(r) 2.0 E N 1.0

Size: px
Start display at page:

Download "(r) 2.0 E N 1.0"

Transcription

1 The Numerical Renormalization Group Ralf Bulla Institut für Theoretische Physik Universität zu Köln Q=0, S=1/2 Q=1, S=0 Q=1, S=1 E N Contents 1. introduction to basic rg concepts 2. introduction to quantum impurity physics N 3. the Numerical Renormalization Group application to the single-impurity Anderson model 4. fixed points in quantum impurity models 5. summary 624th Wilhelm und Else Heraeus-Seminar, Simulating Quantum Processes and Devices Physikzentrum Bad Honnef, September 21, 26

2 1. introduction to basic rg concepts consider a model on a one-dimensional lattice, with operators a i (i: lattice site), parameters J, h,..., and Hamiltonian H(J, h,...). i= J J J J J a 1 a 2 a 3 a 4 a 5 a... 6 h h h h h h combine two sites to give (effectively) one site with operators a i and parameters J, h,.... J J... a 1 a a h h h we assume that the Hamiltonian H of the effective model is of the same form, with renormalized parameters: H = H(J, h,...). then rescale the model to the original lattice spacing:... J J a a a 3... h h h

3 the mapping H H is a renormalization group transformation H(J, h,...) = R{H(J, h,...)} with K = (J, h,...): R( K ) = K h now consider a sequence of transformations: K K... R K K R K K this results in a trajectory in parameter space: J flow diagrams and fixed points h stable fixed point h unstable fixed point K * R( K ) = K K* J all perturbations are irrelevant J at least one relevant perturbation

4 the central issue: How does the behaviour of the system change under a scale transformation? the physics of the problem described as a flow between fixed points. A B S: starting point C identify the fixed points of the model (and their physical meaning) identify the relevant/irrelevant perturbations if possible: describe the full flow from S to C and finally: calculate physical properties

5 some technical issues: how to perform the mapping H H for a given model? Ising model:(1d) in the partition function Z, sum over every second spin but: the whole strategy depends on the details of the model spins/fermions/bosons dimension, lattice structure, etc. = for a given model, it is a priori not clear whether a successful rg scheme can be developed at all in the following: (numerical) renormalization group for quantum impurity models Wilson s NRG for the single-impurity Anderson model interpretation of fixed points and flow diagrams

6 2. introduction to quantum impurity physics the Kondo effect: magnetic impurities in metals T -dependence of resistivity ρ metal 0 T

7 2. introduction to quantum impurity physics the Kondo effect: magnetic impurities in metals T -dependence of resistivity scattering processes of conduction electrons at magnetic impurities ρ c V U V c f f f metal 0 T

8 2. introduction to quantum impurity physics the Kondo effect: magnetic impurities in metals T -dependence of resistivity scattering processes of conduction electrons at magnetic impurities ρ c V U V c T K metal f f f screening of magnetic moments due to singlet formation 0 T 1 ( ) f c f c 2

9 modelling of magnetic impurities in metals here: single-impurity Anderson model [A.C. Hewson, The Kondo Problem To Heavy Fermions, CUP 1993] H = ε f f σf σ + Uf f f f σ + ε k c kσ c kσ + V kσ kσ ( f σ c kσ + c kσ fσ ) the model describes: formation of local moments: f, f scattering of conduction electrons screening of local moments below temperature scale T K

10 3. the numerical renormalization group K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975) Kondo problem review: R. Bulla, T. Costi, and Th. Pruschke, Rev. Mod. Phys. 80, 395 (2008) (ω) conduction band ω impurity

11 0 E N V Λ 1 3 Λ 3 Λ 2 Λ 1 ε 0 ε 0 1/2 Λ E N E N+1 N ε N ε N ε N+1 after truncation (ω) 2... ω Λ 1 1 Λ (ω) 1. NRG-discretization parameter Λ > 1 (ω) 1 1 ω ε0 ε1 ε2 ε3 V t 0 t 1 t 2 1 Λ 1 Λ 2 Λ 3... Λ 3 Λ 2 Λ 1 1 ω H N : ε0 ε V t 0 t N 1 t 0 t N 1 r,s N+1 : r N s (N+1) H N+1: V t 0 t N 1 t N a) b) c) d)

12 0 E N V Λ 1 3 Λ 3 Λ 2 Λ 1 ε 0 ε 0 1/2 Λ E N E N+1 N ε N ε N ε N+1 after truncation (ω) 2... ω Λ 1 1 Λ 2. logarithmic discretization (ω) (ω) 1 1 ω ε0 ε1 ε2 ε3 V t 0 t 1 t ω H N : ε0 ε V t 0 t N 1 t 0 t N 1 r,s N+1 : r N s (N+1) H N+1: V t 0 t N 1 t N a) b) c) d)

13 0 E N V Λ 1 3 Λ 3 Λ 2 Λ 1 ε 0 ε 0 1/2 Λ E N E N+1 N ε N ε N ε N+1 after truncation (ω) 2... ω Λ 1 1 Λ 3. mapping on semi-infinite chain (ω) 1 1 ω ε ε ε ε ε0 ε1 ε2 ε3 V t 0 t 1 t 2 V t 0 t 1 t 2 H N : ε0 ε V t 0 t N 1 t 0 t N 1 r,s N+1 : r N s (N+1) H N+1: V t 0 t N 1 t N a) b) c) d)

