approximation 272 A.3 Generalized Lieb-Wu Integral Equations 274 A.3.1 Derivation of the Integral Equations 274 A.3.2 Solution for Half-Filled Bands 276 A.3.3 Quasi-Particle Dispersions 277 A.3.4 Limit of Long-Range Hopping 279 References 281 Index 309

Springer Tracts in Modern Physics Volume 137

Springer Tracts in Modern Physics Volume 137 Springer Tracts in Modern Physics Volume 137 Managing Editor: G. Hohler, Karlsruhe Editors: J. Kuhn, Karlsruhe Th. Muller, Karlsruhe R. D. Peccei, Los Angeles F. Steiner, Ulm J. Trumper, Garching P. Wolfle,

More information

Electron Correlation

Electron Correlation Series in Modern Condensed Matter Physics Vol. 5 Lecture Notes an Electron Correlation and Magnetism Patrik Fazekas Research Institute for Solid State Physics & Optics, Budapest lb World Scientific h Singapore

More information

Metal-Insulator Transitions

Metal-Insulator Transitions Metal-Insulator Transitions Second Edition N. F. MOTT Emeritus Cavendish Professor of Physics University of Cambridge Taylor & Francis London New York Philadelphia Contents Preface to Second Edition v

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Quantum Spin-Metals in Weak Mott Insulators

Quantum Spin-Metals in Weak Mott Insulators Quantum Spin-Metals in Weak Mott Insulators MPA Fisher (with O. Motrunich, Donna Sheng, Simon Trebst) Quantum Critical Phenomena conference Toronto 9/27/08 Quantum Spin-metals - spin liquids with Bose

More information

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory From utzwiller Wave Functions to Dynamical Mean-Field Theory Dieter Vollhardt Autumn School on Correlated Electrons DMFT at 25: Infinite Dimensions Forschungszentrum Jülich, September 15, 2014 Supported

More information

Gapless Spin Liquids in Two Dimensions

Gapless Spin Liquids in Two Dimensions Gapless Spin Liquids in Two Dimensions MPA Fisher (with O. Motrunich, Donna Sheng, Matt Block) Boulder Summerschool 7/20/10 Interest Quantum Phases of 2d electrons (spins) with emergent rather than broken

More information

WORLD SCIENTIFIC (2014)

WORLD SCIENTIFIC (2014) WORLD SCIENTIFIC (2014) LIST OF PROBLEMS Chapter 1: Magnetism of Free Electrons and Atoms 1. Orbital and spin moments of an electron: Using the theory of angular momentum, calculate the orbital

More information

Green's Function in. Condensed Matter Physics. Wang Huaiyu. Alpha Science International Ltd. SCIENCE PRESS 2 Beijing \S7 Oxford, U.K.

Green's Function in. Condensed Matter Physics. Wang Huaiyu. Alpha Science International Ltd. SCIENCE PRESS 2 Beijing \S7 Oxford, U.K. Green's Function in Condensed Matter Physics Wang Huaiyu SCIENCE PRESS 2 Beijing \S7 Oxford, U.K. Alpha Science International Ltd. CONTENTS Part I Green's Functions in Mathematical Physics Chapter 1 Time-Independent

More information

The Oxford Solid State Basics

The Oxford Solid State Basics The Oxford Solid State Basics Steven H. Simon University of Oxford OXFORD UNIVERSITY PRESS Contents 1 About Condensed Matter Physics 1 1.1 What Is Condensed Matter Physics 1 1.2 Why Do We Study Condensed

More information

Spin liquids on ladders and in 2d

Spin liquids on ladders and in 2d Spin liquids on ladders and in 2d MPA Fisher (with O. Motrunich) Minnesota, FTPI, 5/3/08 Interest: Quantum Spin liquid phases of 2d Mott insulators Background: Three classes of 2d Spin liquids a) Topological

More information

1 From Gutzwiller Wave Functions to Dynamical Mean-Field Theory

1 From Gutzwiller Wave Functions to Dynamical Mean-Field Theory 1 From Gutzwiller Wave Functions to Dynamical Mean-Field Theory Dieter Vollhardt Center for Electronic Correlations and Magnetism University of Augsburg Contents 1 Introduction 2 1.1 Modeling of correlated

More information

Contents Basic Facts Atomic Magnetism

Contents Basic Facts Atomic Magnetism Contents 1 Basic Facts... 1 1.1 Macroscopic Maxwell Equations........ 1 1.2 Magnetic Moment and Magnetization.... 7 1.3 Susceptibility...... 13 1.4 Classification of Magnetic Materials..... 15 1.4.1 Diamagnetism....

