Serge Florens. ITKM - Karlsruhe. with: Lars Fritz and Matthias Vojta

Size: px
Start display at page:

Download "Serge Florens. ITKM - Karlsruhe. with: Lars Fritz and Matthias Vojta"

Transcription

1 0.5 setgray0 0.5 setgray1 Universal crossovers and critical dynamics for quantum phase transitions in impurity models Serge Florens ITKM - Karlsruhe with: Lars Fritz and Matthias Vojta p. 1

2 Summary The Kondo problem in a pseudogap RG strategy and CS equations Computation of universal crossovers Critical dynamics Influence of p-h asymmetry Spin S = 1 case: NFL and QPT p. 2

3 Where it started Diluted magnetic impurities in a metal: Resistance T K D µ J > 0 S Temperature D Temperature dependent impurity scattering p. 3

4 Kondo model: basics Model: Spin 1/2 with AF coupling to a Fermi sea H = kσ ɛ k c kσ c kσ + J S σσ c σ(0) τ σσ 2 c σ (0) Physics: smooth crossover between two simple limits Limit J = 0: local moment S(T) = log 2 and χ imp (T) = 1/(4T) Limit J = : singlet state (screening) S(T) = 0 and χ imp (T) finite p. 4

5 RG for Kondo problem Perturbation theory (j 0 = J/D): badly convergent! χ imp (T) = 1 [1 j 0 j 20 4T log DT ] +... = 1 4T [ 1 j 0 + j0 2 log λ }{{} j2 0 log λd T j 0 (λ) Scaling form: χ imp (T,j 0,D) = χ imp (T,j 0 (λ),λd) Iterate RG relation: β(j 0 ) j 0(λ) log λ = j2 0 (λ) 1 j 0 (λ) = log(λd/t K ) with T K = D exp( 1/j 0 ) ] p. 5

6 RG flow Trick: now we can choose λ = T/D χ imp (T) = 1 4T [1 j 0(T/D)] = 1 4T [ 1 ] 1 log(t/t K ) 0.2 Tχ imp (T) 0.1 NRG 2nd order Pert. RG j 0 (T/D) LM 0 1e-20 1e-10 1 T/D SC 0 T K J p. 6

7 Universality RG Tχ imp (T,j 0,D) = Φ(T/T K ) 0.2 Tχ imp (T,J,D) 0.1 S(T,J,D) e-30 1e-20 1e-10 1 T/D 0 1e-30 1e-20 1e-10 T/D 0.2 Tχ imp (T,J,D) 0.1 Collapse at T D 0 1e e+10 T/T K p. 7

8 Another view on RG Universality take limit D Procedure: set χ imp (T = µ) finite at given scale µ χ imp (T = µ) = 1 [ 1 j 0 j0 2 log D ] 4µ µ χ imp (T) = 1 4T [ 1 j R j 2 R log µ T ] 1 4µ [1 j R] Scaling form: χ imp (T,j R,µ) = χ imp (T,j R (λ),λµ) RG: j R (λ) = log 1 (λµ/t K ) and T K = µ exp( 1/j R ) Origin: Choice of µ arbitrary dχ imp /dµ = 0 [ µ µ + β(j R) ] χ imp (T,j R,µ) = 0 (CS eq.) j R p. 8

9 Pseudogap Kondo model Gapless host DOS: ρ(ɛ) ɛ r ɛ k µ Metals: r = 0 k y k x ɛ k µ Semiconductors: r = 1 k y k x E k = [(ɛ k µ) k ]1/2 HTc SC: r = 1 k y k = (cos k x cos k y ) k x p. 9

10 RG for pseudogap Kondo Weak coupling RG: easy guess as [J] = r β(j R ) = j R(λ) log λ = rj R(λ) j 2 R (λ) Proper method: Set j 0 = (D/µ) r Z j j R Consider interaction vertex Γ R (ω) = Z j j R [1 ω/µ r j R /r +...] Impose Γ R (ω = µ) j R = Z j j R [1 j R /r] Absorb poles with Z j = 1 + j R /r But one has dj 0 /dµ = 0 β(j R ) = rj R j R β(j R ) dlog Z j /dj R p. 10

11 Quantum Phase Transition Analyze flow equation: vary µ λµ Solve j R(λ) log λ = rj R(λ) j 2 R (λ) with j R(1) = j R j R (λ) = rj R λ r r j R + j R λ r = r 1 + Sgn(r j R ) λµ/t r with T µ r j R j R 1/r T, ω T 0 j c = r j j R < r j R (λ) λ r for λµ < T (flow to LM) j R = r j R (λ) = r for all λ (fixed point) j R > r j R (λ) diverges at T (flow to SC) p. 11

12 Impurity susceptibility At lowest order: χ imp = 1/(4T)[1 j R (T/µ)] Quantum critical point: fractional spin χ imp (T,j R = j c ) 1 4T (1 r) S(S + 1) 3T Universal crossover: from CR to LM (j < j c ) 0.25 NRG Pert. RG 0.25 NRG Pert. RG Tχ imp (T) Tχ imp (T) r = 0.1 j < jc 1e-40 1e-20 1 T/D r = 0.3 j < jc e-40 1e-20 1 T/D p. 12

