Fate of the Kondo impurity in a superconducting medium

Size: px
Start display at page:

Download "Fate of the Kondo impurity in a superconducting medium"

Transcription

1 Karpacz, 2 8 March 214 Fate of the Kondo impurity in a superconducting medium T. Domański M. Curie Skłodowska University Lublin, Poland

2 Motivation

3 Physical dilemma to screen or not to screen?

4 Physical dilemma to screen or not to screen? Quantum impurity (dot) coupled to a metallic bath can form the Kondo state with itinerant electrons (at T < T K )

5 Physical dilemma to screen or not to screen? Quantum impurity (dot) coupled to a superconducting reservoir

6 Physical dilemma to screen or not to screen? Quantum impurity (dot) coupled to a superconducting reservoir encounters the following obstacles : = electron states near the Fermi level are depleted, = induced pairing competes with the Kondo physics.

7 Physical dilemma to screen or not to screen? Quantum impurity (dot) coupled to a superconducting reservoir

8 Quantum impurity embedded in a superconducting host

9 Electronic spectrum

10 Electronic spectrum S ε d +U ε d µ Γ S

11 Electronic spectrum S ε d +U ε d µ Γ S Γ S (ω) = 2π k V k 2 δ(ω ε k ) hybridization coupling

12 Microscopic model Anderson-type Hamiltonian Quantum impurity (dot)

13 Microscopic model Anderson-type Hamiltonian Quantum impurity (dot) Ĥ QD = σ ǫ d ˆd σ ˆd σ + U ˆn d ˆn d

14 Microscopic model Anderson-type Hamiltonian Quantum impurity (dot) Ĥ QD = σ ǫ d ˆd σ ˆd σ + U ˆn d ˆn d coupled with a superconductor

15 Microscopic model Anderson-type Hamiltonian Quantum impurity (dot) Ĥ QD = σ ǫ d ˆd σ ˆd σ + U ˆn d ˆn d coupled with a superconductor Ĥ = σ + k,σ ǫ d ˆd σ ˆd σ + U ˆn d ˆn d + Ĥ S ( V k ˆd σĉkσ + V k ĉ ˆd ) kσ σ

16 Microscopic model Anderson-type Hamiltonian Quantum impurity (dot) Ĥ QD = σ ǫ d ˆd σ ˆd σ + U ˆn d ˆn d coupled with a superconductor Ĥ = σ + k,σ ǫ d ˆd σ ˆd σ + U ˆn d ˆn d + Ĥ S ( V k ˆd σĉkσ + V k ĉ ˆd ) kσ σ where ( ĉ k ĉ k +h.c. ) Ĥ S = k,σ (ε k µ) ĉ kσĉkσ k

17 Uncorrelated QD exactly solvable U d = case

18 Uncorrelated QD exactly solvable U d = case ρ d (ω) / Γ S ω / Γ S 2

19 Uncorrelated QD exactly solvable U d = case ρ d (ω) / Γ S ω / Γ S 2

20 Uncorrelated QD exactly solvable U d = case ρ d (ω) / Γ S ω / Γ S 2

21 Uncorrelated QD exactly solvable U d = case ρ d (ω) / Γ S ω / Γ S 2

22 Uncorrelated QD exactly solvable U d = case ρ d (ω) / Γ S ω / Γ S 2

23 Uncorrelated QD exactly solvable U d = case ρ d (ω) / Γ S ω / Γ S 2

24 Uncorrelated QD exactly solvable U d = case ρ d (ω) / Γ S ω / Γ S 2

25 Uncorrelated QD exactly solvable U d = case ε d = ρ d (ω) / Γ S ω / Γ S 2 Appearance of the in-gap resonances (Andreev bound states) J. Barański and T. Domański, J. Phys.: Condens. Matter 25, (213).

26 Uncorrelated QD exactly solvable U d = case ρ d (ω) ε d = - Γ S / Γ S ω / Γ S 2 Appearance of the in-gap resonances (Andreev bound states) J. Barański and T. Domański, J. Phys.: Condens. Matter 25, (213).

27 Uncorrelated QD exactly solvable U d = case ω / Γ S.5 + Andreev bound states / Γ S Energies of the in-gap resonances (Andreev bound states) J. Barański and T. Domański, J. Phys.: Condens. Matter 25, (213).

28 Correlated QD singlet/doublet configurations Deep in a subgap regime ω QD can described by

29 Correlated QD singlet/doublet configurations Deep in a subgap regime ω QD can described by Ĥ QD = σ ǫ d ˆd σ ˆd σ + U d ˆn d ˆn d ( d ˆd ˆd + h.c. ) where the induced on-dot pairing gap d = Γ S /2.

30 Correlated QD singlet/doublet configurations Deep in a subgap regime ω QD can described by Ĥ QD = σ ǫ d ˆd σ ˆd σ + U d ˆn d ˆn d ( d ˆd ˆd + h.c. ) where the induced on-dot pairing gap d = Γ S /2. Eigen-states of this problem:

31 Correlated QD singlet/doublet configurations Deep in a subgap regime ω QD can described by Ĥ QD = σ ǫ d ˆd σ ˆd σ + U d ˆn d ˆn d ( d ˆd ˆd + h.c. ) where the induced on-dot pairing gap d = Γ S /2. Eigen-states of this problem: and doublet (spin 1 2 ) u v singlets (spin ) v + u

32 Correlated QD singlet/doublet configurations Deep in a subgap regime ω QD can described by Ĥ QD = σ ǫ d ˆd σ ˆd σ + U d ˆn d ˆn d ( d ˆd ˆd + h.c. ) where the induced on-dot pairing gap d = Γ S /2. Eigen-states of this problem: and doublet (spin 1 2 ) u v singlets (spin ) v + u The doublet-singlet quantum phase transition occur by varrying ε d, U d or Γ S.

33 Tunneling heterojunction

34 Physical situation N-QD-S scheme To probe the subgap states one can study the electron transport through a quantum dot (QD) coupled between the normal (N) and superconducting (S) electrodes

35 Physical situation N-QD-S scheme To probe the subgap states one can study the electron transport through a quantum dot (QD) coupled between the normal (N) and superconducting (S) electrodes V = µ N - µ S N Γ N QD Γ S V G S metallic lead QD superconductor

36 Physical situation N-QD-S scheme To probe the subgap states one can study the electron transport through a quantum dot (QD) coupled between the normal (N) and superconducting (S) electrodes V = µ N - µ S N Γ N QD Γ S V G S metallic lead QD superconductor This setup can be thought of as a particular version of the SET.

37 Electronic spectrum

38 Electronic spectrum Components of N-QD-S heterostructure have the following spectra

39 Electronic spectrum Components of N-QD-S heterostructure have the following spectra N QD ε d +U S µ N ε d µ S Γ N Γ S

40 Electronic spectrum Components of N-QD-S heterostructure have the following spectra N QD ε d +U S µ N ε d µ S Γ N Γ S External bias ev = µ N µ S induces the current(s) through QD.