More information

Magnets, 1D quantum system, and quantum Phase transitions

Magnets, 1D quantum system, and quantum Phase transitions 134 Phys620.nb 10 Magnets, 1D quantum system, and quantum Phase transitions In 1D, fermions can be mapped into bosons, and vice versa. 10.1. magnetization and frustrated magnets (in any dimensions) Consider

More information

The Gutzwiller Density Functional Theory

The Gutzwiller Density Functional Theory The Gutzwiller Density Functional Theory Jörg Bünemann, BTU Cottbus I) Introduction 1. Model for an H 2 -molecule 2. Transition metals and their compounds II) Gutzwiller variational theory 1. Gutzwiller

More information

Majorana Fermions in Superconducting Chains

Majorana Fermions in Superconducting Chains 16 th December 2015 Majorana Fermions in Superconducting Chains Matilda Peruzzo Fermions (I) Quantum many-body theory: Fermions Bosons Fermions (II) Properties Pauli exclusion principle Fermions (II)

More information

Mott physics: from basic concepts to iron superconductors

Mott physics: from basic concepts to iron superconductors Mott physics: from basic concepts to iron superconductors E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Outline Mott physics: Basic concepts (single orbital & half filling) - Mott

More information

Topological Phases in One Dimension

Topological Phases in One Dimension Topological Phases in One Dimension Lukasz Fidkowski and Alexei Kitaev arxiv:1008.4138 Topological phases in 2 dimensions: - Integer quantum Hall effect - quantized σ xy - robust chiral edge modes - Fractional

More information

FROM NODAL LIQUID TO NODAL INSULATOR

FROM NODAL LIQUID TO NODAL INSULATOR FROM NODAL LIQUID TO NODAL INSULATOR Collaborators: Urs Ledermann and Maurice Rice John Hopkinson (Toronto) GORDON, 2004, Oxford Doped Mott insulator? Mott physics: U Antiferro fluctuations: J SC fluctuations

More information

MAGNETISM MADE SIMPLE. An Introduction to Physical Concepts and to Some Useful Mathematical Methods. Daniel C. Mattis

MAGNETISM MADE SIMPLE. An Introduction to Physical Concepts and to Some Useful Mathematical Methods. Daniel C. Mattis THE THEORY OF MAGNETISM MADE SIMPLE An Introduction to Physical Concepts and to Some Useful Mathematical Methods Daniel C. Mattis Department of Physics, University of Utah lb World Scientific NEW JERSEY

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 4: MAGNETIC INTERACTIONS - Dipole vs exchange magnetic interactions. - Direct and indirect exchange interactions. - Anisotropic exchange interactions. - Interplay

More information

Ferromagnetism in an orbitally degenerate Hubbard model

Ferromagnetism in an orbitally degenerate Hubbard model PHYSICAL REVIEW B VOLUME 55, NUMBER 22 Ferromagnetism in an orbitally degenerate Hubbard model J. Kuei * and R. T. Scalettar Department of Physics, University of California, Davis, California 95616 Received

More information

Magnetic ordering of local moments

Magnetic ordering of local moments Magnetic ordering Types of magnetic structure Ground state of the Heisenberg ferromagnet and antiferromagnet Spin wave High temperature susceptibility Mean field theory Magnetic ordering of local moments

More information

From Materials to Models and Back. Dieter Vollhardt

From Materials to Models and Back. Dieter Vollhardt From Materials to Models and Back Dieter Vollhardt 28 th Edgar Lüscher Seminar, Klosters; February 8, 2017 From Materials to Models and Back - The Need for Models in Condensed Matter Physics - Outline:

More information

Numerical Methods in Quantum Many-body Theory. Gun Sang Jeon Pyeong-chang Summer Institute 2014

Numerical Methods in Quantum Many-body Theory. Gun Sang Jeon Pyeong-chang Summer Institute 2014 Numerical Methods in Quantum Many-body Theory Gun Sang Jeon 2014-08-25 Pyeong-chang Summer Institute 2014 Contents Introduction to Computational Physics Monte Carlo Methods: Basics and Applications Numerical

More information

Many-Body Problems and Quantum Field Theory

Many-Body Problems and Quantum Field Theory Philippe A. Martin Francois Rothen Many-Body Problems and Quantum Field Theory An Introduction Translated by Steven Goldfarb, Andrew Jordan and Samuel Leach Second Edition With 102 Figures, 7 Tables and

More information

Quantum spin systems - models and computational methods

Quantum spin systems - models and computational methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Quantum spin systems - models and computational methods Anders W. Sandvik, Boston University Lecture outline Introduction

More information

2D Bose and Non-Fermi Liquid Metals

2D Bose and Non-Fermi Liquid Metals 2D Bose and Non-Fermi Liquid Metals MPA Fisher, with O. Motrunich, D. Sheng, E. Gull, S. Trebst, A. Feiguin KITP Cold Atoms Workshop 10/5/2010 Interest: A class of exotic gapless 2D Many-Body States a)

More information

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer Franz Schwabl QUANTUM MECHANICS Translated by Ronald Kates Second Revised Edition With 122Figures, 16Tables, Numerous Worked Examples, and 126 Problems ff Springer Contents 1. Historical and Experimental

More information

Magnetism and Superconductivity in Decorated Lattices

Magnetism and Superconductivity in Decorated Lattices Magnetism and Superconductivity in Decorated Lattices Mott Insulators and Antiferromagnetism- The Hubbard Hamiltonian Illustration: The Square Lattice Bipartite doesn t mean N A = N B : The Lieb Lattice

More information

cond-mat/ Mar 1996

cond-mat/ Mar 1996 METAL TO INSULATOR TRANSITION IN THE -D HUBBARD MODEL: A SLAVE BOSON APPROACH Raymond Fresard and Klaus Doll cond-mat/960315 18 Mar 1996 INTRODUCTION Institut fur Theorie der Kondensierten Materie Universitat

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

DMFT for correlated bosons and boson-fermion mixtures

DMFT for correlated bosons and boson-fermion mixtures DMFT for correlated bosons and boson-fermion mixtures Workshop on Recent developments in dynamical mean-field theory ETH ürich, September 29, 2009 Dieter Vollhardt Supported by Deutsche Forschungsgemeinschaft

More information

Fermionic tensor networks

Fermionic tensor networks Fermionic tensor networks Philippe Corboz, Institute for Theoretical Physics, ETH Zurich Bosons vs Fermions P. Corboz and G. Vidal, Phys. Rev. B 80, 165129 (2009) : fermionic 2D MERA P. Corboz, R. Orus,

More information

Fundamentals and New Frontiers of Bose Einstein Condensation

Fundamentals and New Frontiers of Bose Einstein Condensation Contents Preface v 1. Fundamentals of Bose Einstein Condensation 1 1.1 Indistinguishability of Identical Particles.......... 1 1.2 Ideal Bose Gas in a Uniform System............ 3 1.3 Off-Diagonal Long-Range

More information

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models arxiv:1609.03760 Lode Pollet Dario Hügel Hugo Strand, Philipp Werner (Uni Fribourg) Algorithmic developments diagrammatic

More information

Field Theories in Condensed Matter Physics. Edited by. Sumathi Rao. Harish-Chandra Research Institute Allahabad. lop

Field Theories in Condensed Matter Physics. Edited by. Sumathi Rao. Harish-Chandra Research Institute Allahabad. lop Field Theories in Condensed Matter Physics Edited by Sumathi Rao Harish-Chandra Research Institute Allahabad lop Institute of Physics Publishing Bristol and Philadelphia Contents Preface xiii Introduction