13 Local susceptibility The direct computation is still divergent: Tχ 0 loc (T) = 1 j2 R T/µ 2r (1/2r + Cst.) Needs extra renormalization factor: χ R loc (T) = Z χχ 0 loc (T) with Z χ = 1 + j 2 R /2r Tχ R loc (T) 1 j2 R log(t/µ) Scaling analysis: χ 0 loc (T) is independent of µ [ µ µ + β(j R) ] + η χ (j R ) χ R j loc(t,j R,µ) = 0 R with η χ (j R ) = β(j R ) logz χ j R = j 2 R p. 13

14 Solution: χ R loc (T,j R,µ) = exp Choose λ = T/µ: Tχ R loc (T,j R,µ) Interpretation: ( jr (λ) j R [ r j R + η χ β ) T µ r ] r χ R loc (T,j R(λ),λµ) j R < r: Tχ R loc (r j R) r (order parameter) j R = r: χ R loc (T) 1/T 1 r2 (anomalous behavior) limtχ T 0 imp (T) 1/4 C imp limtχ loc (T) T 0 Two vastly different r/8 0 Jc J susceptibilities p. 14

15 Zero temperature dynamics Strategy: Compute in renormalized perturbation theory Choose RG scale λ to control the expansion Apply CS equation Example: for r = 0.1 and j < j c ωχ (ω,t = 0) loc NRG Pert. RG ω r T (ω,t = 0) 4 NRG Pert. RG ω r ω r e-40 1e e-06 ω 2r 2 1e-40 1e-20 1 ω/d 0 1e-40 1e-20 1 ω/d p. 15

16 Finite temperature dynamics Problem: The ɛ-expansion and the analytic continuation do NOT commute for ω T (Sachdev) Let s try: we apply CS in this regime to the T-matrix T ω r (ω) (not too bad) [(T ) r ± (T + ω ) r ] 2 T 1 (ω) r 0 [log((t + ω )/T K )] (BAD!) 2 1 T (ω,t) 0.01 T = 0 T = T T = 100T e e+08 ω/t Still a challenge for the NRG at ω T p. 16

17 On the other side of the street Question: Can we capture the crossover to SC? LM CR SC 0 j c = r j Answer: not with Kondo, but Anderson is good! H = kσ ɛ kc kσ c kσ +Un d n d + σ V [d σc σ (0)+H.c.] V SC CR LM 0 U Scaling analysis: [U] = 2r 1 ɛ Perform ɛ-expansion near r = 1/2!! p. 17

18 RG for pseudogap Anderson Flow equation: β(u) = ɛu 3(π 2ln4) π 2 u 3 Critical point at u c ɛ Poor convergence Example: for r = 0.47 and j > j c 1e e+05 Tχ(T) imp0.08 χ (ω,t = 0) loc e-40 1e-20 1 T/D 1e-05 1e-40 1e-20 1 ω/d p. 18

19 With particle-hole asymmetry NRG result: for < r < 1 E 0 ASC LM ACR CR SC 0 J c J Effective theory: U = Anderson model H = ɛ k c kσ c kσ +ɛ f kσ σ f σf σ +V [ f σ b c kσ +h.c.] kσ RG: V marginal at r = 1 expansion in ɛ = 1 r p. 19

20 Interpretation: Kondo and Anderson: same universality class Origin of the asymmetric QCP: competition doublet (spinon) vs. singlet (holon) states { S ACR 8 ln2 imp = ln 3 9 (1 r) Tχ ACR imp = ln (1 r) S imp CR ACR C imp = T χ imp CR ACR r r Open problem: transition between CR and SCR p. 20

21 Interesting generalization Spin S=1 Kondo model ACR persists with S imp = ln 5 at r = 1 Effective theory: crossing triplet-doublet H = kσ +V k ɛ k c kσ c kσ + ɛ f m f m f m [ f 0 b c k + f 0 b c k ] + h.c. + 2V [ f 1 b c k + f 1 b c k ] + h.c. Reproduces Kondo for ɛ f Crucial to introduce the good degrees of freedom!! p. 21

22 Check Results: properties of the ACR critical point { S ACR 24 ln2 imp = ln 5 25 (1 r) Tχ ACR imp = ln (1 r) CR ACR CR ACR S imp Tχ imp NFL NFL r r p. 22

23 S = 1 PG Kondo at p-h sym Strong coupling limit: effective spin S eff = 1/2 effective FERRO coupling j eff = 1/j < 0 S S eff effective bath exponent r eff = r < 0 c σ (0,iω)c σ (0,ω) 1 = iω t 2 01 c σ (1,iω)c σ (1,ω) p. 23

24 Extra NFL fixed point RG: usual Kondo scaling equation j eff lnλ = r effj eff j 2 eff j eff = r eff = r NFL LM 0 j eff j = 1/r Critical properties: LM CR NFL SC 0 j c = r j = 1/r j ACR CR CR ACR S imp Tχ imp NFL NFL S NFL imp = ln 2 + 2r ln 2 TχNFL r r imp = 1/4 + 3r/8 p. 24