14 0 E N V Λ 1 3 Λ 3 Λ 2 Λ 1 ε 0 1/2 Λ E N E N+1 N ε N after truncation (ω) 2... ω Λ 1 1 Λ 4. iterative diagonalization (ω) ε 0 εn 1 1 ω H : N V t 0 t N 1 ε 0 ε N ε0 ε1 ε2 ε3 V t 0 t 1 t 2 V t 0 t N 1 H N : ε0 ε V t 0 t N 1 r,s N+1 : r N s (N+1) t 0 t N 1 r,s N+1 : r N s (N+1) ε 0 ε N ε N+1 ε 0 ε N ε N+1 H N+1: V t 0 t N 1 t N a) b) c) d) H N+1 : V t 0 t N 1 t N

15 0 E N V Λ 1 3 Λ 3 Λ 2 Λ 1 ε 0 1/2 Λ E N E N+1 N ε N after truncation (ω) 2... ω Λ 1 1 Λ 5. truncation (ω) a) E N b) c) d) 1/2 Λ E N E N+1 after truncation 1 1 ω ε ε ε ε V t 0 t 1 t 2 H N : ε0 ε V t 0 t N 1 t 0 t N 1 r,s : r s (N+1) N+1 N ε 0 ε N ε N+1 H N+1: V t 0 t N 1 t N 0 a) b) c) d)

16 logarithmic discretization starting point: siam in the integral representation: H imp = σ H bath = σ H imp bath = σ ε f f σf σ + Uf f f f, dε g(ε)a εσa εσ, ) dε h(ε) (f σa εσ + a εσf σ. Λ > 1 defines a set of intervals with discretization points ± x n = Λ n, n = 0, 1, 2, Λ 1 Λ 2 Λ 3... Λ 3 Λ 2 Λ 1 1 ε

17 width of the intervals: d n = Λ n (1 Λ 1 ) within each interval: introduce a complete set of orthonormal functions { ψ np(ε) ± 1 = dn e ±iωnpε for x n+1 < ±ε < x n 0 outside this interval. expand the conduction electron operators a εσ in this basis a εσ = [ ] a npσψ np(ε) + + b npσψnp(ε), np assumption: h(ε) = h ± n, x n+1 < ±ε < x n, the hybridization term then takes the form: 1 1 dε h(ε)f σa εσ = 1 π f σ [ γ + n a n0σ + γn ] b n0σ the impurity couples only to the p = 0 components of the conduction band states! n

18 the conduction electron term transforms to: 1 (ξ + n a npσa npσ + ξ n b npσb npσ ) dε g(ε)a εσa εσ = 1 np + n,p p ( α + n (p, p )a npσa np σ α n (p, p )b npσb np σ ). For a linear dispersion, g(ε) = ε, one obtains: α ± n (p, p ) = 1 Λ 1 2πi ξ ± n = ± 1 2 Λ n (1 + Λ 1 ), Λ n p p exp [ 2πi(p p) 1 Λ 1 ].

19 structure of the Hamiltonian p b 02 σ 2 1 α (p,p ) 0 n= ε impurity couples to p=0 only discretization of the Hamiltonian: drop the terms with p 0 in the conduction band

20 now: relabel the operators a n0σ a nσ, etc., the discretized Hamiltonian takes the form: [ξ + n a nσa nσ + ξ n b nσb nσ ] H = H imp + nσ [ 1 ( + γ + n a nσ + γ ) ] n b nσ π + σ 1 π σ f σ [ n n ( γ + n a nσ + γ n b nσ) ] f σ (ω) 1 1 ω

21 mapping on a semi-infinite chain orthogonal transformation of the operators {a nσ, b nσ} to a new set of operators {c nσ} such that the discretized Hamiltonian takes the form: H = H imp + V σ [f σc 0σ + c 0σ fσ ] + )] [ε nc nσc nσ + t n (c nσc n+1σ + c n+1σ cnσ σn=0 ε ε ε ε V t 0 t 1 t 2 the mapping is equivalent to the tridiagonalization of a matrix

22 for a constant density of states ( ) ( 1 + Λ 1 1 Λ n 1) t n = 2 1 Λ 2n 1 1 Λ 2n 3 Λ n/2. In the limit of large n this reduces to t n 1 2 ( 1 + Λ 1) Λ n/2. this means: in moving along the chain we start from high energies (U, V, D) and go to arbitrary low energies high energies renormalization group low energies in real space: double the system size by adding two sites to the chain (for Λ = 2)

23 iterative diagonalization the chain Hamiltonian can be viewed as a series of Hamiltonians H N (N = 0, 1, 2,...) which approaches H in the limit N : H = lim N Λ (N 1)/2 H N, with + H N = Λ (N 1)/2 [H imp + N ε nc nσc nσ + σn=0 N 1 σn=0 ξ0 π ) (f σc 0σ + c 0σ fσ σ t n (c nσc n+1σ + c n+1σ cnσ ) ]. two successive Hamiltonians are related by H N+1 = ΛH N + Λ N/2 σ +Λ N/2 σ ε N+1 c N+1σ c N+1σ t N (c Nσ c N+1σ + c N+1σ c Nσ ),

24 starting point: H 0 = Λ 1/2 [ H imp + σ ε 0 c 0σ c 0σ + ξ0 π σ ( f σc 0σ + c 0σ fσ ) ]. renormalization group transformation: H N+1 = R (H N ) H N : ε 0 εn V t 0 t N 1 ε 0 ε N V t 0 t N 1 r,s N+1 : r N s (N+1) ε 0 ε N ε N+1 H N+1 : V t 0 t N 1 t N

25 set up an iterative scheme for the diagonalization of H N construct a basis for H N+1 r; s N+1 = r N s(n + 1). diagonalization: new eigenenergies E N+1 (w) and eigenstates w N+1 truncation: a) E N b) c) d) 1/2 Λ E N E N+1 after truncation 0

