Solution of the Anderson impurity model via the functional renormalization group

Size: px
Start display at page:

Download "Solution of the Anderson impurity model via the functional renormalization group"

Transcription

1 Solution of the Anderson impurity model via the functional renormalization group Simon Streib, Aldo Isidori, and Peter Kopietz Institut für Theoretische Physik, Goethe-Universität Frankfurt Meeting DFG-Forschergruppe FOR 723, Aachen, April 29, 2013 Simon Streib, Aldo Isidori, and Peter Kopietz, arxiv:

2 Anderson Impurity Model localized impurity in contact with a conduction bath (Anderson, 1961) Ĥ = (ɛ k σh) ĉ kσĉkσ + (E d σh) ˆd ˆd σ σ kσ σ +U ˆd ˆd ˆd ˆd + ( V ˆd k σĉ kσ + V k ĉ ˆd ) kσ σ kσ ɛ k : dispersion of the conduction electrons E d : atomic energy of the localized impurity state V k : hybridization energy U: on-site interaction of the impurity electrons H: Zeemann energy due to an external magnetic field Aachen, April 29, 2013 Peter Kopietz 2 / 15

3 Impurity action integrate over conduction electrons impurity action 1/T S imp = G 1 0,σ (iω) d ωσ d ωσ + U dτ n n ω σ bare Green s function (here only particle-hole symmetric case) G 0,σ (iω) = 1 iω + U/2 + σh + i sgn ω = π V 2 ρ(0) hybridization energy 0 experimental realization in quantum dots: Aachen, April 29, 2013 Peter Kopietz 3 / 15

4 Exact and approximate results on the AIM spin- and charge susceptibilities from Bethe-Ansatz (Wiegmann, Andrei, Kawakami, Okiji, ) 2 π χ s = 2 πu eπ u/8 dxe x2 /(2u) cos(πx/2) 1 x 2, π χ c = 2 πu e π 0 2 u/8 0 dxe x2 /(2u) cosh(πx/2) 1 + x 2. in strong coupling regime (u U/(π ) 2) there is only one energy scale (Kondo temperature) πu T K = 2 e π 2 u u, χ s 1/(2T K ), Z 2/(π χ s ) all previous FRG studies have so far failed to reproduce correct exponential Kondo scale in χ s and Z. Aachen, April 29, 2013 Peter Kopietz 4 / 15

5 Partial bosonization of the interaction Partial bosonization of the interaction (U = U + U ): Un (τ)n (τ) = U n (τ)n (τ) U s(τ)s(τ) s(τ) = d (τ)d (τ), and s(τ) = d (τ)d (τ) Hubbard-Stratonovich transformation: 1 ω( U D [ χ, χ] e χ ωχ ω s ωχ ω s ω χ ω) = e U ω s ωs ω, Partially bosonized action: S 0 [ d, d, χ, χ] = S 1 [ d, d, χ, χ] = ω σ G 1 0,σ (iω) d ωσ d ωσ + U 1 χ ωχ ω, ω 1/T ( s ω χ ω + s ω χ ω ) + U dτ n (τ)n (τ). ω 0 Aachen, April 29, 2013 Peter Kopietz 5 / 15

6 Skeleton equations bosonic self-energy in terms of three-legged vertex: Π (i ω) = Γ d d χ (ω, ω ω; ω) G (iω) G (iω i ω) ω three and four legged vertices are not independent: Γ d d χ (ω + ω, ω; ω) = 1 G (iω + i ω) G (iω ) ω Γ d d d d (ω + ω, ω ; ω, ω + ω) = = Aachen, April 29, 2013 Peter Kopietz 6 / 15

7 FRG with magnetic field cutoff use the external magnetic field H as an FRG flow paramater: Λ = H [Edwards and Hewson, J. Phys.: Cond. Mat. 23, (2011)] additional bosonic regulator: U 1 = U 1 + R H with R 0 = 0 and R = fermion propagator: G 1 σ (iω) = G 1 0,σ (iω) Σ σ(iω) boson propagator: F 1 1 (i ω) = U (H) Π (i ω) single scale propagators: Ġ σ (iω) = σg 2 σ (iω), F (i ω) = R H F 2 H (i ω) σ FRG flow equation: Σ (iω) H = = σ=, Aachen, April 29, 2013 Peter Kopietz 7 / 15

8 Low-energy expansion neglect the frequency-dependence of the vertices: Γ d σ dσ d σ d σ 4 (ω 1,..., ω 4 ) Γ d σ dσ d σ d σ 4 (0) Γ d σd σ χχ 4 (ω 1,..., ω 4 ) Γ d σd σ χχ 4 (0) Γ d d χ 3 (ω 1, ω 2, ω 3 ) Γ d d χ 3 (0) γ expand the fermionic self-energy: Σ σ (iω) = U/2 σm + (1 Z 1 )iω + O(ω 2 ) flowing parameters M and Z for H, how to close the FRG hierarchy? M U/2 and Z 1 (Hartree-Fock) bosonic self-energy Π (i ω) skeleton equation [Bartosch et al. (2009)] flow equations for the vertices Ward identities Aachen, April 29, 2013 Peter Kopietz 8 / 15