25 Summary S = 1 PG Kondo E 0 ASC 0 < r < r LM SCR NFL SSC 0 J c J J E 0 ASC r < r E 0c ACR LM SCR NFL SSC J c 0 J J c J p. 25

26 Conclusion Quantum phase transition in pseudogap Kondo: well under control! Computation of universal crossover possible Quantitative comparison between NRG and perturbative RG Low ω dynamics not fully controlled apply functional RG? Transition between critical points not understood p. 26

The bosonic Kondo effect:

The bosonic Kondo effect: The bosonic Kondo effect: probing spin liquids and multicomponent cold gases Serge Florens Institut für Theorie der Kondensierten Materie (Karlsruhe) with: Lars Fritz, ITKM (Karlsruhe) Matthias Vojta,

More information

(r) 2.0 E N 1.0

(r) 2.0 E N 1.0 The Numerical Renormalization Group Ralf Bulla Institut für Theoretische Physik Universität zu Köln 4.0 3.0 Q=0, S=1/2 Q=1, S=0 Q=1, S=1 E N 2.0 1.0 Contents 1. introduction to basic rg concepts 2. introduction

More information

Coulomb-Blockade and Quantum Critical Points in Quantum Dots

Coulomb-Blockade and Quantum Critical Points in Quantum Dots Coulomb-Blockade and Quantum Critical Points in Quantum Dots Frithjof B Anders Institut für theoretische Physik, Universität Bremen, Germany funded by the NIC Jülich Collaborators: Theory: Experiment:

More information

Solution of the Anderson impurity model via the functional renormalization group

Solution of the Anderson impurity model via the functional renormalization group Solution of the Anderson impurity model via the functional renormalization group Simon Streib, Aldo Isidori, and Peter Kopietz Institut für Theoretische Physik, Goethe-Universität Frankfurt Meeting DFG-Forschergruppe

More information

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS NUMERICAL METODS FOR QUANTUM IMPURITY MODELS http://www.staff.science.uu.nl/~mitch003/nrg.html March 2015 Andrew Mitchell, Utrecht University Quantum impurity problems Part 1: Quantum impurity problems

More information

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 Kondo Effect in Metals and Quantum Dots Jan von Delft

More information

Quantum Impurities In and Out of Equilibrium. Natan Andrei

Quantum Impurities In and Out of Equilibrium. Natan Andrei Quantum Impurities In and Out of Equilibrium Natan Andrei HRI 1- Feb 2008 Quantum Impurity Quantum Impurity - a system with a few degrees of freedom interacting with a large (macroscopic) system. Often

More information

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models Local moment approach to the multi - orbital single impurity Anderson and Hubbard models Anna Kauch Institute of Theoretical Physics Warsaw University PIPT/Les Houches Summer School on Quantum Magnetism

More information

Transport Coefficients of the Anderson Model via the numerical renormalization group

Transport Coefficients of the Anderson Model via the numerical renormalization group Transport Coefficients of the Anderson Model via the numerical renormalization group T. A. Costi 1, A. C. Hewson 1 and V. Zlatić 2 1 Department of Mathematics, Imperial College, London SW7 2BZ, UK 2 Institute

More information

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Prof. Luis Gregório Dias DFMT PG5295 Muitos Corpos 1 Electronic Transport in Quantum

More information

Exotic Kondo effects in nanostructures

Exotic Kondo effects in nanostructures Exotic Kondo effects in nanostructures S. Florens Ne el Institute - CNRS Grenoble e d 1.0 NRG S=1 A(E,B,T=0) A(E,B,T=0) 1.0 NRG S=1/2 0.8 0.6 0.8 0.6 0.4 0.4-1.0 0.0 E/kBTK 1.0-1.0 0.0 E/kBTK 1.0 Some

More information

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach Frithjof B Anders Institut für theoretische Physik, Universität Bremen Concepts in Electron Correlation,

More information

Two-channel Kondo physics in odd impurity chains

Two-channel Kondo physics in odd impurity chains Two-channel ondo physics in odd impurity chains Andrew. Mitchell, 1, David E. Logan 1 and H. R. rishnamurthy 3 1 Department of Chemistry, Physical and Theoretical Chemistry, Oxford University, South Parks

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

A theoretical study of the single-molecule transistor

A theoretical study of the single-molecule transistor A theoretical study of the single-molecule transistor B. C. Friesen Department of Physics, Oklahoma Baptist University, Shawnee, OK 74804 J. K. Ingersent Department of Physics, University of Florida, Gainesville,

More information

Finite-frequency Matsubara FRG for the SIAM

Finite-frequency Matsubara FRG for the SIAM Finite-frequency Matsubara FRG for the SIAM Final status report Christoph Karrasch & Volker Meden Ralf Hedden & Kurt Schönhammer Numerical RG: Robert Peters & Thomas Pruschke Experiments on superconducting