26 renormalization group flow and fixed points plot the rescaled many-particle energies E N as a function of N (odd N only) fixed points of the single-impurity Anderson model NRG flow diagram Q=0, S=1/2 Q=1, S=0 Q=1, S=1 FO: free orbital LM: local moment SC: strong coupling E N N parameters: ε f = , U = 10 3, V = 0.004, and Λ = 2.5

27 renormalization group flow and fixed points plot the rescaled many-particle energies E N as a function of N (odd N only) fixed points of the single-impurity Anderson model FO: free orbital LM: local moment SC: strong coupling E N NRG flow diagram 4.0 Q=0, S=1/2 Q=1, S=0 3.0 Q=1, S=1 2.0 FO LM SC N parameters: ε f = , U = 10 3, V = 0.004, and Λ = 2.5

28 4. fixed points in quantum impurity models quantum impurity models show a variety of different fixed points here: quantum critical point in the soft-gap Anderson model single-impurity Anderson model with hybridization function (ω) = ω r interacting fixed point (ω) r=0.5 r=1.0 r= ω non-fermi liquid fixed point in the two-channel Kondo model J J Majorana fermions

29 soft-gap Anderson model phase diagram flow diagrams 0.06 < c = c > c b 3.0 local moment quantum critical strong coupling a b c 0.04 SC symmetric case asymmetric case LM Λ N/2 E N r quantum phase transition between SC and LM phases N N N non-trivial structure of the qcp [H.-J. Lee, R. Bulla, M. Vojta J. Phys.: Condens. Matter 17, 6935 (2005)]

30 two-channel Kondo model J J H = kσ ε k c kσα c kσα + J α α S s α non-fermi liquid fixed point with residual impurity entropy S imp = 1 2 ln NRG flow diagram characteristic structure of the non-fermi liquid fixed point E N N

31 structure of the fixed point E two sectors of excitations degeneracies 9/ /8 1/ / sector I sector II the many-particle spectra of each sector can be constructed from single-particle spectra of Majorana fermions

32 single-particle spectra E sector I E sector II 5/2 5/ /2 3/ /2 1/2 0 0 [R. Bulla, A.C. Hewson, G.-M. Zhang, Phys. Rev. B 56, (1997)]

33 where does this structure come from? vector and scalar Majorana fermion chains with different boundary conditions impurity conduction electrons vector scalar from the numerical analysis of the two-channel Anderson model we obtain emergent fractionalized degrees of freedom (Majorana fermions) at the low-energy fixed point!

34 5. summary in this talk: a short introduction to the renormalization group concept quantum impurity physics the NRG method focus on: flow diagrams and fixed point I did not discuss: how to calculate physical properties all the recent developments which considerably extended the power of the NRG method; see the work of F. Anders, Th. Costi, J. von Delft, A. Mitchell, A. Weichselbaum,... relation to other renormalization group methods DMRG frg

Quantum impurities in a bosonic bath

Quantum impurities in a bosonic bath Ralf Bulla Institut für Theoretische Physik Universität zu Köln 27.11.2008 contents introduction quantum impurity systems numerical renormalization group bosonic NRG spin-boson model bosonic single-impurity

More information

Numerical renormalization group method for quantum impurity systems

Numerical renormalization group method for quantum impurity systems Numerical renormalization group method for quantum impurity systems Ralf Bulla Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Institut für Physik, Universität Augsburg, 86135 Augsburg,

More information

Entanglement spectra in the NRG

Entanglement spectra in the NRG PRB 84, 125130 (2011) Entanglement spectra in the NRG Andreas Weichselbaum Ludwig Maximilians Universität, München Arnold Sommerfeld Center (ASC) Acknowledgement Jan von Delft (LMU) Theo Costi (Jülich)

More information

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Prof. Luis Gregório Dias DFMT PG5295 Muitos Corpos 1 Electronic Transport in Quantum

More information

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS NUMERICAL METODS FOR QUANTUM IMPURITY MODELS http://www.staff.science.uu.nl/~mitch003/nrg.html March 2015 Andrew Mitchell, Utrecht University Quantum impurity problems Part 1: Quantum impurity problems

More information

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Frithjof B. Anders Institut für Theoretische Physik Universität Bremen Göttingen, December

More information

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach Frithjof B Anders Institut für theoretische Physik, Universität Bremen Concepts in Electron Correlation,

More information

Numerical renormalization group method for quantum impurity systems

Numerical renormalization group method for quantum impurity systems Numerical renormalization group method for quantum impurity systems Ralf Bulla* Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Institut für Physik, Universität Augsburg, 86135 Augsburg,

More information

Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh. Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu

Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh. Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu Introduction: The Kondo effect in metals de Haas, de Boer

More information

Serge Florens. ITKM - Karlsruhe. with: Lars Fritz and Matthias Vojta

Serge Florens. ITKM - Karlsruhe. with: Lars Fritz and Matthias Vojta 0.5 setgray0 0.5 setgray1 Universal crossovers and critical dynamics for quantum phase transitions in impurity models Serge Florens ITKM - Karlsruhe with: Lars Fritz and Matthias Vojta p. 1 Summary The

More information

Phase Diagram of the Multi-Orbital Hubbard Model

Phase Diagram of the Multi-Orbital Hubbard Model Phase Diagram of the Multi-Orbital Hubbard Model Submitted by Bence Temesi BACHELOR THESIS Faculty of Physics at Ludwig-Maximilians-Universität München Supervisor: Prof. Dr. Jan von Delft Munich, August

More information

Spatial and temporal propagation of Kondo correlations. Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund

Spatial and temporal propagation of Kondo correlations. Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund Spatial and temporal propagation of Kondo correlations Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund Collaborators Collaborators Benedikt Lechtenberg Collaborators