41 Theoretical background: list of the applied techniques

42 Theoretical background: list of the applied techniques EOM R. Fazio and R. Raimondi (1998)

43 Theoretical background: list of the applied techniques EOM R. Fazio and R. Raimondi (1998) slave bosons P. Schwab and R. Raimondi (1999)

44 Theoretical background: list of the applied techniques EOM R. Fazio and R. Raimondi (1998) slave bosons P. Schwab and R. Raimondi (1999) NCA A.A. Clerk, V. Ambegaokar, and S. Hershfield (2)

45 Theoretical background: list of the applied techniques EOM R. Fazio and R. Raimondi (1998) slave bosons P. Schwab and R. Raimondi (1999) NCA A.A. Clerk, V. Ambegaokar, and S. Hershfield (2) IPT J.C. Cuevas, A. Levy Yeyati, and A. Martin-Rodero (21)

46 Theoretical background: list of the applied techniques EOM R. Fazio and R. Raimondi (1998) slave bosons P. Schwab and R. Raimondi (1999) NCA A.A. Clerk, V. Ambegaokar, and S. Hershfield (2) IPT J.C. Cuevas, A. Levy Yeyati, and A. Martin-Rodero (21) constrained sb M. Krawiec and K.I. Wysokiński (24)

47 Theoretical background: list of the applied techniques EOM R. Fazio and R. Raimondi (1998) slave bosons P. Schwab and R. Raimondi (1999) NCA A.A. Clerk, V. Ambegaokar, and S. Hershfield (2) IPT J.C. Cuevas, A. Levy Yeyati, and A. Martin-Rodero (21) constrained sb M. Krawiec and K.I. Wysokiński (24) NRG Y. Tanaka, N. Kawakami, and A. Oguri, (27)

48 Theoretical background: list of the applied techniques EOM R. Fazio and R. Raimondi (1998) slave bosons P. Schwab and R. Raimondi (1999) NCA A.A. Clerk, V. Ambegaokar, and S. Hershfield (2) IPT J.C. Cuevas, A. Levy Yeyati, and A. Martin-Rodero (21) constrained sb M. Krawiec and K.I. Wysokiński (24) NRG Y. Tanaka, N. Kawakami, and A. Oguri, (27) EOM revised T. Domański et al, (27)

49 Theoretical background: list of the applied techniques EOM R. Fazio and R. Raimondi (1998) slave bosons P. Schwab and R. Raimondi (1999) NCA A.A. Clerk, V. Ambegaokar, and S. Hershfield (2) IPT J.C. Cuevas, A. Levy Yeyati, and A. Martin-Rodero (21) constrained sb M. Krawiec and K.I. Wysokiński (24) NRG Y. Tanaka, N. Kawakami, and A. Oguri, (27) EOM revised T. Domański et al, (27) NRG J. Bauer, A. Oguri, and A.C. Hewson, (27)

50 Theoretical background: list of the applied techniques EOM R. Fazio and R. Raimondi (1998) slave bosons P. Schwab and R. Raimondi (1999) NCA A.A. Clerk, V. Ambegaokar, and S. Hershfield (2) IPT J.C. Cuevas, A. Levy Yeyati, and A. Martin-Rodero (21) constrained sb M. Krawiec and K.I. Wysokiński (24) NRG Y. Tanaka, N. Kawakami, and A. Oguri, (27) EOM revised T. Domański et al, (27) NRG J. Bauer, A. Oguri, and A.C. Hewson, (27) f-rg C. Karrasch, A. Oguri, and V. Meden, (28)

51 Theoretical background: list of the applied techniques EOM R. Fazio and R. Raimondi (1998) slave bosons P. Schwab and R. Raimondi (1999) NCA A.A. Clerk, V. Ambegaokar, and S. Hershfield (2) IPT J.C. Cuevas, A. Levy Yeyati, and A. Martin-Rodero (21) constrained sb M. Krawiec and K.I. Wysokiński (24) NRG Y. Tanaka, N. Kawakami, and A. Oguri, (27) EOM revised T. Domański et al, (27) NRG J. Bauer, A. Oguri, and A.C. Hewson, (27) f-rg C. Karrasch, A. Oguri, and V. Meden, (28) QMC A. Koga (213)

52 Theoretical background: list of the applied techniques EOM R. Fazio and R. Raimondi (1998) slave bosons P. Schwab and R. Raimondi (1999) NCA A.A. Clerk, V. Ambegaokar, and S. Hershfield (2) IPT J.C. Cuevas, A. Levy Yeyati, and A. Martin-Rodero (21) constrained sb M. Krawiec and K.I. Wysokiński (24) NRG Y. Tanaka, N. Kawakami, and A. Oguri, (27) EOM revised T. Domański et al, (27) NRG J. Bauer, A. Oguri, and A.C. Hewson, (27) f-rg C. Karrasch, A. Oguri, and V. Meden, (28) QMC A. Koga (213) CUT M. Zapalska, T. Domański (214)

53 Theoretical background: list of the applied techniques EOM R. Fazio and R. Raimondi (1998) slave bosons P. Schwab and R. Raimondi (1999) NCA A.A. Clerk, V. Ambegaokar, and S. Hershfield (2) IPT J.C. Cuevas, A. Levy Yeyati, and A. Martin-Rodero (21) constrained sb M. Krawiec and K.I. Wysokiński (24) NRG Y. Tanaka, N. Kawakami, and A. Oguri, (27) EOM revised T. Domański et al, (27) NRG J. Bauer, A. Oguri, and A.C. Hewson, (27) f-rg C. Karrasch, A. Oguri, and V. Meden, (28) QMC A. Koga (213) CUT M. Zapalska, T. Domański (214) other...

54 Relevant problems : issue # 1

55 Relevant problems : issue # 1 Coupling of QD with the metallic electrode:

56 Relevant problems : issue # 1 Coupling of QD with the metallic electrode: broadens the QD levels (by Γ N ) can induce the Kondo resonance (below T K ).

57 Relevant problems : issue # 2

58 Relevant problems : issue # 2 Both hybridizations Γ N and Γ S effectively lead to 75 Kondo peak ρ d (ω) [ 1/Γ S ] 5 25 Γ S ΓN ε d ε d + U ω / Γ S

59 Relevant problems : issue # 2 Both hybridizations Γ N and Γ S effectively lead to 75 Kondo peak ρ d (ω) [ 1/Γ S ] 5 25 Γ S ΓN ε d ε d + U ω / Γ S / interplay between the Kondo effect and superconductivity /

60 Correlated QD influence of ΓS /ΓN

61 Correlated QD influence of Γ S /Γ N Spectral function obtained below T K for U =1Γ N

62 Correlated QD influence of Γ S /Γ N Spectral function obtained below T K for U =1Γ N ρ d (ω) [ 1 / Γ N ] T = 1-3 Γ N ε d = -1.5 Γ N ω / Γ N Γ S /Γ N =

63 Correlated QD influence of Γ S /Γ N Spectral function obtained below T K for U =1Γ N ρ d (ω) [ 1 / Γ N ] T = 1-3 Γ N ε d = -1.5 Γ N ω / Γ N Γ S /Γ N = 1

64 Correlated QD influence of Γ S /Γ N Spectral function obtained below T K for U =1Γ N ρ d (ω) [ 1 / Γ N ] T = 1-3 Γ N ε d = -1.5 Γ N ω / Γ N Γ S /Γ N = 2

65 Correlated QD influence of Γ S /Γ N Spectral function obtained below T K for U =1Γ N ρ d (ω) [ 1 / Γ N ] T = 1-3 Γ N ε d = -1.5 Γ N ω / Γ N Γ S /Γ N = 3