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

QUANTUM CRITICAL BEHAVIOR IN KONDO SYSTEMS

QUANTUM CRITICAL BEHAVIOR IN KONDO SYSTEMS International Journal of Modern Physics B, Vol. 13, No. 18 (1999) 2331 2342 c World Scientific Publishing Company QUANTUM CRITICAL BEHAVIOR IN KONDO SYSTEMS QIMIAO SI, J. LLEWEILUN SMITH and KEVIN INGERSENT

More information

Quantum impurities in a bosonic bath

Quantum impurities in a bosonic bath Ralf Bulla Institut für Theoretische Physik Universität zu Köln 27.11.2008 contents introduction quantum impurity systems numerical renormalization group bosonic NRG spin-boson model bosonic single-impurity

More information

Strange metal from local quantum chaos

Strange metal from local quantum chaos Strange metal from local quantum chaos John McGreevy (UCSD) hello based on work with Daniel Ben-Zion (UCSD) 2017-08-26 Compressible states of fermions at finite density The metallic states that we understand

More information

Introduction to DMFT

Introduction to DMFT Introduction to DMFT Lecture 2 : DMFT formalism 1 Toulouse, May 25th 2007 O. Parcollet 1. Derivation of the DMFT equations 2. Impurity solvers. 1 Derivation of DMFT equations 2 Cavity method. Large dimension

More information

Effet Kondo dans les nanostructures: Morceaux choisis

Effet Kondo dans les nanostructures: Morceaux choisis Effet Kondo dans les nanostructures: Morceaux choisis Pascal SIMON Rencontre du GDR Méso: Aussois du 05 au 08 Octobre 2009 OUTLINE I. The traditional (old-fashioned?) Kondo effect II. Direct access to

More information

Kondo Effect in Nanostructures

Kondo Effect in Nanostructures Kondo Effect in Nanostructures Argonne National Laboratory May 7th 7 Enrico Rossi University of Illinois at Chicago Collaborators: Dirk K. Morr Argonne National Laboratory, May 7 The Kondo-effect R Metal

More information

Numerical Renormalization Group for Quantum Impurities 1

Numerical Renormalization Group for Quantum Impurities 1 B 3 Numerical Renormalization Group for Quantum Impurities 1 T. A. Costi Institute for Advanced Simulation (IAS-3) Forschungszentrum Jülich GmbH Contents 1 Introduction 2 2 Quantum impurity models 3 3

More information

Complex Systems Methods 9. Critical Phenomena: The Renormalization Group

Complex Systems Methods 9. Critical Phenomena: The Renormalization Group Complex Systems Methods 9. Critical Phenomena: The Renormalization Group Eckehard Olbrich e.olbrich@gmx.de http://personal-homepages.mis.mpg.de/olbrich/complex systems.html Potsdam WS 2007/08 Olbrich (Leipzig)

More information

CFT approach to multi-channel SU(N) Kondo effect

CFT approach to multi-channel SU(N) Kondo effect CFT approach to multi-channel SU(N) Kondo effect Sho Ozaki (Keio Univ.) In collaboration with Taro Kimura (Keio Univ.) Seminar @ Chiba Institute of Technology, 2017 July 8 Contents I) Introduction II)

More information

Quantum phase transitions in a resonant-level model with dissipation: Renormalization-group studies

Quantum phase transitions in a resonant-level model with dissipation: Renormalization-group studies PHYSICAL REVIEW B 76, 353 7 Quantum phase transitions in a resonant-level model with dissipation: Renormalization-group studies Chung-Hou Chung, Matthew T. Glossop, Lars Fritz, 3,4 Marijana Kirćan, 5 Kevin

More information

Spatial and temporal propagation of Kondo correlations. Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund

Spatial and temporal propagation of Kondo correlations. Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund Spatial and temporal propagation of Kondo correlations Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund Collaborators Collaborators Benedikt Lechtenberg Collaborators

More information

Quantum phase transitions

Quantum phase transitions Quantum phase transitions Thomas Vojta Department of Physics, University of Missouri-Rolla Phase transitions and critical points Quantum phase transitions: How important is quantum mechanics? Quantum phase

More information

Magnetic Moment Collapse drives Mott transition in MnO

Magnetic Moment Collapse drives Mott transition in MnO Magnetic Moment Collapse drives Mott transition in MnO J. Kuneš Institute of Physics, Uni. Augsburg in collaboration with: V. I. Anisimov, A. V. Lukoyanov, W. E. Pickett, R. T. Scalettar, D. Vollhardt,

More information

Diagrammatic Monte Carlo methods for Fermions

Diagrammatic Monte Carlo methods for Fermions Diagrammatic Monte Carlo methods for Fermions Philipp Werner Department of Physics, Columbia University PRL 97, 7645 (26) PRB 74, 15517 (26) PRB 75, 8518 (27) PRB 76, 235123 (27) PRL 99, 12645 (27) PRL

More information

Can superconductivity emerge out of a non Fermi liquid.