More information

Role of Hund Coupling in Two-Orbital Systems

Role of Hund Coupling in Two-Orbital Systems Role of Hund Coupling in Two-Orbital Systems Gun Sang Jeon Ewha Womans University 2013-08-30 NCTS Workshop on Quantum Condensation (QC13) collaboration with A. J. Kim, M.Y. Choi (SNU) Mott-Hubbard Transition

More information

Magnetism in ultracold gases

Magnetism in ultracold gases Magnetism in ultracold gases Austen Lamacraft Theoretical condensed matter and atomic physics April 10th, 2009 faculty.virginia.edu/austen/ Outline Magnetism in condensed matter Ultracold atomic physics

More information

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester SOLID STATE PHYSICS Second Edition J. R. Hook H. E. Hall Department of Physics, University of Manchester John Wiley & Sons CHICHESTER NEW YORK BRISBANE TORONTO SINGAPORE Contents Flow diagram Inside front

More information

The Quantum Theory of Magnetism

The Quantum Theory of Magnetism The Quantum Theory of Magnetism Norberto Mains McGill University, Canada I: 0 World Scientific Singapore NewJersey London Hong Kong Contents 1 Paramagnetism 1.1 Introduction 1.2 Quantum mechanics of atoms

More information

Broken Symmetries in the One-Dimensional Extended Hubbard Model

Broken Symmetries in the One-Dimensional Extended Hubbard Model CHINESE JOURNAL OF PHYSICS VOL. 38, NO. 1 FEBRUARY 2000 Broken Symmetries in the One-Dimensional Extended Hubbard Model H. Q. Lin 1, D. K. Campbell 2, and R. T. Clay 2 1 Department of Physics, Chinese

More information

'etion 4. Surfaces and -interface. Chapter 1 Statistical Mechanics of SurfcSytman Quantum -Correlated Systems. Chapter 2 Synchrotron X-Ray Studies o

'etion 4. Surfaces and -interface. Chapter 1 Statistical Mechanics of SurfcSytman Quantum -Correlated Systems. Chapter 2 Synchrotron X-Ray Studies o 'etion 4 Surfaces and -interface Chapter 1 Statistical Mechanics of SurfcSytman Quantum -Correlated Systems Chapter 2 Synchrotron X-Ray Studies o ufc iodrn Chapter 3 Chemical Reaction Dynamics tsrae Chapter

More information

Quantum Phases in Bose-Hubbard Models with Spin-orbit Interactions

Quantum Phases in Bose-Hubbard Models with Spin-orbit Interactions Quantum Phases in Bose-Hubbard Models with Spin-orbit Interactions Shizhong Zhang The University of Hong Kong Institute for Advanced Study, Tsinghua 24 October 2012 The plan 1. Introduction to Bose-Hubbard

More information

Examples of Lifshitz topological transition in interacting fermionic systems

Examples of Lifshitz topological transition in interacting fermionic systems Examples of Lifshitz topological transition in interacting fermionic systems Joseph Betouras (Loughborough U. Work in collaboration with: Sergey Slizovskiy (Loughborough, Sam Carr (Karlsruhe/Kent and Jorge

More information

Dynamical mean field approach to correlated lattice systems in and out of equilibrium

Dynamical mean field approach to correlated lattice systems in and out of equilibrium Dynamical mean field approach to correlated lattice systems in and out of equilibrium Philipp Werner University of Fribourg, Switzerland Kyoto, December 2013 Overview Dynamical mean field approximation

More information

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering DE-FG02-08ER46544 Overview

More information

Anderson Localization Looking Forward

Anderson Localization Looking Forward Anderson Localization Looking Forward Boris Altshuler Physics Department, Columbia University Collaborations: Also Igor Aleiner Denis Basko, Gora Shlyapnikov, Vincent Michal, Vladimir Kravtsov, Lecture2

More information

MOMENTUM DISTRIBUTION OF ITINERANT ELECTRONS IN THE ONE-DIMENSIONAL FALICOV KIMBALL MODEL

MOMENTUM DISTRIBUTION OF ITINERANT ELECTRONS IN THE ONE-DIMENSIONAL FALICOV KIMBALL MODEL International Journal of Modern Physics B Vol. 17, No. 27 (23) 4897 4911 c World Scientific Publishing Company MOMENTUM DISTRIBUTION OF ITINERANT EECTRONS IN THE ONE-DIMENSIONA FAICOV KIMBA MODE PAVO FARKAŠOVSKÝ