66 Correlated QD influence of Γ S /Γ N Spectral function obtained below T K for U =1Γ N ρ d (ω) [ 1 / Γ N ] T = 1-3 Γ N ε d = -1.5 Γ N ω / Γ N Γ S /Γ N = 4

67 Correlated QD influence of Γ S /Γ N Spectral function obtained below T K for U =1Γ N ρ d (ω) [ 1 / Γ N ] T = 1-3 Γ N ε d = -1.5 Γ N ω / Γ N Γ S /Γ N = 5

68 Correlated QD influence of Γ S /Γ N Spectral function obtained below T K for U =1Γ N ρ d (ω) [ 1 / Γ N ] T = 1-3 Γ N ε d = -1.5 Γ N ω / Γ N Γ S /Γ N = 6

69 Correlated QD influence of Γ S /Γ N Spectral function obtained below T K for U =1Γ N ρ d (ω) [ 1 / Γ N ] T = 1-3 Γ N ε d = -1.5 Γ N ω / Γ N Γ S /Γ N = 8

70 Correlated QD influence of Γ S /Γ N Spectral function obtained below T K for U =1Γ N ρ d (ω) [ 1 / Γ N ] T = 1-3 Γ N ε d = -1.5 Γ N ω / Γ N Superconductivity suppresses the Kondo resonance

71 Correlated QD influence of Γ S /Γ N Andreev conductance G A (V ) for: U = 1Γ N

72 Correlated QD influence of Γ S /Γ N Andreev conductance G A (V ) for: U = 1Γ N T. Domański and A. Donabidowicz, PRB 78, 7315 (28).

73 Correlated QD influence of Γ S /Γ N Andreev conductance G A (V ) for: U = 1Γ N G A (V) [ 4e 2 /h ] Γ S /Γ N ev / Γ 5 N 1 8 T. Domański and A. Donabidowicz, PRB 78, 7315 (28).

74 Correlated QD influence of Γ S /Γ N Andreev conductance G A (V ) for: U = 1Γ N Γ S / Γ N = 1 G A (V) [ 4e 2 /h ] Γ S /Γ N ev / Γ 5 N 1 8 T. Domański and A. Donabidowicz, PRB 78, 7315 (28).

75 Correlated QD influence of Γ S /Γ N Andreev conductance G A (V ) for: U = 1Γ N Γ S / Γ N = 2 G A (V) [ 4e 2 /h ] Γ S /Γ N ev / Γ 5 N 1 8 T. Domański and A. Donabidowicz, PRB 78, 7315 (28).

76 Correlated QD influence of Γ S /Γ N Andreev conductance G A (V ) for: U = 1Γ N Γ S / Γ N = 3 G A (V) [ 4e 2 /h ] Γ S /Γ N ev / Γ 5 N 1 8 T. Domański and A. Donabidowicz, PRB 78, 7315 (28).

77 Correlated QD influence of Γ S /Γ N Andreev conductance G A (V ) for: U = 1Γ N Γ S / Γ N = 4 G A (V) [ 4e 2 /h ] Γ S /Γ N ev / Γ 5 N 1 8 T. Domański and A. Donabidowicz, PRB 78, 7315 (28).

78 Correlated QD influence of Γ S /Γ N Andreev conductance G A (V ) for: U = 1Γ N Γ S / Γ N = 5 G A (V) [ 4e 2 /h ] Γ S /Γ N ev / Γ 5 N 1 8 T. Domański and A. Donabidowicz, PRB 78, 7315 (28).

79 Correlated QD influence of Γ S /Γ N Andreev conductance G A (V ) for: U = 1Γ N Γ S / Γ N = 6 G A (V) [ 4e 2 /h ] Γ S /Γ N ev / Γ 5 N 1 8 T. Domański and A. Donabidowicz, PRB 78, 7315 (28).

80 Correlated QD influence of Γ S /Γ N Andreev conductance G A (V ) for: U = 1Γ N Γ S / Γ N = 7 G A (V) [ 4e 2 /h ] Γ S /Γ N ev / Γ 5 N 1 8 T. Domański and A. Donabidowicz, PRB 78, 7315 (28).

81 Correlated QD influence of Γ S /Γ N Andreev conductance G A (V ) for: U = 1Γ N Γ S / Γ N = 8 G A (V) [ 4e 2 /h ] Γ S /Γ N ev / Γ 5 N 1 8 T. Domański and A. Donabidowicz, PRB 78, 7315 (28).

82 Correlated QD influence of Γ S /Γ N Andreev conductance G A (V ) for: U = 1Γ N Γ S / Γ N = 8 G A (V) [ 4e 2 /h ] Γ S /Γ N ev / Γ 5 N 1 8 T. Domański and A. Donabidowicz, PRB 78, 7315 (28). Kondo resonance slightly enhances the zero-bias Andreev conductance, especially for Γ S Γ N!

83 Interplay with the Kondo effect

84 Interplay with the Kondo effect R.S. Deacon et al, Phys. Rev. B 81, 12138(R) (21).

85 Interplay with the Kondo effect The zero-bias conductance peak is consistent with Andreev transport enhanced by the Kondo singlet state R.S. Deacon et al, Phys. Rev. B 81, 12138(R) (21).

86 Interplay with the Kondo effect The zero-bias conductance peak is consistent with Andreev transport enhanced by the Kondo singlet state We note that the feature exhibits excellent qualitative agreement with a recent theoretical treatment by Domanski et al R.S. Deacon et al, Phys. Rev. B 81, 12138(R) (21).

87 Outline of the procedure

88 Outline of the procedure For studying an interplay between the induced pairing and electron correlations we use the continuous unitary transformation

89 Outline of the procedure For studying an interplay between the induced pairing and electron correlations we use the continuous unitary transformation Ĥ Ĥ(l 1 ) Ĥ(l 2 )... Ĥ( )

90 Outline of the procedure For studying an interplay between the induced pairing and electron correlations we use the continuous unitary transformation Ĥ Ĥ(l 1 ) Ĥ(l 2 )... Ĥ( ) gradually eliminating the hybridization term.

91 Outline of the procedure For studying an interplay between the induced pairing and electron correlations we use the continuous unitary transformation Ĥ Ĥ(l 1 ) Ĥ(l 2 )... Ĥ( ) gradually eliminating the hybridization term. F. Wegner (1994); K.G. Wilson (1994) - inventors of this RG-like scheme

92 Outline of the procedure For studying an interplay between the induced pairing and electron correlations we use the continuous unitary transformation Ĥ Ĥ(l 1 ) Ĥ(l 2 )... Ĥ( ) gradually eliminating the hybridization term. F. Wegner (1994); K.G. Wilson (1994) - inventors of this RG-like scheme Hamiltonian at l = Ĥ QD + Ĥ N + ˆV QD N

93 Outline of the procedure For studying an interplay between the induced pairing and electron correlations we use the continuous unitary transformation Ĥ Ĥ(l 1 ) Ĥ(l 2 )... Ĥ( ) gradually eliminating the hybridization term. F. Wegner (1994); K.G. Wilson (1994) - inventors of this RG-like scheme Hamiltonian at < l < Ĥ QD (l)+ĥ N (l)+ ˆV QD N (l)

94 Outline of the procedure For studying an interplay between the induced pairing and electron correlations we use the continuous unitary transformation Ĥ Ĥ(l 1 ) Ĥ(l 2 )... Ĥ( ) gradually eliminating the hybridization term. F. Wegner (1994); K.G. Wilson (1994) - inventors of this RG-like scheme Hamiltonian at l = Ĥ QD ( ) + Ĥ N ( ) +

95 Outline of the procedure For studying an interplay between the induced pairing and electron correlations we use the continuous unitary transformation Ĥ Ĥ(l 1 ) Ĥ(l 2 )... Ĥ( ) gradually eliminating the hybridization term. F. Wegner (1994); K.G. Wilson (1994) - inventors of this RG-like scheme Hamiltonian at l = Ĥ QD ( ) + Ĥ N ( ) + M. Zapalska and T. Domański, (214) submitted.