More information

arxiv: v2 [cond-mat.str-el] 3 Sep 2012

arxiv: v2 [cond-mat.str-el] 3 Sep 2012 Full density matrix numerical renormalization group calculation of impurity susceptibility and specific heat of the Anderson impurity model arxiv:7.63v [cond-mat.str-el] 3 Sep L. Merker, A. Weichselbaum,

More information

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 Kondo Effect in Metals and Quantum Dots Jan von Delft

More information

Solution of the Anderson impurity model via the functional renormalization group

Solution of the Anderson impurity model via the functional renormalization group Solution of the Anderson impurity model via the functional renormalization group Simon Streib, Aldo Isidori, and Peter Kopietz Institut für Theoretische Physik, Goethe-Universität Frankfurt Meeting DFG-Forschergruppe

More information

PHYSIK-DEPARTMENT TECHNISCHE UNIVERSITÄT MÜNCHEN. The Kondo exciton: non-equilibrium dynamics after a quantum quench in the Anderson impurity model

PHYSIK-DEPARTMENT TECHNISCHE UNIVERSITÄT MÜNCHEN. The Kondo exciton: non-equilibrium dynamics after a quantum quench in the Anderson impurity model PHYSIK-DEPARTMENT The Kondo exciton: non-equilibrium dynamics after a quantum quench in the Anderson impurity model Diplomarbeit von Markus Johannes Hanl TECHNISCHE UNIVERSITÄT MÜNCHEN Contents Abstract

More information

Transport Coefficients of the Anderson Model via the numerical renormalization group

Transport Coefficients of the Anderson Model via the numerical renormalization group Transport Coefficients of the Anderson Model via the numerical renormalization group T. A. Costi 1, A. C. Hewson 1 and V. Zlatić 2 1 Department of Mathematics, Imperial College, London SW7 2BZ, UK 2 Institute

More information

Effet Kondo dans les nanostructures: Morceaux choisis

Effet Kondo dans les nanostructures: Morceaux choisis Effet Kondo dans les nanostructures: Morceaux choisis Pascal SIMON Rencontre du GDR Méso: Aussois du 05 au 08 Octobre 2009 OUTLINE I. The traditional (old-fashioned?) Kondo effect II. Direct access to

More information

Quantum Impurities In and Out of Equilibrium. Natan Andrei

Quantum Impurities In and Out of Equilibrium. Natan Andrei Quantum Impurities In and Out of Equilibrium Natan Andrei HRI 1- Feb 2008 Quantum Impurity Quantum Impurity - a system with a few degrees of freedom interacting with a large (macroscopic) system. Often

More information

Anomalous Behavior in an Anderston-Holstein Model. for a Single Molecule Transistor

Anomalous Behavior in an Anderston-Holstein Model. for a Single Molecule Transistor Anomalous Behavior in an Anderston-Holstein Model for a Single Molecule Transistor Alexander Davis Dr Kevin Ingersent August 3, 2011 Abstract This lab was designed to test whether Poisson statistics can

More information

Numerical Renormalization Group for Quantum Impurities 1

Numerical Renormalization Group for Quantum Impurities 1 B 3 Numerical Renormalization Group for Quantum Impurities 1 T. A. Costi Institute for Advanced Simulation (IAS-3) Forschungszentrum Jülich GmbH Contents 1 Introduction 2 2 Quantum impurity models 3 3

More information

The bosonic Kondo effect:

The bosonic Kondo effect: The bosonic Kondo effect: probing spin liquids and multicomponent cold gases Serge Florens Institut für Theorie der Kondensierten Materie (Karlsruhe) with: Lars Fritz, ITKM (Karlsruhe) Matthias Vojta,

More information

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models Local moment approach to the multi - orbital single impurity Anderson and Hubbard models Anna Kauch Institute of Theoretical Physics Warsaw University PIPT/Les Houches Summer School on Quantum Magnetism

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Part III: Impurities in Luttinger liquids

Part III: Impurities in Luttinger liquids Functional RG for interacting fermions... Part III: Impurities in Luttinger liquids 1. Luttinger liquids 2. Impurity effects 3. Microscopic model 4. Flow equations 5. Results S. Andergassen, T. Enss (Stuttgart)

More information

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS http://www.staff.science.uu.nl/~mitch003/nrg.html March 2015 Anrew Mitchell Utrecht University Quantum impurity problems Part 1: Quantum impurity problems

More information

Numerical renormalization group and multi-orbital Kondo physics

Numerical renormalization group and multi-orbital Kondo physics Numerical renormalization group and multi-orbital Kondo physics Theo Costi Institute for Advanced Simulation (IAS-3) and Institute for Theoretical Nanoelectronics (PGI-2) Research Centre Jülich 25th September

More information

Coulomb-Blockade and Quantum Critical Points in Quantum Dots

Coulomb-Blockade and Quantum Critical Points in Quantum Dots Coulomb-Blockade and Quantum Critical Points in Quantum Dots Frithjof B Anders Institut für theoretische Physik, Universität Bremen, Germany funded by the NIC Jülich Collaborators: Theory: Experiment:

More information

Increasing localization

Increasing localization 4f Rare Earth Increasing localization 5f Actinide Localized Moment 3d Transition metal Outline: 1. Chemistry of Kondo. 2. Key Properties. 3. Tour of Heavy Fermions. 4. Anderson model: the atomic limit.