More information

Engineering of quantum Hamiltonians by high-frequency laser fields Mikhail Katsnelson

Engineering of quantum Hamiltonians by high-frequency laser fields Mikhail Katsnelson Engineering of quantum Hamiltonians by high-frequency laser fields Mikhail Katsnelson Main collaborators: Sasha Itin Clément Dutreix Zhenya Stepanov Theory of Condensed Matter group http://www.ru.nl/tcm

More information

Magnetism and Superconductivity on Depleted Lattices

Magnetism and Superconductivity on Depleted Lattices Magnetism and Superconductivity on Depleted Lattices 1. Square Lattice Hubbard Hamiltonian: AF and Mott Transition 2. Quantum Monte Carlo 3. The 1/4 depleted (Lieb) lattice and Flat Bands 4. The 1/5 depleted

More information

Statistical Mechanics

Statistical Mechanics Franz Schwabl Statistical Mechanics Translated by William Brewer Second Edition With 202 Figures, 26 Tables, and 195 Problems 4u Springer Table of Contents 1. Basic Principles 1 1.1 Introduction 1 1.2

More information

Lattice modulation experiments with fermions in optical lattices and more

Lattice modulation experiments with fermions in optical lattices and more Lattice modulation experiments with fermions in optical lattices and more Nonequilibrium dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University Rajdeep Sensarma Harvard

More information

Crossover from two- to three-dimensional critical behavior for nearly antiferromagnetic itinerant electrons

Crossover from two- to three-dimensional critical behavior for nearly antiferromagnetic itinerant electrons PHYSICAL REVIEW B VOLUME 53, NUMBER JUNE 996-I Crossover from two- to three-dimensional critical behavior for nearly antiferromagnetic itinerant electrons Anne-Marie Daré, Y. M. Vilk, and A.-M. S. Tremblay

More information

Solid State Physics. GIUSEPPE GROSSO Professor of Solid State Physics, Department of Physics, University of Pavia, and INFM

Solid State Physics. GIUSEPPE GROSSO Professor of Solid State Physics, Department of Physics, University of Pavia, and INFM Solid State Physics GIUSEPPE GROSSO Professor of Solid State Physics, Department of Physics, University of Pisa, and INFM GIUSEPPE PASTORI PARRAVICINI Professor of Solid State Physics, Department of Physics,

More information

Spin liquids in frustrated magnets

Spin liquids in frustrated magnets May 20, 2010 Contents 1 Frustration 2 3 4 Exotic excitations 5 Frustration The presence of competing forces that cannot be simultaneously satisfied. Heisenberg-Hamiltonian H = 1 J ij S i S j 2 ij The ground

More information

(Effective) Field Theory and Emergence in Condensed Matter

(Effective) Field Theory and Emergence in Condensed Matter (Effective) Field Theory and Emergence in Condensed Matter T. Senthil (MIT) Effective field theory in condensed matter physics Microscopic models (e.g, Hubbard/t-J, lattice spin Hamiltonians, etc) `Low

More information

Quantum gases in the unitary limit and...

Quantum gases in the unitary limit and... Quantum gases in the unitary limit and... Andre LeClair Cornell university Benasque July 2 2010 Outline The unitary limit of quantum gases S-matrix based approach to thermodynamics Application to the unitary

More information

Numerical diagonalization studies of quantum spin chains

Numerical diagonalization studies of quantum spin chains PY 502, Computational Physics, Fall 2016 Anders W. Sandvik, Boston University Numerical diagonalization studies of quantum spin chains Introduction to computational studies of spin chains Using basis states

More information

Spin Superfluidity and Graphene in a Strong Magnetic Field

Spin Superfluidity and Graphene in a Strong Magnetic Field Spin Superfluidity and Graphene in a Strong Magnetic Field by B. I. Halperin Nano-QT 2016 Kyiv October 11, 2016 Based on work with So Takei (CUNY), Yaroslav Tserkovnyak (UCLA), and Amir Yacoby (Harvard)