96 Generalized Schrieffer-Wolff transformation

97 Generalized Schrieffer-Wolff transformation Transformation of the Hamiltonian is characterized by the set of flow equations

98 Generalized Schrieffer-Wolff transformation Transformation of the Hamiltonian is characterized by the set of flow equations ε d (l) l U d (l) l d (l) l V k (l) l J kp (l) l = 2 = 4 = 2 k k k η k (l)v kn (l), (1) η (2) k (l)v kn(l), (2) η (1) k (l)v kn(l), (3) [ ] = η k (l) ε d (l) ξ kn + U d (l) ˆn d,σ + η (1) k (l) d(l) + η (2) k (l) [ε d(l) ξ kn + U d (l)] ˆn d,σ p η kp (l)v pn (l) (4) = η (2) k (l)v pn(l) + η (2) p (l)v kn (l) (ξ kn ξ pn ) 2 J kp (l). (5)

99 Generalized Schrieffer-Wolff transformation Transformation of the Hamiltonian is characterized by the set of flow equations ε d (l) l U d (l) l d (l) l V k (l) l J kp (l) l = 2 = 4 = 2 k k k η k (l)v kn (l), (1) η (2) k (l)v kn(l), (2) η (1) k (l)v kn(l), (3) [ ] = η k (l) ε d (l) ξ kn + U d (l) ˆn d,σ + η (1) k (l) d(l) + η (2) k (l) [ε d(l) ξ kn + U d (l)] ˆn d,σ p η kp (l)v pn (l) (4) = η (2) k (l)v pn(l) + η (2) p (l)v kn (l) (ξ kn ξ pn ) 2 J kp (l). (5) with the initial condition J kp () = for the induced spin-exchange interaction H exch (l) = k,p J kp(l)ŝ d Ŝ kp.

100 Kondo temperature vs induced pairing

101 Kondo temperature vs induced pairing spin exchange coupling J kf p F / D d / D The effective exchange coupling J kf p F (l ) = 4U d V kf 2 U 2 d +(2 d) 2.

102 Kondo temperature vs induced pairing 1 T K / T K ( d =) Kondo temperature d / D Kondo temp. from the Bethe ansatz T K = 2D πk B exp { φ[2ρ(ε F )J kf p F ( )]}.

103 Kondo temperature vs induced pairing E - E+ ρ d (ω) d / D ω / D.2.3 The low-energy part of the spectral function obtained from the EOM technique.

104 Summary

105 Summary QD coupled between N and S electrodes:

106 Summary QD coupled between N and S electrodes: absorbs the superconducting order / proximity effect /

107 Summary QD coupled between N and S electrodes: absorbs the superconducting order / proximity effect / is sensitive to correlations / Kondo & charging effects /

108 Summary QD coupled between N and S electrodes: absorbs the superconducting order / proximity effect / is sensitive to correlations / Kondo & charging effects / Interplay between the proximity and correlation effects shows up in a subgap Andreev transport by:

109 Summary QD coupled between N and S electrodes: absorbs the superconducting order / proximity effect / is sensitive to correlations / Kondo & charging effects / Interplay between the proximity and correlation effects shows up in a subgap Andreev transport by: particle-hole splitting / when ε d µ S /

110 Summary QD coupled between N and S electrodes: absorbs the superconducting order / proximity effect / is sensitive to correlations / Kondo & charging effects / Interplay between the proximity and correlation effects shows up in a subgap Andreev transport by: particle-hole splitting / when ε d µ S / zero-bias enhancement / below T K /

111 Summary QD coupled between N and S electrodes: absorbs the superconducting order / proximity effect / is sensitive to correlations / Kondo & charging effects / Interplay between the proximity and correlation effects shows up in a subgap Andreev transport by: particle-hole splitting / when ε d µ S / zero-bias enhancement / below T K /

Can electron pairing promote the Kondo state?

Can electron pairing promote the Kondo state? Czech Acad. Scien. in Prague, 6 X 2015 Can electron pairing promote the Kondo state? Tadeusz Domański Marie Curie-Skłodowska University, Lublin, Poland http://kft.umcs.lublin.pl/doman/lectures Issues to

More information

Majorana-type quasiparticles in nanoscopic systems

Majorana-type quasiparticles in nanoscopic systems Kraków, 20 IV 2015 Majorana-type quasiparticles in nanoscopic systems Tadeusz Domański / UMCS, Lublin / Kraków, 20 IV 2015 Majorana-type quasiparticles in nanoscopic systems Tadeusz Domański / UMCS, Lublin

More information

Procesy Andreeva w silnie skorelowanych układach fermionowych

Procesy Andreeva w silnie skorelowanych układach fermionowych Kraków, 4 marca 2013 r. Procesy Andreeva w silnie skorelowanych układach fermionowych T. Domański Uniwersytet Marii Curie Skłodowskiej w Lublinie http://kft.umcs.lublin.pl/doman/lectures Outline Outline

More information

Nonlocal transport properties due to Andreev scattering

Nonlocal transport properties due to Andreev scattering Charles Univ. in Prague, 5 X 2015 Nonlocal transport properties due to Andreev scattering Tadeusz Domański Marie Curie-Skłodowska University, Lublin, Poland http://kft.umcs.lublin.pl/doman/lectures Outline

More information

Electron transport through a strongly interacting quantum dot coupled to a normal metal and BCS superconductor

Electron transport through a strongly interacting quantum dot coupled to a normal metal and BCS superconductor INSTITUTE OFPHYSICS PUBLISHING Supercond. Sci. Technol. 7 (4 3 SUPERCONDUCTORSCIENCE AND TECHNOLOGY PII: S953-48(45979-5 Electron transport through a strongly interacting quantum dot coupled to a normal

More information

Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot

Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot A. Kumar, M. Gaim, D. Steininger, A. Levy Yeyati, A. Martín-Rodero, A. K. Hüttel, and C. Strunk Phys. Rev. B 89,

More information

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Prof. Luis Gregório Dias DFMT PG5295 Muitos Corpos 1 Electronic Transport in Quantum

More information

Finite-frequency Matsubara FRG for the SIAM

Finite-frequency Matsubara FRG for the SIAM Finite-frequency Matsubara FRG for the SIAM Final status report Christoph Karrasch & Volker Meden Ralf Hedden & Kurt Schönhammer Numerical RG: Robert Peters & Thomas Pruschke Experiments on superconducting

More information

Quantum Impurities In and Out of Equilibrium. Natan Andrei

Quantum Impurities In and Out of Equilibrium. Natan Andrei Quantum Impurities In and Out of Equilibrium Natan Andrei HRI 1- Feb 2008 Quantum Impurity Quantum Impurity - a system with a few degrees of freedom interacting with a large (macroscopic) system. Often