More information

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl Magnetism, Bad Metals and Superconductivity: Iron Pnictides and Beyond September 11, 2014 Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises Gertrud Zwicknagl Institut

More information

Orbital order and Hund's rule frustration in Kondo lattices

Orbital order and Hund's rule frustration in Kondo lattices Orbital order and Hund's rule frustration in Kondo lattices Ilya Vekhter Louisiana State University, USA 4/29/2015 TAMU work done with Leonid Isaev, LSU Kazushi Aoyama, Kyoto Indranil Paul, CNRS Phys.

More information

arxiv: v2 [cond-mat.str-el] 13 Apr 2018

arxiv: v2 [cond-mat.str-el] 13 Apr 2018 Molecular Kondo effect in flat-band lattices Minh-Tien Tran,,3 and Thuy Thi Nguyen Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam. Institute of

More information

Fate of the Kondo impurity in a superconducting medium

Fate of the Kondo impurity in a superconducting medium Karpacz, 2 8 March 214 Fate of the Kondo impurity in a superconducting medium T. Domański M. Curie Skłodowska University Lublin, Poland http://kft.umcs.lublin.pl/doman/lectures Motivation Physical dilemma

More information

FRG approach to interacting fermions with partial bosonization: from weak to strong coupling

FRG approach to interacting fermions with partial bosonization: from weak to strong coupling FRG approach to interacting fermions with partial bosonization: from weak to strong coupling Talk at conference ERG08, Heidelberg, June 30, 2008 Peter Kopietz, Universität Frankfurt collaborators: Lorenz

More information

5 Numerical renormalization group and multiorbital

5 Numerical renormalization group and multiorbital 5 Numerical renormalization group and multiorbital Kondo physics T. A. Costi Institute for Advanced Simulation (IAS-3) Forschungszentrum Jülich GmbH Contents 1 Introduction 2 2 Quantum impurity models

More information

A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID

A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID ABSTRACT--- I demonstrate a contradiction which arises if we assume that the Fermi surface in a heavy electron metal represents

More information

Finite-frequency Matsubara FRG for the SIAM

Finite-frequency Matsubara FRG for the SIAM Finite-frequency Matsubara FRG for the SIAM Final status report Christoph Karrasch & Volker Meden Ralf Hedden & Kurt Schönhammer Numerical RG: Robert Peters & Thomas Pruschke Experiments on superconducting

More information

Réunion du GDR MICO Dinard 6-9 décembre Frustration and competition of interactions in the Kondo lattice: beyond the Doniach s diagram

Réunion du GDR MICO Dinard 6-9 décembre Frustration and competition of interactions in the Kondo lattice: beyond the Doniach s diagram Réunion du GDR MICO Dinard 6-9 décembre 2010 1 Frustration and competition of interactions in the Kondo lattice: beyond the Doniach s diagram Claudine Lacroix, institut Néel, CNRS-UJF, Grenoble 1- The

More information

Kondo satellites in photoemission spectra of heavy fermion compounds

Kondo satellites in photoemission spectra of heavy fermion compounds Kondo satellites in photoemission spectra of heavy fermion compounds P. Wölfle, Universität Karlsruhe J. Kroha, Universität Bonn Outline Introduction: Kondo resonances in the photoemission spectra of Ce

More information

Dr. Andrew K. Mitchell

Dr. Andrew K. Mitchell Dr. Andrew K. Mitchell Contact Information Research Interests Institut für Theoretische Physik Nationality: British Universität zu Köln DOB: 16/11/1982 Zülpicher Str. 77 Tel: (+49) 221 4704208 50937 Köln

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

An efficient impurity-solver for the dynamical mean field theory algorithm

An efficient impurity-solver for the dynamical mean field theory algorithm Papers in Physics, vol. 9, art. 95 (217) www.papersinphysics.org Received: 31 March 217, Accepted: 6 June 217 Edited by: D. Domínguez Reviewed by: A. Feiguin, Northeastern University, Boston, United States.

More information

Local moment approach to multi-orbital Anderson and Hubbard models

Local moment approach to multi-orbital Anderson and Hubbard models Local moment approach to multi-orbital Anderson and Hubbard models Anna Kauch 1 and Krzysztof Byczuk,1 1 Institute of Theoretical Physics, Warsaw University, ul. Hoża 69, PL--681 Warszawa, Poland Theoretical

More information

CFT approach to multi-channel SU(N) Kondo effect

CFT approach to multi-channel SU(N) Kondo effect CFT approach to multi-channel SU(N) Kondo effect Sho Ozaki (Keio Univ.) In collaboration with Taro Kimura (Keio Univ.) Seminar @ Chiba Institute of Technology, 2017 July 8 Contents I) Introduction II)

More information

Open and Reduced Wilson Chains for Quantum Impurity Models

Open and Reduced Wilson Chains for Quantum Impurity Models Open and Reduced Wilson Chains for Quantum Impurity Models Master s Thesis Nils-Oliver Linden Chair of Theoretical Solid State Physics Faculty of Physics Ludwig-Maximilians-University Munich Supervisors:

More information

Quantum magnetism and the theory of strongly correlated electrons

Quantum magnetism and the theory of strongly correlated electrons Quantum magnetism and the theory of strongly correlated electrons Johannes Reuther Freie Universität Berlin Helmholtz Zentrum Berlin? Berlin, April 16, 2015 Johannes Reuther Quantum magnetism () Berlin,

More information

Advanced Computation for Complex Materials

Advanced Computation for Complex Materials Advanced Computation for Complex Materials Computational Progress is brainpower limited, not machine limited Algorithms Physics Major progress in algorithms Quantum Monte Carlo Density Matrix Renormalization

More information

Quantum phase transitions

Quantum phase transitions Quantum phase transitions Thomas Vojta Department of Physics, University of Missouri-Rolla Phase transitions and critical points Quantum phase transitions: How important is quantum mechanics? Quantum phase