More information

The Quantum Heisenberg Ferromagnet

The Quantum Heisenberg Ferromagnet The Quantum Heisenberg Ferromagnet Soon after Schrödinger discovered the wave equation of quantum mechanics, Heisenberg and Dirac developed the first successful quantum theory of ferromagnetism W. Heisenberg,

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

Thermodynamic and transport properties of infinite U Hubbard model

Thermodynamic and transport properties of infinite U Hubbard model Journal of Physics: Conference Series Thermodynamic and transport properties of infinite U Hubbard model To cite this article: R Kishore and A K Mishra 200 J. Phys.: Conf. Ser. 200 02085 View the article

More information

Théorie de la Matière Condensée Cours & 16 /09/2013 : Transition Superfluide Isolant de Mott et Modèle de Hubbard bosonique "

Théorie de la Matière Condensée Cours & 16 /09/2013 : Transition Superfluide Isolant de Mott et Modèle de Hubbard bosonique - Master Concepts Fondamentaux de la Physique 2013-2014 Théorie de la Matière Condensée Cours 1-2 09 & 16 /09/2013 : Transition Superfluide Isolant de Mott et Modèle de Hubbard bosonique " - Antoine Georges

More information

An introduction to the dynamical mean-field theory. L. V. Pourovskii

An introduction to the dynamical mean-field theory. L. V. Pourovskii An introduction to the dynamical mean-field theory L. V. Pourovskii Nordita school on Photon-Matter interaction, Stockholm, 06.10.2016 OUTLINE The standard density-functional-theory (DFT) framework An

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

1 G. Kotliar: Lecture 2

1 G. Kotliar: Lecture 2 1 G. Kotliar: Lecture 2 In the previous lecture, following some motivation to study strongly correlated electron systems, we introduced a general methodology for constructing mean field theories. To apply

More information

Metal-Insulator Transitions at Surfaces

Metal-Insulator Transitions at Surfaces Metal-Insulator Transitions at Surfaces Michael Potthoff Lehrstuhl Festkörpertheorie, Institut für Physik, Humboldt-Universität zu Berlin, Germany Abstract. Various types of metal-insulator transitions

More information

List of published papers

List of published papers List of published papers Zsolt Gulácsi 1. Zs. Gulácsi,M.Popescu, I.Rus: ThemagneticPropertiesoftheHo 2 Fe 12 x Al x compounds, Studia Univ. Babes Bolyai Cluj, 23, 63 (1978). 2. M. Crisan, Zs. Gulácsi:

More information

Magnetism at finite temperature: molecular field, phase transitions

Magnetism at finite temperature: molecular field, phase transitions Magnetism at finite temperature: molecular field, phase transitions -The Heisenberg model in molecular field approximation: ferro, antiferromagnetism. Ordering temperature; thermodynamics - Mean field

More information

Symmetric Surfaces of Topological Superconductor

Symmetric Surfaces of Topological Superconductor Symmetric Surfaces of Topological Superconductor Sharmistha Sahoo Zhao Zhang Jeffrey Teo Outline Introduction Brief description of time reversal symmetric topological superconductor. Coupled wire model

More information

DT I JAN S S"= = 11111'11 I HtI IBlIIIt g ~II. Report: ONR Grant N J Unclassified: For General Distribution LECTF

DT I JAN S S= = 11111'11 I HtI IBlIIIt g ~II. Report: ONR Grant N J Unclassified: For General Distribution LECTF ' DT I,, Final Report: ONR Grant N00014-91-J-1143 Unclassified: For General Distribution LECTF JAN 2 8 1993 Steven R. White, UC Irvine c Summary Over the last two years, we have used several different

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Outline: with T. Senthil, Bangalore A. Vishwanath, UCB S. Sachdev, Yale L. Balents, UCSB conventional quantum critical points Landau paradigm Seeking a new paradigm -