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 2 Feb 1998

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 2 Feb 1998 Transport through an Interacting Quantum Dot Coupled to Two Superconducting Leads arxiv:cond-mat/9828v [cond-mat.mes-hall] 2 Feb 998 Kicheon Kang Department of Physics, Korea University, Seoul 36-7, Korea

More information

Solution of the Anderson impurity model via the functional renormalization group

Solution of the Anderson impurity model via the functional renormalization group Solution of the Anderson impurity model via the functional renormalization group Simon Streib, Aldo Isidori, and Peter Kopietz Institut für Theoretische Physik, Goethe-Universität Frankfurt Meeting DFG-Forschergruppe

More information

arxiv: v1 [cond-mat.mes-hall] 2 Oct 2013

arxiv: v1 [cond-mat.mes-hall] 2 Oct 2013 Interplay between direct and crossed Andreev reflections in hybrid nano-structures Grzegorz Micha lek and Bogdan R. Bu lka Institute of Molecular Physics, Polish Academy of Science, ul. M. Smoluchowskiego

More information

Part III: Impurities in Luttinger liquids

Part III: Impurities in Luttinger liquids Functional RG for interacting fermions... Part III: Impurities in Luttinger liquids 1. Luttinger liquids 2. Impurity effects 3. Microscopic model 4. Flow equations 5. Results S. Andergassen, T. Enss (Stuttgart)

More information

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models Local moment approach to the multi - orbital single impurity Anderson and Hubbard models Anna Kauch Institute of Theoretical Physics Warsaw University PIPT/Les Houches Summer School on Quantum Magnetism

More information

(r) 2.0 E N 1.0

(r) 2.0 E N 1.0 The Numerical Renormalization Group Ralf Bulla Institut für Theoretische Physik Universität zu Köln 4.0 3.0 Q=0, S=1/2 Q=1, S=0 Q=1, S=1 E N 2.0 1.0 Contents 1. introduction to basic rg concepts 2. introduction

More information

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 Kondo Effect in Metals and Quantum Dots Jan von Delft

More information

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik Majorana single-charge transistor Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Majorana nanowires: Two-terminal device: Majorana singlecharge

More information

Realizacja fermionów Majorany. Tadeusz Domański

Realizacja fermionów Majorany. Tadeusz Domański NCBJ Wa-wa, 23 XI 2016 r. Realizacja fermionów Majorany w heterostrukturach nadprzewodnikowych Tadeusz Domański Uniwersytet M. Curie-Skłodowskiej NCBJ Wa-wa, 23 XI 2016 r. Realizacja fermionów Majorany

More information

Writing Spin in a Quantum Dot with Ferromagnetic and. Superconducting Electrodes arxiv:cond-mat/ v1 [cond-mat.mes-hall] 14 Jan 2003

Writing Spin in a Quantum Dot with Ferromagnetic and. Superconducting Electrodes arxiv:cond-mat/ v1 [cond-mat.mes-hall] 14 Jan 2003 Writing Spin in a Quantum Dot with Ferromagnetic and Superconducting Electrodes arxiv:cond-mat/0303v [cond-mat.mes-hall] 4 Jan 003 Yu Zhu, Qing-feng Sun, and Tsung-han Lin, State Key Laboratory for Mesoscopic

More information

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Nadya Mason Travis Dirk, Yung-Fu Chen, Cesar Chialvo Taylor Hughes, Siddhartha Lal, Bruno Uchoa Paul Goldbart University

More information

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor Electron transport through Shiba states induced by magnetic adsorbates on a superconductor Michael Ruby, Nino Hatter, Benjamin Heinrich Falko Pientka, Yang Peng, Felix von Oppen, Nacho Pascual, Katharina

More information

Kondo satellites in photoemission spectra of heavy fermion compounds

Kondo satellites in photoemission spectra of heavy fermion compounds Kondo satellites in photoemission spectra of heavy fermion compounds P. Wölfle, Universität Karlsruhe J. Kroha, Universität Bonn Outline Introduction: Kondo resonances in the photoemission spectra of Ce

More information

SPIN-POLARIZED CURRENT IN A MAGNETIC TUNNEL JUNCTION: MESOSCOPIC DIODE BASED ON A QUANTUM DOT

SPIN-POLARIZED CURRENT IN A MAGNETIC TUNNEL JUNCTION: MESOSCOPIC DIODE BASED ON A QUANTUM DOT 66 Rev.Adv.Mater.Sci. 14(2007) 66-70 W. Rudziński SPIN-POLARIZED CURRENT IN A MAGNETIC TUNNEL JUNCTION: MESOSCOPIC DIODE BASED ON A QUANTUM DOT W. Rudziński Department of Physics, Adam Mickiewicz University,

More information

Quantum impurities in a bosonic bath

Quantum impurities in a bosonic bath Ralf Bulla Institut für Theoretische Physik Universität zu Köln 27.11.2008 contents introduction quantum impurity systems numerical renormalization group bosonic NRG spin-boson model bosonic single-impurity

More information

Signatures of the precursor superconductivity above T c

Signatures of the precursor superconductivity above T c Dresden, 18 April 2007 Signatures of the precursor superconductivity above T c T. DOMANSKI M. Curie-Skłodowska University, 20-031 Lublin, Poland http://kft.umcs.lublin.pl/doman Outline Outline Introduction

More information

Superconducting Proximity Effect in Quantum-Dot Systems

Superconducting Proximity Effect in Quantum-Dot Systems p. 1 Superconducting Proximity Effect in Quantum-Dot Systems Jürgen König Institut für Theoretische Physik Universität Duisburg-Essen Transport through S-N and S-I-S Interfaces BCS superconductivity: pair

More information

Effet Kondo dans les nanostructures: Morceaux choisis

Effet Kondo dans les nanostructures: Morceaux choisis Effet Kondo dans les nanostructures: Morceaux choisis Pascal SIMON Rencontre du GDR Méso: Aussois du 05 au 08 Octobre 2009 OUTLINE I. The traditional (old-fashioned?) Kondo effect II. Direct access to

More information

Transport through interacting Majorana devices. Reinhold Egger Institut für Theoretische Physik

Transport through interacting Majorana devices. Reinhold Egger Institut für Theoretische Physik Transport through interacting Maorana devices Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Maorana nanowires: Two-terminal device: Maorana

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Carbon Nanotube Quantum Dot with Superconducting Leads. Kondo Effect and Andreev Reflection in CNT s

Carbon Nanotube Quantum Dot with Superconducting Leads. Kondo Effect and Andreev Reflection in CNT s Carbon Nanotube Quantum Dot with Superconducting Leads Kondo Effect and Andreev Reflection in CNT s Motivation Motivation S NT S Orsay group: reported enhanced I C R N product S A. Yu. Kasumov et al. N

More information

Manipulation of Majorana fermions via single charge control

Manipulation of Majorana fermions via single charge control Manipulation of Majorana fermions via single charge control Karsten Flensberg Niels Bohr Institute University of Copenhagen Superconducting hybrids: from conventional to exotic, Villard de Lans, France,

More information

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 21 Jun 2006

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 21 Jun 2006 arxiv:cond-mat/0504604v2 [cond-mat.mes-hall] 21 Jun 2006 Residual Kondo effect in quantum dot coupled to half-metallic ferromagnets Mariusz Krawiec Institute of Physics and Nanotechnology Center, M. Curie-Sk