Can superconductivity emerge out of a non Fermi liquid. Can superconductivity emerge out of a non Fermi liquid. Andrey Chubukov University of Wisconsin Washington University, January 29, 2003 Superconductivity Kamerling Onnes, 1911 Ideal diamagnetism High Tc

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta C. Buragohain K. Damle M. Vojta Subir Sachdev Phys. Rev. Lett. 78, 943 (1997). Phys. Rev. B 57, 8307 (1998). Science 286, 2479 (1999). cond-mat/9912020 Quantum Phase Transitions, Cambridge University Press

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information

Impurity-Induced States in 2DEG and d-wave Superconductors

Impurity-Induced States in 2DEG and d-wave Superconductors Impurity-Induced States in 2DEG and d-wave Superconductors Symposium on Quantum Phenomena Condensed Matter Theory Center Physics Department, University of Maryland September 27th-28th 2007 Enrico Rossi

More information

5 Numerical renormalization group and multiorbital

5 Numerical renormalization group and multiorbital 5 Numerical renormalization group and multiorbital Kondo physics T. A. Costi Institute for Advanced Simulation (IAS-3) Forschungszentrum Jülich GmbH Contents 1 Introduction 2 2 Quantum impurity models

More information

FRG approach to interacting fermions with partial bosonization: from weak to strong coupling

FRG approach to interacting fermions with partial bosonization: from weak to strong coupling FRG approach to interacting fermions with partial bosonization: from weak to strong coupling Talk at conference ERG08, Heidelberg, June 30, 2008 Peter Kopietz, Universität Frankfurt collaborators: Lorenz

More information

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford)

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford) Wilsonian and large N theories of quantum critical metals Srinivas Raghu (Stanford) Collaborators and References R. Mahajan, D. Ramirez, S. Kachru, and SR, PRB 88, 115116 (2013). A. Liam Fitzpatrick, S.

More information

Fate of the Kondo impurity in a superconducting medium

Fate of the Kondo impurity in a superconducting medium Karpacz, 2 8 March 214 Fate of the Kondo impurity in a superconducting medium T. Domański M. Curie Skłodowska University Lublin, Poland http://kft.umcs.lublin.pl/doman/lectures Motivation Physical dilemma

More information

Quantum Cluster Methods (CPT/CDMFT)

Quantum Cluster Methods (CPT/CDMFT) Quantum Cluster Methods (CPT/CDMFT) David Sénéchal Département de physique Université de Sherbrooke Sherbrooke (Québec) Canada Autumn School on Correlated Electrons Forschungszentrum Jülich, Sept. 24,

More information

A Holographic Model of the Kondo Effect (Part 1)

A Holographic Model of the Kondo Effect (Part 1) A Holographic Model of the Kondo Effect (Part 1) Andy O Bannon Quantum Field Theory, String Theory, and Condensed Matter Physics Kolymbari, Greece September 1, 2014 Credits Based on 1310.3271 Johanna Erdmenger

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University January 25, 2011 2 Chapter 12 Collective modes in interacting Fermi

More information

PHYSIK-DEPARTMENT TECHNISCHE UNIVERSITÄT MÜNCHEN. The Kondo exciton: non-equilibrium dynamics after a quantum quench in the Anderson impurity model

PHYSIK-DEPARTMENT TECHNISCHE UNIVERSITÄT MÜNCHEN. The Kondo exciton: non-equilibrium dynamics after a quantum quench in the Anderson impurity model PHYSIK-DEPARTMENT The Kondo exciton: non-equilibrium dynamics after a quantum quench in the Anderson impurity model Diplomarbeit von Markus Johannes Hanl TECHNISCHE UNIVERSITÄT MÜNCHEN Contents Abstract

More information

Interplay of interactions and disorder in two dimensions

Interplay of interactions and disorder in two dimensions Interplay of interactions and disorder in two dimensions Sergey Kravchenko in collaboration with: S. Anissimova, V.T. Dolgopolov, A. M. Finkelstein, T.M. Klapwijk, A. Punnoose, A.A. Shashkin Outline Scaling

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

Anomalous Behavior in an Anderston-Holstein Model. for a Single Molecule Transistor

Anomalous Behavior in an Anderston-Holstein Model. for a Single Molecule Transistor Anomalous Behavior in an Anderston-Holstein Model for a Single Molecule Transistor Alexander Davis Dr Kevin Ingersent August 3, 2011 Abstract This lab was designed to test whether Poisson statistics can

More information

Examples of Lifshitz topological transition in interacting fermionic systems

Examples of Lifshitz topological transition in interacting fermionic systems Examples of Lifshitz topological transition in interacting fermionic systems Joseph Betouras (Loughborough U. Work in collaboration with: Sergey Slizovskiy (Loughborough, Sam Carr (Karlsruhe/Kent and Jorge

More information

Relativistic magnetotransport in graphene

Relativistic magnetotransport in graphene Relativistic magnetotransport in graphene Markus Müller in collaboration with Lars Fritz (Harvard) Subir Sachdev (Harvard) Jörg Schmalian (Iowa) Landau Memorial Conference June 6, 008 Outline Relativistic

More information

Kondo Effect in Coupled Quantum Dots. Abstract

Kondo Effect in Coupled Quantum Dots. Abstract Kondo Effect in Coupled Quantum Dots A. M. Chang +, J. C. Chen + Department of Physics, Duke University, Durham, NC 27708-0305 Institute of Physics, Academia Sinica, Taipei, Taiwan + Department of Physics,