More information

arxiv: v1 [cond-mat.str-el] 20 Mar 2008

arxiv: v1 [cond-mat.str-el] 20 Mar 2008 arxiv:83.34v1 [cond-mat.str-el] 2 Mar 28 A Numerical Renormalization Group approach to Non-Equilibrium Green s Functions for Quantum Impurity Models Frithjof B. Anders Institut für Theoretische Physik,

More information

Matrix product state calculations for one-dimensional quantum chains and quantum impurity models

Matrix product state calculations for one-dimensional quantum chains and quantum impurity models Matrix product state calculations for one-dimensional quantum chains and quantum impurity models Wolfgang Münder Dissertation an der Fakultät für Physik der Ludwig Maximilians Universität München vorgelegt

More information

Can electron pairing promote the Kondo state?

Can electron pairing promote the Kondo state? Czech Acad. Scien. in Prague, 6 X 2015 Can electron pairing promote the Kondo state? Tadeusz Domański Marie Curie-Skłodowska University, Lublin, Poland http://kft.umcs.lublin.pl/doman/lectures Issues to

More information

SSH Model. Alessandro David. November 3, 2016

SSH Model. Alessandro David. November 3, 2016 SSH Model Alessandro David November 3, 2016 Adapted from Lecture Notes at: https://arxiv.org/abs/1509.02295 and from article: Nature Physics 9, 795 (2013) Motivations SSH = Su-Schrieffer-Heeger Polyacetylene

More information

Entanglement in Many-Body Fermion Systems

Entanglement in Many-Body Fermion Systems Entanglement in Many-Body Fermion Systems Michelle Storms 1, 2 1 Department of Physics, University of California Davis, CA 95616, USA 2 Department of Physics and Astronomy, Ohio Wesleyan University, Delaware,

More information

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme SIEW-ANN CHEONG and C. L. HENLEY, LASSP, Cornell U March 25, 2004 Support: NSF grants DMR-9981744, DMR-0079992 The Big Picture GOAL Ground

More information

"From a theoretical tool to the lab"

From a theoretical tool to the lab N "From a theoretical tool to the lab" Aline Ramires Institute for Theoretical Studies - ETH - Zürich Cold Quantum Coffee ITP - Heidelberg University - 13th June 2017 ETH - Hauptgebäude The Institute for

More information

Numerical Renormalization Group studies of Correlation effects in Phase Coherent Transport through Quantum Dots. Theresa Hecht

Numerical Renormalization Group studies of Correlation effects in Phase Coherent Transport through Quantum Dots. Theresa Hecht Numerical Renormalization Group studies of Correlation effects in Phase Coherent Transport through Quantum Dots Theresa Hecht München 28 Numerical Renormalization Group studies of Correlation effects

More information

Intermediate valence in Yb Intermetallic compounds

Intermediate valence in Yb Intermetallic compounds Intermediate valence in Yb Intermetallic compounds Jon Lawrence University of California, Irvine This talk concerns rare earth intermediate valence (IV) metals, with a primary focus on certain Yb-based

More information

A theoretical study of the single-molecule transistor

A theoretical study of the single-molecule transistor A theoretical study of the single-molecule transistor B. C. Friesen Department of Physics, Oklahoma Baptist University, Shawnee, OK 74804 J. K. Ingersent Department of Physics, University of Florida, Gainesville,

More information

Physics 607 Final Exam

Physics 607 Final Exam Physics 67 Final Exam Please be well-organized, and show all significant steps clearly in all problems. You are graded on your work, so please do not just write down answers with no explanation! Do all

More information

Solutions Final exam 633

Solutions Final exam 633 Solutions Final exam 633 S.J. van Enk (Dated: June 9, 2008) (1) [25 points] You have a source that produces pairs of spin-1/2 particles. With probability p they are in the singlet state, ( )/ 2, and with

More information

Present and future prospects of the (functional) renormalization group

Present and future prospects of the (functional) renormalization group Schladming Winter School 2011: Physics at all scales: the renormalization group Present and future prospects of the (functional) renormalization group Peter Kopietz, Universität Frankfurt panel discussion

More information

Topological Kondo Insulators!

Topological Kondo Insulators! Topological Kondo Insulators! Maxim Dzero, University of Maryland Collaborators: Kai Sun, University of Maryland Victor Galitski, University of Maryland Piers Coleman, Rutgers University Main idea Kondo

More information

SIGNATURES OF SPIN-ORBIT DRIVEN ELECTRONIC TRANSPORT IN TRANSITION- METAL-OXIDE INTERFACES

SIGNATURES OF SPIN-ORBIT DRIVEN ELECTRONIC TRANSPORT IN TRANSITION- METAL-OXIDE INTERFACES SIGNATURES OF SPIN-ORBIT DRIVEN ELECTRONIC TRANSPORT IN TRANSITION- METAL-OXIDE INTERFACES Nicandro Bovenzi Bad Honnef, 19-22 September 2016 LAO/STO heterostructure: conducting interface between two insulators

More information

Curriculum Vitae. Ning-Hua Tong

Curriculum Vitae. Ning-Hua Tong Curriculum Vitae Ning-Hua Tong Department of Physics Zhongguancun street 59, 100872 Beijing,China Phone : 0086-10-62515587 Fax : 0086-10-62517887 E-mail: nhtong@ruc.edu.cn PERSONAL DATA: Gender: Male Place

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 7: Magnetic excitations - Phase transitions and the Landau mean-field theory. - Heisenberg and Ising models. - Magnetic excitations. External parameter, as for