More information

Splitting of a Cooper pair by a pair of Majorana bound states

Splitting of a Cooper pair by a pair of Majorana bound states Chapter 7 Splitting of a Cooper pair by a pair of Majorana bound states 7.1 Introduction Majorana bound states are coherent superpositions of electron and hole excitations of zero energy, trapped in the

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Spin-resolved Andreev levels and parity crossings in hybrid superconductor-semiconductor nanostructures Eduardo J. H. Lee, Xiaocheng Jiang, Manuel Houzet, Ramón Aguado, Charles M. Lieber, and Silvano De

More information

arxiv: v1 [cond-mat.mes-hall] 14 Sep 2014

arxiv: v1 [cond-mat.mes-hall] 14 Sep 2014 Spin-polarized Andreev transport influenced by Coulomb repulsion through two quantum dot system Piotr Trocha 1, and Józef Barnaś 1,2 1 Department of Physics, Adam Mickiewicz University, 61-614 Poznań,

More information

arxiv: v2 [cond-mat.mes-hall] 17 Jun 2016

arxiv: v2 [cond-mat.mes-hall] 17 Jun 2016 Fingerprints of Majorana fermions in spin-resolved subgap spectroscopy arxiv:64.533v2 [cond-mat.mes-hall] 7 Jun 26 Razvan Chirla, and Cătălin Paşcu Moca,2 Department of Physics, University of Oradea, 487,

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 11 Dec 1997

arxiv:cond-mat/ v1 [cond-mat.supr-con] 11 Dec 1997 Anderson Model in a Superconductor: Φ-Derivable Theory arxiv:cond-mat912118v1 [cond-matsupr-con] 11 Dec 199 Ari T Alastalo (a), Robert J Joynt (b) and Martti M Salomaa (a,b) (a) Materials Physics Laboratory,

More information

Real Space Bogoliubov de Gennes Equations Study of the Boson Fermion Model

Real Space Bogoliubov de Gennes Equations Study of the Boson Fermion Model Vol. 114 2008 ACTA PHYSICA POLONICA A No. 1 Proceedings of the XIII National School of Superconductivity, L adek Zdrój 2007 Real Space Bogoliubov de Gennes Equations Study of the Boson Fermion Model J.

More information

Three-terminal quantum-dot thermoelectrics

Three-terminal quantum-dot thermoelectrics Three-terminal quantum-dot thermoelectrics Björn Sothmann Université de Genève Collaborators: R. Sánchez, A. N. Jordan, M. Büttiker 5.11.2013 Outline Introduction Quantum dots and Coulomb blockade Quantum

More information

8.512 Theory of Solids II Spring 2009

8.512 Theory of Solids II Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 8.5 Theory of Solids II Spring 009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Lecture : The Kondo Problem:

More information

arxiv: v1 [cond-mat.mes-hall] 14 Dec 2007

arxiv: v1 [cond-mat.mes-hall] 14 Dec 2007 arxiv:0712.2414v1 [cond-mat.mes-hall] 14 Dec 2007 Compensation of the Kondo effect in quantum dots coupled to ferromagnetic leads within equation of motion approach Mariusz Krawiec Institute of Physics

More information

Introduction to DMFT

Introduction to DMFT Introduction to DMFT Lecture 2 : DMFT formalism 1 Toulouse, May 25th 2007 O. Parcollet 1. Derivation of the DMFT equations 2. Impurity solvers. 1 Derivation of DMFT equations 2 Cavity method. Large dimension

More information

Transport Coefficients of the Anderson Model via the numerical renormalization group

Transport Coefficients of the Anderson Model via the numerical renormalization group Transport Coefficients of the Anderson Model via the numerical renormalization group T. A. Costi 1, A. C. Hewson 1 and V. Zlatić 2 1 Department of Mathematics, Imperial College, London SW7 2BZ, UK 2 Institute

More information

Replicas of the Fano resonances induced by phonons in a subgap Andreev tunneling

Replicas of the Fano resonances induced by phonons in a subgap Andreev tunneling Replicas of the Fano resonances induced by phonons in a subgap Andreev tunneling J. Barański and T. Domański Institute of Physics, M. Curie Sk lodowska University, 2-3 Lublin, Poland (Dated: January 7,

More information

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures Kondo Effects in Metals: magnetic impurities

More information

Orbital order and Hund's rule frustration in Kondo lattices

Orbital order and Hund's rule frustration in Kondo lattices Orbital order and Hund's rule frustration in Kondo lattices Ilya Vekhter Louisiana State University, USA 4/29/2015 TAMU work done with Leonid Isaev, LSU Kazushi Aoyama, Kyoto Indranil Paul, CNRS Phys.

More information

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl Magnetism, Bad Metals and Superconductivity: Iron Pnictides and Beyond September 11, 2014 Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises Gertrud Zwicknagl Institut

More information

Josephson effect in carbon nanotubes with spin-orbit coupling.

Josephson effect in carbon nanotubes with spin-orbit coupling. Josephson effect in carbon nanotubes with spin-orbit coupling. Rosa López Interdisciplinary Institute for Cross-Disciplinary Physics and Complex Systems University of Balearic Islands IFISC (CSIC-UIB),

More information

Iterative real-time path integral approach to nonequilibrium quantum transport

Iterative real-time path integral approach to nonequilibrium quantum transport Iterative real-time path integral approach to nonequilibrium quantum transport Michael Thorwart Institut für Theoretische Physik Heinrich-Heine-Universität Düsseldorf funded by the SPP 1243 Quantum Transport

More information

Supplementary information for Probing atomic structure and Majorana wavefunctions in mono-atomic Fe chains on superconducting Pb surface

Supplementary information for Probing atomic structure and Majorana wavefunctions in mono-atomic Fe chains on superconducting Pb surface Supplementary information for Probing atomic structure and Majorana wavefunctions in mono-atomic Fe chains on superconducting Pb surface Rémy Pawlak 1, Marcin Kisiel 1, Jelena Klinovaja 1, Tobias Meier

More information

Single Electron Tunneling Examples

Single Electron Tunneling Examples Single Electron Tunneling Examples Danny Porath 2002 (Schönenberger et. al.) It has long been an axiom of mine that the little things are infinitely the most important Sir Arthur Conan Doyle Books and

More information

ANDREEV BOUND STATES IN SUPERCONDUCTOR-QUANTUM DOT CHAINS. by Zhaoen Su Bachelor of Science, Lanzhou University, 2011

ANDREEV BOUND STATES IN SUPERCONDUCTOR-QUANTUM DOT CHAINS. by Zhaoen Su Bachelor of Science, Lanzhou University, 2011 ANDREEV BOUND STATES IN SUPERCONDUCTOR-QUANTUM DOT CHAINS by Zhaoen Su Bachelor of Science, Lanzhou University, 211 Submitted to the Graduate Faculty of the Kenneth P. Dietrich School of Arts and Sciences

More information

Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots

Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots A. Kundu 1 1 Heinrich-Heine Universität Düsseldorf, Germany The Capri Spring School on Transport in Nanostructures

More information

A theoretical study of the single-molecule transistor

A theoretical study of the single-molecule transistor A theoretical study of the single-molecule transistor B. C. Friesen Department of Physics, Oklahoma Baptist University, Shawnee, OK 74804 J. K. Ingersent Department of Physics, University of Florida, Gainesville,