More information

Electronic quasiparticles and competing orders in the cuprate superconductors

Electronic quasiparticles and competing orders in the cuprate superconductors Electronic quasiparticles and competing orders in the cuprate superconductors Andrea Pelissetto Rome Subir Sachdev Ettore Vicari Pisa Yejin Huh Harvard Harvard Gapless nodal quasiparticles in d-wave superconductors

More information

arxiv: v1 [cond-mat.str-el] 21 Mar 2012

arxiv: v1 [cond-mat.str-el] 21 Mar 2012 Kondo-Anderson transitions arxiv:203.4684v [cond-mat.str-el] 2 Mar 202 S. Kettemann, E. R. Mucciolo, 2 I. Varga, 3 and K. Slevin 4 Jacobs University, School of Engineering and Science, Campus Ring, 28759

More information

Localization I: General considerations, one-parameter scaling

Localization I: General considerations, one-parameter scaling PHYS598PTD A.J.Leggett 2013 Lecture 4 Localization I: General considerations 1 Localization I: General considerations, one-parameter scaling Traditionally, two mechanisms for localization of electron states

More information

S j H o = gµ o H o. j=1

S j H o = gµ o H o. j=1 LECTURE 17 Ferromagnetism (Refs.: Sections 10.6-10.7 of Reif; Book by J. S. Smart, Effective Field Theories of Magnetism) Consider a solid consisting of N identical atoms arranged in a regular lattice.

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Department of Physics Yale University P.O. Box 208120, New Haven, CT 06520-8120 USA E-mail: subir.sachdev@yale.edu May 19, 2004 To appear in Encyclopedia of Mathematical

More information

Intermediate valence in Yb Intermetallic compounds

Intermediate valence in Yb Intermetallic compounds Intermediate valence in Yb Intermetallic compounds Jon Lawrence University of California, Irvine This talk concerns rare earth intermediate valence (IV) metals, with a primary focus on certain Yb-based

More information

arxiv: v2 [cond-mat.str-el] 3 Sep 2012

arxiv: v2 [cond-mat.str-el] 3 Sep 2012 Full density matrix numerical renormalization group calculation of impurity susceptibility and specific heat of the Anderson impurity model arxiv:7.63v [cond-mat.str-el] 3 Sep L. Merker, A. Weichselbaum,

More information

Physics 127b: Statistical Mechanics. Renormalization Group: 1d Ising Model. Perturbation expansion

Physics 127b: Statistical Mechanics. Renormalization Group: 1d Ising Model. Perturbation expansion Physics 17b: Statistical Mechanics Renormalization Group: 1d Ising Model The ReNormalization Group (RNG) gives an understanding of scaling and universality, and provides various approximation schemes to

More information

Landau s Fermi Liquid Theory

Landau s Fermi Liquid Theory Thors Hans Hansson Stockholm University Outline 1 Fermi Liquids Why, What, and How? Why Fermi liquids? What is a Fermi liquids? Fermi Liquids How? 2 Landau s Phenomenological Approach The free Fermi gas

More information

Anomalous Scaling Relations & Pairing Mechanism of Fe-based SC

Anomalous Scaling Relations & Pairing Mechanism of Fe-based SC Part III: SH jump & CE Anomalous Scaling Relations & Pairing Mechanism of Fe-based SC Yunkyu Bang (Chonnam National Univ., Kwangju, S Korea) G R Stewart (Univ. of Florida, Gainesville, USA) Refs: New J

More information

Holographic Kondo and Fano Resonances

Holographic Kondo and Fano Resonances Holographic Kondo and Fano Resonances Andy O Bannon Disorder in Condensed Matter and Black Holes Lorentz Center, Leiden, the Netherlands January 13, 2017 Credits Johanna Erdmenger Würzburg Carlos Hoyos

More information

Impurity effects in high T C superconductors

Impurity effects in high T C superconductors Impurity effects in high T C superconductors J. Bobroff, S. Ouazi, H. Alloul, P. Mendels, N. Blanchard Laboratoire de Physique des Solides, Université Paris XI, Orsay G. Collin J.F. Marucco, V. Guillen

More information

Kondo satellites in photoemission spectra of heavy fermion compounds

Kondo satellites in photoemission spectra of heavy fermion compounds Kondo satellites in photoemission spectra of heavy fermion compounds P. Wölfle, Universität Karlsruhe J. Kroha, Universität Bonn Outline Introduction: Kondo resonances in the photoemission spectra of Ce

More information

Present and future prospects of the (functional) renormalization group

Present and future prospects of the (functional) renormalization group Schladming Winter School 2011: Physics at all scales: the renormalization group Present and future prospects of the (functional) renormalization group Peter Kopietz, Universität Frankfurt panel discussion

More information

Investigations on the SYK Model and its Dual Space-Time

Investigations on the SYK Model and its Dual Space-Time 2nd Mandelstam Theoretical Physics Workshop Investigations on the SYK Model and its Dual Space-Time Kenta Suzuki A. Jevicki, KS, & J. Yoon; 1603.06246 [hep-th] A. Jevicki, & KS; 1608.07567 [hep-th] S.