More information

Superfluid vortex with Mott insulating core

Superfluid vortex with Mott insulating core Superfluid vortex with Mott insulating core Congjun Wu, Han-dong Chen, Jiang-ping Hu, and Shou-cheng Zhang (cond-mat/0211457) Department of Physics, Stanford University Department of Applied Physics, Stanford

More information

Density Matrix Renormalization: A Review of the Method and its Applications arxiv:cond-mat/ v1 26 Mar 2003

Density Matrix Renormalization: A Review of the Method and its Applications arxiv:cond-mat/ v1 26 Mar 2003 Density Matrix Renormalization: A Review of the Method and its Applications arxiv:cond-mat/0303557v1 26 Mar 2003 Karen Hallberg Centro Atómico Bariloche and Instituto Balseiro 8400 Bariloche, Argentina

More information

Theory of carbon-based magnetism

Theory of carbon-based magnetism Theory of carbon-based magnetism Mikhail Katsnelson Theory of Condensed Matter Institute for Molecules and Materials RU Outline sp magnetism in general: why it is interesting? Defect-induced magnetism

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 7: Magnetic excitations - Phase transitions and the Landau mean-field theory. - Heisenberg and Ising models. - Magnetic excitations. External parameter, as for

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Introduction to Density Functional Theory

Introduction to Density Functional Theory 1 Introduction to Density Functional Theory 21 February 2011; V172 P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 21 February 2011 Introduction to DFT 2 3 4 Ab initio Computational

More information

arxiv: v1 [cond-mat.str-el] 17 Jan 2011

arxiv: v1 [cond-mat.str-el] 17 Jan 2011 Computational Studies of Quantum Spin Systems arxiv:1101.3281v1 [cond-mat.str-el] 17 Jan 2011 Anders W. Sandvik Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts

More information

Metal-insulator transitions

Metal-insulator transitions Metal-insulator transitions Masatoshi Imada Institute for Solid State Physics, University of Tokyo, Roppongi, Minato-ku, Tokyo, 106, Japan Atsushi Fujimori Department of Physics, University of Tokyo, Hongo,

More information

Density Functional Theory. Martin Lüders Daresbury Laboratory

Density Functional Theory. Martin Lüders Daresbury Laboratory Density Functional Theory Martin Lüders Daresbury Laboratory Ab initio Calculations Hamiltonian: (without external fields, non-relativistic) impossible to solve exactly!! Electrons Nuclei Electron-Nuclei

More information

Understanding. Solid State Physics. Sharon Ann Holgate. CRC Press Taylor & Francis Group Boca Raton London NewYork

Understanding. Solid State Physics. Sharon Ann Holgate. CRC Press Taylor & Francis Group Boca Raton London NewYork Understanding Solid State Physics Sharon Ann Holgate (И CRC Press Taylor & Francis Group Boca Raton London NewYork CRC Press is an imprint of the Taylor & Francis Group, an informa business A TAYLORS FRANCIS

More information

The BCS-BEC Crossover and the Unitary Fermi Gas

The BCS-BEC Crossover and the Unitary Fermi Gas Lecture Notes in Physics 836 The BCS-BEC Crossover and the Unitary Fermi Gas Bearbeitet von Wilhelm Zwerger 1. Auflage 2011. Taschenbuch. xvi, 532 S. Paperback ISBN 978 3 642 21977 1 Format (B x L): 15,5

More information

SU(N) magnets: from a theoretical abstraction to reality

SU(N) magnets: from a theoretical abstraction to reality 1 SU(N) magnets: from a theoretical abstraction to reality Victor Gurarie University of Colorado, Boulder collaboration with M. Hermele, A.M. Rey Aspen, May 2009 In this talk 2 SU(N) spin models are more

More information

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, U.S.A. http://wiki.physics.udel.edu/phys824

More information

The Hubbard model for the hydrogen molecule

The Hubbard model for the hydrogen molecule INSTITUTE OF PHYSICS PUBLISHING Eur. J. Phys. 3 (00) 11 16 EUROPEAN JOURNAL OF PHYSICS PII:S0143-0807(0)351-6 The Hubbard model for the hydrogen molecule B Alvarez-Fernández and J A Blanco Dpto. de Física,