More information

Scanning tunneling microscopy of monoatomic gold chains on vicinal Si(335) surface: experimental and theoretical study

Scanning tunneling microscopy of monoatomic gold chains on vicinal Si(335) surface: experimental and theoretical study phys. stat. sol. (b) 4, No., 33 336 (005) / DOI 10.100/pssb.00460056 Scanning tunneling microscopy of monoatomic gold chains on vicinal Si(335) surface: experimental and theoretical study M. Krawiec *,

More information

Present and future prospects of the (functional) renormalization group

Present and future prospects of the (functional) renormalization group Schladming Winter School 2011: Physics at all scales: the renormalization group Present and future prospects of the (functional) renormalization group Peter Kopietz, Universität Frankfurt panel discussion

More information

arxiv: v1 [cond-mat.mes-hall] 13 Sep 2016

arxiv: v1 [cond-mat.mes-hall] 13 Sep 2016 Bi-stability in single impurity Anderson model with strong electron-phonon interaction(polaron regime) arxiv:1609.03749v1 [cond-mat.mes-hall] 13 Sep 2016 Amir Eskandari-asl a, a Department of physics,

More information

Carbon Nanotubes part 2 CNT s s as a toy model for basic science. Niels Bohr Institute School 2005

Carbon Nanotubes part 2 CNT s s as a toy model for basic science. Niels Bohr Institute School 2005 Carbon Nanotubes part 2 CNT s s as a toy model for basic science Niels Bohr Institute School 2005 1 Carbon Nanotubes as a model system 2 Christian Schönenberger University of Basel B. Babic W. Belzig M.

More information

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory Renormalization of microscopic Hamiltonians Renormalization Group without Field Theory Alberto Parola Università dell Insubria (Como - Italy) Renormalization Group Universality Only dimensionality and

More information

Topological Kondo Insulators!

Topological Kondo Insulators! Topological Kondo Insulators! Maxim Dzero, University of Maryland Collaborators: Kai Sun, University of Maryland Victor Galitski, University of Maryland Piers Coleman, Rutgers University Main idea Kondo

More information

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach Frithjof B Anders Institut für theoretische Physik, Universität Bremen Concepts in Electron Correlation,

More information

Numerical methods out of equilibrium -Threelectures-

Numerical methods out of equilibrium -Threelectures- Numerical methods out of equilibrium -Threelectures- Michael Thorwart Freiburg Institute for Advanced Studies (FRIAS) Albert-Ludwigs-Universität Freiburg funded by the Excellence Initiative of the German

More information

The effect of magnetic impurities on metals the Kondo problem has been studied for nearly half a century [], and attracts continued interest till now

The effect of magnetic impurities on metals the Kondo problem has been studied for nearly half a century [], and attracts continued interest till now Available at: http://www.ictp.trieste.it/~pub off IC/2/38 United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR

More information

Interactions and transport in Majorana wires. Alfredo Levy Yeyati

Interactions and transport in Majorana wires. Alfredo Levy Yeyati Interactions and transport in Majorana wires Alfredo Levy Yeyati SPICE Workshop: Spin dynamics in the Dirac systems, Mainz 6-9 June 2017 Content Low energy transport theory in Majorana wire junctions,

More information

Spontaneous currents in ferromagnet-superconductor heterostructures

Spontaneous currents in ferromagnet-superconductor heterostructures Institute of Physics and Nanotechnology Center UMCS Spontaneous currents in ferromagnet-superconductor heterostructures Mariusz Krawiec Collaboration: B. L. Györffy & J. F. Annett Bristol Kazimierz 2005

More information

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS NUMERICAL METODS FOR QUANTUM IMPURITY MODELS http://www.staff.science.uu.nl/~mitch003/nrg.html March 2015 Andrew Mitchell, Utrecht University Quantum impurity problems Part 1: Quantum impurity problems

More information

Exotic Kondo effects in nanostructures

Exotic Kondo effects in nanostructures Exotic Kondo effects in nanostructures S. Florens Ne el Institute - CNRS Grenoble e d 1.0 NRG S=1 A(E,B,T=0) A(E,B,T=0) 1.0 NRG S=1/2 0.8 0.6 0.8 0.6 0.4 0.4-1.0 0.0 E/kBTK 1.0-1.0 0.0 E/kBTK 1.0 Some

More information

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES N.M.Plakida Joint Institute for Nuclear Research, Dubna, Russia CORPES, Dresden, 26.05.2005 Publications and collaborators: N.M. Plakida,

More information

Numerical Renormalization Group studies of Correlation effects in Phase Coherent Transport through Quantum Dots. Theresa Hecht

Numerical Renormalization Group studies of Correlation effects in Phase Coherent Transport through Quantum Dots. Theresa Hecht Numerical Renormalization Group studies of Correlation effects in Phase Coherent Transport through Quantum Dots Theresa Hecht München 28 Numerical Renormalization Group studies of Correlation effects

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 16 Mar 2007

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 16 Mar 2007 Thermoelectric phenomena in a quantum dot asymmetrically coupled to external leads arxiv:cond-mat/0703447v1 [cond-mat.mes-hall] 16 Mar 2007 M. Krawiec and K. I. Wysokiński Institute of Physics and Nanotechnology

More information

Many-body resonances in double quantum-dot systems

Many-body resonances in double quantum-dot systems Many-body resonances in double quantum-dot systems Akinori Nishino Kanagawa University Collaborators Naomichi Hatano IIS, University of Tokyo Takashi Imamura RCAST, University of Tokyo Gonzalo Ordonez

More information

Cotunneling and Kondo effect in quantum dots. Part I/II

Cotunneling and Kondo effect in quantum dots. Part I/II & NSC Cotunneling and Kondo effect in quantum dots Part I/II Jens Paaske The Niels Bohr Institute & Nano-Science Center Bad Honnef, September, 2010 Dias 1 Lecture plan Part I 1. Basics of Coulomb blockade

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Nov 2001

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Nov 2001 Published in: Single-Electron Tunneling and Mesoscopic Devices, edited by H. Koch and H. Lübbig (Springer, Berlin, 1992): pp. 175 179. arxiv:cond-mat/0111505v1 [cond-mat.mes-hall] 27 Nov 2001 Resonant

More information

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Frithjof B. Anders Institut für Theoretische Physik Universität Bremen Göttingen, December

More information

Heavy Fermion systems

Heavy Fermion systems Heavy Fermion systems Satellite structures in core-level and valence-band spectra Kondo peak Kondo insulator Band structure and Fermi surface d-electron heavy Fermion and Kondo insulators Heavy Fermion

More information

Spin-Polarized Current in Coulomb Blockade and Kondo Regime

Spin-Polarized Current in Coulomb Blockade and Kondo Regime Vol. 112 (2007) ACTA PHYSICA POLONICA A No. 2 Proceedings of the XXXVI International School of Semiconducting Compounds, Jaszowiec 2007 Spin-Polarized Current in Coulomb Blockade and Kondo Regime P. Ogrodnik

More information

Serge Florens. ITKM - Karlsruhe. with: Lars Fritz and Matthias Vojta

Serge Florens. ITKM - Karlsruhe. with: Lars Fritz and Matthias Vojta 0.5 setgray0 0.5 setgray1 Universal crossovers and critical dynamics for quantum phase transitions in impurity models Serge Florens ITKM - Karlsruhe with: Lars Fritz and Matthias Vojta p. 1 Summary The