More information

Entanglement spectra in the NRG

Entanglement spectra in the NRG PRB 84, 125130 (2011) Entanglement spectra in the NRG Andreas Weichselbaum Ludwig Maximilians Universität, München Arnold Sommerfeld Center (ASC) Acknowledgement Jan von Delft (LMU) Theo Costi (Jülich)

More information

Quantum phase transitions and the Luttinger theorem.

Quantum phase transitions and the Luttinger theorem. Quantum phase transitions and the Luttinger theorem. Leon Balents (UCSB) Matthew Fisher (UCSB) Stephen Powell (Yale) Subir Sachdev (Yale) T. Senthil (MIT) Ashvin Vishwanath (Berkeley) Matthias Vojta (Karlsruhe)

More information

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES N.M.Plakida Joint Institute for Nuclear Research, Dubna, Russia CORPES, Dresden, 26.05.2005 Publications and collaborators: N.M. Plakida,

More information

Part III: Impurities in Luttinger liquids

Part III: Impurities in Luttinger liquids Functional RG for interacting fermions... Part III: Impurities in Luttinger liquids 1. Luttinger liquids 2. Impurity effects 3. Microscopic model 4. Flow equations 5. Results S. Andergassen, T. Enss (Stuttgart)

More information

arxiv: v2 [cond-mat.str-el] 13 Apr 2018

arxiv: v2 [cond-mat.str-el] 13 Apr 2018 Molecular Kondo effect in flat-band lattices Minh-Tien Tran,,3 and Thuy Thi Nguyen Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam. Institute of

More information

Electronic correlations in models and materials. Jan Kuneš

Electronic correlations in models and materials. Jan Kuneš Electronic correlations in models and materials Jan Kuneš Outline Dynamical-mean field theory Implementation (impurity problem) Single-band Hubbard model MnO under pressure moment collapse metal-insulator

More information

Talk online at

Talk online at Talk online at http://sachdev.physics.harvard.edu Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic

More information

MOTTNESS AND STRONG COUPLING

MOTTNESS AND STRONG COUPLING MOTTNESS AND STRONG COUPLING ROB LEIGH UNIVERSITY OF ILLINOIS Rutgers University April 2008 based on various papers with Philip Phillips and Ting-Pong Choy PRL 99 (2007) 046404 PRB 77 (2008) 014512 PRB

More information

J. Phys.: Condens. Matter 10 (1998) L159 L165. Printed in the UK PII: S (98)90604-X

J. Phys.: Condens. Matter 10 (1998) L159 L165. Printed in the UK PII: S (98)90604-X J. Phys.: Condens. Matter 10 (1998) L159 L165. Printed in the UK PII: S0953-8984(98)90604-X LETTER TO THE EDITOR Calculation of the susceptibility of the S = 1 antiferromagnetic Heisenberg chain with single-ion

More information

Critical Region of the QCD Phase Transition

Critical Region of the QCD Phase Transition Critical Region of the QCD Phase Transition Mean field vs. Renormalization group B.-J. Schaefer 1 and J. Wambach 1,2 1 Institut für Kernphysik TU Darmstadt 2 GSI Darmstadt 18th August 25 Uni. Graz B.-J.

More information

Quantum Melting of Stripes

Quantum Melting of Stripes Quantum Melting of Stripes David Mross and T. Senthil (MIT) D. Mross, TS, PRL 2012 D. Mross, TS, PR B (to appear) Varieties of Stripes Spin, Charge Néel 2π Q c 2π Q s ``Anti-phase stripes, common in La-based

More information

Physics 212: Statistical mechanics II Lecture XI

Physics 212: Statistical mechanics II Lecture XI Physics 212: Statistical mechanics II Lecture XI The main result of the last lecture was a calculation of the averaged magnetization in mean-field theory in Fourier space when the spin at the origin is

More information

8.512 Theory of Solids II Spring 2009

8.512 Theory of Solids II Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 8.5 Theory of Solids II Spring 009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Lecture : The Kondo Problem:

More information

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory Renormalization of microscopic Hamiltonians Renormalization Group without Field Theory Alberto Parola Università dell Insubria (Como - Italy) Renormalization Group Universality Only dimensionality and

More information

PHYS 563. Renormalization Group and Phase Transitions. Term Paper Quantum Phase Transitions as Exemplified by Heavy Fermionic Materials

PHYS 563. Renormalization Group and Phase Transitions. Term Paper Quantum Phase Transitions as Exemplified by Heavy Fermionic Materials PHYS 563 Renormalization Group and Phase Transitions Term Paper Quantum Phase Transitions as Exemplified by Heavy Fermionic Materials Abstract In this term paper I discuss what is meant by a quantum phase

More information

Chapter 1. The Kondo screening cloud: what it is and how to observe it

Chapter 1. The Kondo screening cloud: what it is and how to observe it Chapter 1 The Kondo screening cloud: what it is and how to observe it Ian Affleck Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada V6T 1Z1 The Kondo effect involves