More information

Exotic phases of the Kondo lattice, and holography

Exotic phases of the Kondo lattice, and holography Exotic phases of the Kondo lattice, and holography Stanford, July 15, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. The Anderson/Kondo lattice models Luttinger s theorem 2. Fractionalized

More information

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik Majorana single-charge transistor Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Majorana nanowires: Two-terminal device: Majorana singlecharge

More information

Quantum quenches in 2D with chain array matrix product states

Quantum quenches in 2D with chain array matrix product states Quantum quenches in 2D with chain array matrix product states Andrew J. A. James University College London Robert M. Konik Brookhaven National Laboratory arxiv:1504.00237 Outline MPS for many body systems

More information

2015 Summer School on Emergent Phenomena in Quantum Materials. Program Overview

2015 Summer School on Emergent Phenomena in Quantum Materials. Program Overview Emergent Phenomena in Quantum Materials Program Overview Each talk to be 45min with 15min Q&A. Monday 8/3 8:00AM Registration & Breakfast 9:00-9:10 Welcoming Remarks 9:10-10:10 Eugene Demler Harvard University

More information

Time Independent Perturbation Theory Contd.

Time Independent Perturbation Theory Contd. Time Independent Perturbation Theory Contd. A summary of the machinery for the Perturbation theory: H = H o + H p ; H 0 n >= E n n >; H Ψ n >= E n Ψ n > E n = E n + E n ; E n = < n H p n > + < m H p n

More information

Quantum phase transitions and the Luttinger theorem.

Quantum phase transitions and the Luttinger theorem. Quantum phase transitions and the Luttinger theorem. Leon Balents (UCSB) Matthew Fisher (UCSB) Stephen Powell (Yale) Subir Sachdev (Yale) T. Senthil (MIT) Ashvin Vishwanath (Berkeley) Matthias Vojta (Karlsruhe)

More information

Introduction to DMFT

Introduction to DMFT Introduction to DMFT Lecture 2 : DMFT formalism 1 Toulouse, May 25th 2007 O. Parcollet 1. Derivation of the DMFT equations 2. Impurity solvers. 1 Derivation of DMFT equations 2 Cavity method. Large dimension

More information

Two-channel Kondo physics in odd impurity chains

Two-channel Kondo physics in odd impurity chains Two-channel ondo physics in odd impurity chains Andrew. Mitchell, 1, David E. Logan 1 and H. R. rishnamurthy 3 1 Department of Chemistry, Physical and Theoretical Chemistry, Oxford University, South Parks

More information

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke BCS-BEC Crossover Hauptseminar: Physik der kalten Gase Robin Wanke Outline Motivation Cold fermions BCS-Theory Gap equation Feshbach resonance Pairing BEC of molecules BCS-BEC-crossover Conclusion 2 Motivation

More information

Cluster Extensions to the Dynamical Mean-Field Theory

Cluster Extensions to the Dynamical Mean-Field Theory Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods? Thomas Pruschke Institut für Theoretische Physik Universität

More information

Kondo Effect in Nanostructures

Kondo Effect in Nanostructures Kondo Effect in Nanostructures Argonne National Laboratory May 7th 7 Enrico Rossi University of Illinois at Chicago Collaborators: Dirk K. Morr Argonne National Laboratory, May 7 The Kondo-effect R Metal

More information

Stability of semi-metals : (partial) classification of semi-metals

Stability of semi-metals : (partial) classification of semi-metals : (partial) classification of semi-metals Eun-Gook Moon Department of Physics, UCSB EQPCM 2013 at ISSP, Jun 20, 2013 Collaborators Cenke Xu, UCSB Yong Baek, Kim Univ. of Toronto Leon Balents, KITP B.J.

More information

Loop optimization for tensor network renormalization

Loop optimization for tensor network renormalization Yukawa Institute for Theoretical Physics, Kyoto University, Japan June, 6 Loop optimization for tensor network renormalization Shuo Yang! Perimeter Institute for Theoretical Physics, Waterloo, Canada Zheng-Cheng

More information

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor Electron transport through Shiba states induced by magnetic adsorbates on a superconductor Michael Ruby, Nino Hatter, Benjamin Heinrich Falko Pientka, Yang Peng, Felix von Oppen, Nacho Pascual, Katharina

More information

Numerical renormalization group calculations for Kondo-type models of spin clusters on a nonmagnetic metallic substrate

Numerical renormalization group calculations for Kondo-type models of spin clusters on a nonmagnetic metallic substrate Numerical renormalization group calculations for Kondo-type models of spin clusters on a nonmagnetic metallic substrate Dissertation vorgelegt von Henning-Timm Langwald betreut durch Prof. Dr. Jürgen Schnack

More information

The density matrix renormalization group and tensor network methods

The density matrix renormalization group and tensor network methods The density matrix renormalization group and tensor network methods Outline Steve White Exploiting the low entanglement of ground states Matrix product states and DMRG 1D 2D Tensor network states Some

More information

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures Kondo Effects in Metals: magnetic impurities

More information

Quantum phase transition and conductivity of parallel quantum dots with a moderate Coulomb interaction

Quantum phase transition and conductivity of parallel quantum dots with a moderate Coulomb interaction Journal of Physics: Conference Series PAPER OPEN ACCESS Quantum phase transition and conductivity of parallel quantum dots with a moderate Coulomb interaction To cite this article: V S Protsenko and A

More information

Many-Body Localization. Geoffrey Ji

Many-Body Localization. Geoffrey Ji Many-Body Localization Geoffrey Ji Outline Aside: Quantum thermalization; ETH Single-particle (Anderson) localization Many-body localization Some phenomenology (l-bit model) Numerics & Experiments Thermalization