More information

PHYSIK-DEPARTMENT TECHNISCHE UNIVERSITÄT MÜNCHEN. The Kondo exciton: non-equilibrium dynamics after a quantum quench in the Anderson impurity model

PHYSIK-DEPARTMENT TECHNISCHE UNIVERSITÄT MÜNCHEN. The Kondo exciton: non-equilibrium dynamics after a quantum quench in the Anderson impurity model PHYSIK-DEPARTMENT The Kondo exciton: non-equilibrium dynamics after a quantum quench in the Anderson impurity model Diplomarbeit von Markus Johannes Hanl TECHNISCHE UNIVERSITÄT MÜNCHEN Contents Abstract

More information

Numerical Renormalization Group studies of Quantum Impurity Models in the Strong Coupling Limit. Michael Sindel

Numerical Renormalization Group studies of Quantum Impurity Models in the Strong Coupling Limit. Michael Sindel Numerical Renormalization Group studies of Quantum Impurity Models in the Strong Coupling Limit Michael Sindel München 2004 Numerical Renormalization Group studies of Quantum Impurity Models in the Strong

More information

Matrix product state calculations for one-dimensional quantum chains and quantum impurity models

Matrix product state calculations for one-dimensional quantum chains and quantum impurity models Matrix product state calculations for one-dimensional quantum chains and quantum impurity models Wolfgang Münder Dissertation an der Fakultät für Physik der Ludwig Maximilians Universität München vorgelegt

More information

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS http://www.staff.science.uu.nl/~mitch003/nrg.html March 2015 Anrew Mitchell Utrecht University Quantum impurity problems Part 1: Quantum impurity problems

More information

Inelastic light scattering and the correlated metal-insulator transition

Inelastic light scattering and the correlated metal-insulator transition Inelastic light scattering and the correlated metal-insulator transition Jim Freericks (Georgetown University) Tom Devereaux (University of Waterloo) Ralf Bulla (University of Augsburg) Funding: National

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Electrical control of single hole spins in nanowire quantum dots V. S. Pribiag, S. Nadj-Perge, S. M. Frolov, J. W. G. van den Berg, I. van Weperen., S. R. Plissard, E. P. A. M. Bakkers and L. P. Kouwenhoven

More information

Electronic correlations in models and materials. Jan Kuneš

Electronic correlations in models and materials. Jan Kuneš Electronic correlations in models and materials Jan Kuneš Outline Dynamical-mean field theory Implementation (impurity problem) Single-band Hubbard model MnO under pressure moment collapse metal-insulator

More information

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat, and R. Deblock Laboratoire de Physique des Solides Orsay (France) Theory : P. Simon (LPS),

More information

Coulomb-Blockade and Quantum Critical Points in Quantum Dots

Coulomb-Blockade and Quantum Critical Points in Quantum Dots Coulomb-Blockade and Quantum Critical Points in Quantum Dots Frithjof B Anders Institut für theoretische Physik, Universität Bremen, Germany funded by the NIC Jülich Collaborators: Theory: Experiment:

More information

Intermediate valence in Yb Intermetallic compounds

Intermediate valence in Yb Intermetallic compounds Intermediate valence in Yb Intermetallic compounds Jon Lawrence University of California, Irvine This talk concerns rare earth intermediate valence (IV) metals, with a primary focus on certain Yb-based

More information

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Krzysztof Byczuk Institute of Physics, Augsburg University Institute of Theoretical Physics, Warsaw University October

More information

Multichannel Kondo dynamics and Surface Code from Majorana bound states

Multichannel Kondo dynamics and Surface Code from Majorana bound states Multichannel Kondo dynamics and Surface Code from Maorana bound states Reinhold Egger Institut für Theoretische Physik Dresden workshop 14-18 Sept. 2015 Overview Brief introduction to Maorana bound states

More information

Quantum Oscillations in underdoped cuprate superconductors

Quantum Oscillations in underdoped cuprate superconductors Quantum Oscillations in underdoped cuprate superconductors Aabhaas Vineet Mallik Journal Club Talk 4 April, 2013 Aabhaas Vineet Mallik (Journal Club Talk) Quantum Oscillations in underdoped cuprate superconductors

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 28 Jul 2000

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 28 Jul 2000 Europhysics Letters PREPRINT arxiv:cond-mat/0007469v [cond-mat.mes-hall] 28 Jul 2000 Orbital and spin Kondo effects in a double quantum dot Teemu Pohjola,2, Herbert Schoeller 3 and Gerd Schön 2,3 Materials

More information

Quantum phase transition and conductivity of parallel quantum dots with a moderate Coulomb interaction

Quantum phase transition and conductivity of parallel quantum dots with a moderate Coulomb interaction Journal of Physics: Conference Series PAPER OPEN ACCESS Quantum phase transition and conductivity of parallel quantum dots with a moderate Coulomb interaction To cite this article: V S Protsenko and A

More information

Increasing localization

Increasing localization 4f Rare Earth Increasing localization 5f Actinide Localized Moment 3d Transition metal Outline: 1. Chemistry of Kondo. 2. Key Properties. 3. Tour of Heavy Fermions. 4. Anderson model: the atomic limit.

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Mar 2006

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Mar 2006 Non-Fermi-liquid phases in the two-band Hubbard model: Finite-temperature exact diagonalization study of Hund s rule coupling A. Liebsch and T. A. Costi Institut für Festkörperforschung, Forschungszentrum

More information

Anomalous Behavior in an Anderston-Holstein Model. for a Single Molecule Transistor

Anomalous Behavior in an Anderston-Holstein Model. for a Single Molecule Transistor Anomalous Behavior in an Anderston-Holstein Model for a Single Molecule Transistor Alexander Davis Dr Kevin Ingersent August 3, 2011 Abstract This lab was designed to test whether Poisson statistics can

More information

Numerical Renormalization Group for Quantum Impurities 1

Numerical Renormalization Group for Quantum Impurities 1 B 3 Numerical Renormalization Group for Quantum Impurities 1 T. A. Costi Institute for Advanced Simulation (IAS-3) Forschungszentrum Jülich GmbH Contents 1 Introduction 2 2 Quantum impurity models 3 3

More information

Mn in GaAs: from a single impurity to ferromagnetic layers

Mn in GaAs: from a single impurity to ferromagnetic layers Mn in GaAs: from a single impurity to ferromagnetic layers Paul Koenraad Department of Applied Physics Eindhoven University of Technology Materials D e v i c e s S y s t e m s COBRA Inter-University Research

More information

Kondo Effect in Nanostructures

Kondo Effect in Nanostructures Kondo Effect in Nanostructures Argonne National Laboratory May 7th 7 Enrico Rossi University of Illinois at Chicago Collaborators: Dirk K. Morr Argonne National Laboratory, May 7 The Kondo-effect R Metal

More information

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Luis Dias UT/ORNL Lectures: Condensed Matter II 1 Electronic Transport

More information

Majorana Fermions in Superconducting Chains

Majorana Fermions in Superconducting Chains 16 th December 2015 Majorana Fermions in Superconducting Chains Matilda Peruzzo Fermions (I) Quantum many-body theory: Fermions Bosons Fermions (II) Properties Pauli exclusion principle Fermions (II)

More information