More information

Spontaneous symmetry breaking in fermion systems with functional RG

Spontaneous symmetry breaking in fermion systems with functional RG Spontaneous symmetry breaking in fermion systems with functional RG Andreas Eberlein and Walter Metzner MPI for Solid State Research, Stuttgart Lefkada, September 24 A. Eberlein and W. Metzner Spontaneous

More information

A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID

A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID ABSTRACT--- I demonstrate a contradiction which arises if we assume that the Fermi surface in a heavy electron metal represents

More information

Transport properties at high magnetic fields fields: old facts and new results

Transport properties at high magnetic fields fields: old facts and new results Alpha - meeting Vienna, April 24 Transport properties at high magnetic fields fields: old facts and new results E. Bauer Institut für Festkörperphysik, Technische Universität Wien 28. April 24 Contents

More information

Tritium β decay in pionless EFT

Tritium β decay in pionless EFT Ohio University June 0, 207 Recipe for EFT(/π) For momenta p < m π pions can be integrated out as degrees of freedom and only nucleons and external currents are left. Write down all possible terms of nucleons

More information

Theory of the thermoelectricity of intermetallic compounds with Ce or Yb ions

Theory of the thermoelectricity of intermetallic compounds with Ce or Yb ions PHYSICAL REVIEW B 71, 165109 2005 Theory of the thermoelectricity of intermetallic compounds with Ce or Yb ions V. Zlatić 1 and R. Monnier 2 1 Institute of Physics, Bijenička cesta 46, P. O. Box 304, 10001

More information

arxiv: v1 [cond-mat.str-el] 14 Jun 2011

arxiv: v1 [cond-mat.str-el] 14 Jun 2011 Quantum phase transition in the spin boson model S. Florens, D. Venturelli and R. Narayanan arxiv:116.2654v1 [cond-mat.str-el] 14 Jun 211 Abstract In this paper we give a general introduction to quantum

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Multi-Channel Kondo Model & Kitaev Quantum Quench

Multi-Channel Kondo Model & Kitaev Quantum Quench Utrecht University Institute for Theoretical Physics Master s Thesis Multi-Channel Kondo Model & Kitaev Quantum Quench Author: Jurriaan Wouters, BSc. Supervisor: Dr. Lars Fritz June 30, 207 Abstract This

More information

Exotic phases of the Kondo lattice, and holography

Exotic phases of the Kondo lattice, and holography Exotic phases of the Kondo lattice, and holography Stanford, July 15, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. The Anderson/Kondo lattice models Luttinger s theorem 2. Fractionalized

More information

Orbital order and Hund's rule frustration in Kondo lattices

Orbital order and Hund's rule frustration in Kondo lattices Orbital order and Hund's rule frustration in Kondo lattices Ilya Vekhter Louisiana State University, USA 4/29/2015 TAMU work done with Leonid Isaev, LSU Kazushi Aoyama, Kyoto Indranil Paul, CNRS Phys.

More information

Increasing localization

Increasing localization 4f Rare Earth Increasing localization 5f Actinide Localized Moment 3d Transition metal Outline: 1. Chemistry of Kondo. 2. Key Properties. 3. Tour of Heavy Fermions. 4. Anderson model: the atomic limit.

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh. Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu

Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh. Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu Introduction: The Kondo effect in metals de Haas, de Boer

More information

Quantum critical metals and their instabilities. Srinivas Raghu (Stanford)

Quantum critical metals and their instabilities. Srinivas Raghu (Stanford) Quantum critical metals and their instabilities Srinivas Raghu (Stanford) Collaborators and References R. Mahajan, D. Ramirez, S. Kachru, and SR, PRB 88, 115116 (2013). A. Liam Fitzpatrick, S. Kachru,

More information

Small and large Fermi surfaces in metals with local moments

Small and large Fermi surfaces in metals with local moments Small and large Fermi surfaces in metals with local moments T. Senthil (MIT) Subir Sachdev Matthias Vojta (Augsburg) cond-mat/0209144 Transparencies online at http://pantheon.yale.edu/~subir Luttinger

More information

LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION

LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION Subir Sachdev Center for Theoretical Physics, P.O. Box 6666 Yale University, New Haven, CT 06511 This paper reviews recent progress in understanding the

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10204 The following supplementary material is divided into ten sections. Each section provides background information related to specific topics of the main text. The sections are not

More information

Microscopic structure of entanglement in the many-body environment of a qubit

Microscopic structure of entanglement in the many-body environment of a qubit Microscopic structure of entanglement in the many-body environment of a qubit Serge Florens, [Ne el Institute - CNRS/UJF Grenoble] displacements 0.4 0.2 0.0 0.2 fpol. fanti. fsh 0.4 10-7 : Microscopic

More information

Critical Behavior II: Renormalization Group Theory

Critical Behavior II: Renormalization Group Theory Critical Behavior II: Renormalization Group Theor H. W. Diehl Fachbereich Phsik, Universität Duisburg-Essen, Campus Essen 1 What the Theor should Accomplish Theor should ield & explain: scaling laws #

More information