More information

Lecture 6. Fermion Pairing. WS2010/11: Introduction to Nuclear and Particle Physics

Lecture 6. Fermion Pairing. WS2010/11: Introduction to Nuclear and Particle Physics Lecture 6 Fermion Pairing WS2010/11: Introduction to Nuclear and Particle Physics Experimental indications for Cooper-Pairing Solid state physics: Pairing of electrons near the Fermi surface with antiparallel

More information

Introductory lecture on topological insulators. Reza Asgari

Introductory lecture on topological insulators. Reza Asgari Introductory lecture on topological insulators Reza Asgari Workshop on graphene and topological insulators, IPM. 19-20 Oct. 2011 Outlines -Introduction New phases of materials, Insulators -Theory quantum

More information

Metals without quasiparticles

Metals without quasiparticles Metals without quasiparticles A. Review of Fermi liquid theory B. A non-fermi liquid: the Ising-nematic quantum critical point C. Fermi surfaces and gauge fields Metals without quasiparticles A. Review

More information

Quantum Transport through Coulomb-Blockade Systems

Quantum Transport through Coulomb-Blockade Systems Quantum Transport through Coulomb-Blockade Systems Björn Kubala Institut für Theoretische Physik III Ruhr-Universität Bochum COQUSY6 p.1 Overview Motivation Single-electron box/transistor Coupled single-electron

More information

QUALIFYING EXAMINATION, Part 1. 2:00 PM 5:00 PM, Thursday September 3, 2009

QUALIFYING EXAMINATION, Part 1. 2:00 PM 5:00 PM, Thursday September 3, 2009 QUALIFYING EXAMINATION, Part 1 2:00 PM 5:00 PM, Thursday September 3, 2009 Attempt all parts of all four problems. Please begin your answer to each problem on a separate sheet, write your 3 digit code

More information

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta C. Buragohain K. Damle M. Vojta Subir Sachdev Phys. Rev. Lett. 78, 943 (1997). Phys. Rev. B 57, 8307 (1998). Science 286, 2479 (1999). cond-mat/9912020 Quantum Phase Transitions, Cambridge University Press

More information

1 Wilson s Numerical Renormalization Group

1 Wilson s Numerical Renormalization Group 1 Wilson s Numerical Renormalization Group Theo Costi Theoretische Physik III, Universität Augsburg, D-86135 Augsburg, Germany The idea of the numerical renormalization group (NRG) for a quantummechanical

More information

The nature of superfluidity in the cold atomic unitary Fermi gas

The nature of superfluidity in the cold atomic unitary Fermi gas The nature of superfluidity in the cold atomic unitary Fermi gas Introduction Yoram Alhassid (Yale University) Finite-temperature auxiliary-field Monte Carlo (AFMC) method The trapped unitary Fermi gas

More information

Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model

Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model Örs Legeza Reinhard M. Noack Collaborators Georg Ehlers Jeno Sólyom Gergely Barcza Steven R. White Collaborators Georg Ehlers

More information

Disordered topological insulators with time-reversal symmetry: Z 2 invariants

Disordered topological insulators with time-reversal symmetry: Z 2 invariants Keio Topo. Science (2016/11/18) Disordered topological insulators with time-reversal symmetry: Z 2 invariants Hosho Katsura Department of Physics, UTokyo Collaborators: Yutaka Akagi (UTokyo) Tohru Koma

More information

Quantum critical Kondo destruction in the Bose-Fermi Kondo model with a local transverse field

Quantum critical Kondo destruction in the Bose-Fermi Kondo model with a local transverse field PHYSICAL REVIEW B 88, 444 (3 Quantum critical Kondo destruction in the Bose-Fermi Kondo model with a local transverse field Emilian Marius Nica,,* Kevin Ingersent, Jian-Xin Zhu, 3 and Qimiao Si Department

More information

w2dynamics : operation and applications

w2dynamics : operation and applications w2dynamics : operation and applications Giorgio Sangiovanni ERC Kick-off Meeting, 2.9.2013 Hackers Nico Parragh (Uni Wü) Markus Wallerberger (TU) Patrik Gunacker (TU) Andreas Hausoel (Uni Wü) A solver

More information

7.4. Why we have two different types of materials: conductors and insulators?

7.4. Why we have two different types of materials: conductors and insulators? Phys463.nb 55 7.3.5. Folding, Reduced Brillouin zone and extended Brillouin zone for free particles without lattices In the presence of a lattice, we can also unfold the extended Brillouin zone to get

More information

3. Quantum matter without quasiparticles

3. Quantum matter without quasiparticles 1. Review of Fermi liquid theory Topological argument for the Luttinger theorem 2. Fractionalized Fermi liquid A Fermi liquid co-existing with topological order for the pseudogap metal 3. Quantum matter

More information

16 Dynamical Mean-Field Approximation and Cluster Methods for Correlated Electron Systems

16 Dynamical Mean-Field Approximation and Cluster Methods for Correlated Electron Systems 16 Dynamical Mean-Field Approximation and Cluster Methods for Correlated Electron Systems Thomas Pruschke Institute for Theoretical Physics, University of Göttingen, 37077 Göttingen, Germany pruschke@theorie.physik.uni-goettingen.de

More information

Impurity corrections to the thermodynamics in spin chains using a transfer-matrix DMRG method

Impurity corrections to the thermodynamics in spin chains using a transfer-matrix DMRG method PHYSICAL REVIEW B VOLUME 59, NUMBER 9 1 MARCH 1999-I Impurity corrections to the thermodynamics in spin chains using a transfer-matrix DMRG method Stefan Rommer and Sebastian Eggert Institute of Theoretical

More information