More information

LECTURE 3 WORM ALGORITHM FOR QUANTUM STATISTICAL MODELS

LECTURE 3 WORM ALGORITHM FOR QUANTUM STATISTICAL MODELS LECTURE 3 WORM ALGORITHM FOR QUANTUM STATISTICAL MODELS LECTURE 3 WORM ALGORITHM FOR QUANTUM STATISTICAL MODELS Path-integral for lattice bosons*: oriented closed loops, of course LECTURE 3 WORM ALGORITHM

More information

College of Chemistry, Peking University, Beijing, China. Fritz-Haber-Institut der MPG, Berlin, Germany

College of Chemistry, Peking University, Beijing, China. Fritz-Haber-Institut der MPG, Berlin, Germany KITP Program Excitations in Condensed Matter Localized and Itinerant States in a Unified Picture beyond Density Functional Theory Hong Jiang 1, Patrick Rinke 2 and Matthias Scheffler 2 1 College of Chemistry,

More information

Midgap states of a two-dimensional antiferromagnetic Mott-insulator: Electronic structure of meron vortices

Midgap states of a two-dimensional antiferromagnetic Mott-insulator: Electronic structure of meron vortices EUROPHYSICS LETTERS 1January 1998 Europhys. Lett., 41 (1), pp. 31-36 (1998) Midgap states of a two-dimensional antiferromagnetic Mott-insulator: Electronic structure of meron vortices S. John, M. Berciu

More information

Exact results concerning the phase diagram of the Hubbard Model

Exact results concerning the phase diagram of the Hubbard Model Steve Kivelson Apr 15, 2011 Freedman Symposium Exact results concerning the phase diagram of the Hubbard Model S.Raghu, D.J. Scalapino, Li Liu, E. Berg H. Yao, W-F. Tsai, A. Lauchli G. Karakonstantakis,

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

Inelastic light scattering and the correlated metal-insulator transition

Inelastic light scattering and the correlated metal-insulator transition Inelastic light scattering and the correlated metal-insulator transition Jim Freericks (Georgetown University) Tom Devereaux (University of Waterloo) Ralf Bulla (University of Augsburg) Funding: National

More information

Metal-Mott insulator transitions

Metal-Mott insulator transitions University of Ljubljana Faculty of Mathematics and Physics Seminar I b Metal-Mott insulator transitions Author: Alen Horvat Advisor: doc. dr. Tomaž Rejec Co-advisor: dr. Jernej Mravlje Ljubljana, September

More information

arxiv:cond-mat/ v1 26 Jan 1994

arxiv:cond-mat/ v1 26 Jan 1994 Hartree Fock and RPA studies of the Hubbard model arxiv:cond-mat/9401057v1 26 Jan 1994 F. Guinea 1, E. Louis 2 and J. A. Vergés 1 1 Instituto de Ciencia de Materiales. Consejo Superior de Investigaciones

More information

Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions

Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions Antoine Georges Laboratoire de Physique Théorique de l Ecole Normale Supérieure, 24, rue Lhomond,

More information

Numerical Study of the 1D Asymmetric Hubbard Model

Numerical Study of the 1D Asymmetric Hubbard Model Numerical Study of the 1D Asymmetric Hubbard Model Cristian Degli Esposti Boschi CNR, Unità di ricerca CNISM di Bologna and Dipartimento di Fisica, Università di Bologna Marco Casadei and Fabio Ortolani

More information

v(r i r j ) = h(r i )+ 1 N

v(r i r j ) = h(r i )+ 1 N Chapter 1 Hartree-Fock Theory 1.1 Formalism For N electrons in an external potential V ext (r), the many-electron Hamiltonian can be written as follows: N H = [ p i i=1 m +V ext(r i )]+ 1 N N v(r i r j

More information

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Frithjof B. Anders Institut für Theoretische Physik Universität Bremen Göttingen, December

More information

Metal-insulator transitions

Metal-insulator transitions Metal-insulator transitions What can we learn from electronic structure calculations? Mike Towler mdt26@phy.cam.ac.uk www.tcm.phy.cam.ac.uk/ mdt26 Theory of Condensed Matter Group Cavendish Laboratory

More information