9 Ward identities Koyama-Tachiki Ward identities [Prog. Theor. Phys. Supp. 80, 108 (1984)] Γ d σd σχ σ (0, 0; 0) γ = H + M H + U s, χ Π (i0) = 1 U Π (i0) = s H, where magnetic moment s = n n 2 satisfies Friedel sum rule: s = 1 ( ) H + M π arctan Yamada-Yosida Ward identities [Yamada-Yosida, Prog. Theor. Phys. (1975); Kopietz et al., J. Phys. A: Math. Theor. 43, (2010)] Z 1 = χ c + χ 2, ργ (4) = χ c χ 2 where χ c = χ c /ρ, χ = χ /ρ and Γ (4) = Γ d σ dσ d σ d σ (0, 0; 0, 0) is the full four-point vertex (without bosonization) Aachen, April 29, 2013 Peter Kopietz 9 / 15

10 Restoring rotational invariance in FRG flow flow equation for Z: ln Z ln H = ZH lim ω 0 flow equation for M: M H = σ H Σ σ (i0) Σ σ(iω) (iω) H problem: (truncated) FRG flow equation for M does not restore the rotational invariance for H 0: lim M 0! H 0 solution: use Yamada-Yosida Ward identities to derive an alternative flow equation which restores rotational invariance for H 0: M (4) = ργ H + 1 Z 1 1 [ b b 1 + b 2 arctan b h 1 ] + 1 Z Z 1 where b = (H + M)/ and h = H/. lim H 0 M = 0 without fine-tuning. Aachen, April 29, 2013 Peter Kopietz 10 / 15

11 Initial conditions and bosonic regulator start FRG flow for H first order perturbation theory becomes exact; small parameter: U/H: Σ σ (1) (iω) = U 2 σ U 2 Z 0 = 1, M 0 = U 2, for H bosonization depends on the bosonic regulator: { U 1 = U 1 + R H use two-slope function: r = π 2 αh for H R H = βh for H, β1u ansatz: α(u) = α0 α 2+u, β(u) = 2 β 2+u, with u = U 2 π need four constraints to fix four parameters α 0, α 2, β 1, β 2. two constraints: weak coupling limit for χ s and Z (e.g., at u = 0.1) two more constraints: strong coupling limit of Wilson ratio R W = 2 for two strong coupling values (e.g., u = 4, u = 8). R W = χ s Z = 2 χ s /( χ s + χ c ) 2, u 2 Aachen, April 29, 2013 Peter Kopietz 11 / 15

12 Our bosonic regulator π R H two-slope function: π 2 R H = (α β) 1+h + βh U/(π ) = 1 U/(π ) = U/(π ) H/ h α β α(u) = α 0 α 2 + u 2 β(u) = β 1u β 2 + u 2 u U/(π ) matching exact weak- and strong-coupling limits α , α β , β Aachen, April 29, 2013 Peter Kopietz 12 / 15

13 Quasiparticle residue and spin-susceptibility at H = Bethe ansatz FRG U/(π ) 1.5 R 1 Bethe ansatz π χ s Bethe ansatz U/(π ) Z -1 FRG π χ s FRG Z -1 Z -1 2nd order PT Aachen, April 29, 2013 Peter Kopietz 13 / 15

14 Magnetic field behavior at strong-coupling, U/(π ) = γ s s (NRG) Z H/ Aachen, April 29, 2013 Peter Kopietz 14 / 15

15 Summary and Outlook FRG approach with external magnetic field as physical flow parameter bosonization of transverse spin fluctuations interaction vertices constrained by Ward identities correct Kondo scale in the quasiparticle residue and spin susceptibility magnetic field dependence of physical observables in agreement with Bethe-ansatz next:generalization to non-equilibrium [Yamada-Yoshida Ward identities: Oguri, Phys. Rev. B 64, (2001)] Aachen, April 29, 2013 Peter Kopietz 15 / 15

FRG approach to interacting fermions with partial bosonization: from weak to strong coupling

FRG approach to interacting fermions with partial bosonization: from weak to strong coupling FRG approach to interacting fermions with partial bosonization: from weak to strong coupling Talk at conference ERG08, Heidelberg, June 30, 2008 Peter Kopietz, Universität Frankfurt collaborators: Lorenz

More information

Present and future prospects of the (functional) renormalization group

Present and future prospects of the (functional) renormalization group Schladming Winter School 2011: Physics at all scales: the renormalization group Present and future prospects of the (functional) renormalization group Peter Kopietz, Universität Frankfurt panel discussion

More information

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models Local moment approach to the multi - orbital single impurity Anderson and Hubbard models Anna Kauch Institute of Theoretical Physics Warsaw University PIPT/Les Houches Summer School on Quantum Magnetism

More information

Introduction to DMFT

Introduction to DMFT Introduction to DMFT Lecture 2 : DMFT formalism 1 Toulouse, May 25th 2007 O. Parcollet 1. Derivation of the DMFT equations 2. Impurity solvers. 1 Derivation of DMFT equations 2 Cavity method. Large dimension

More information

Finite-frequency Matsubara FRG for the SIAM

Finite-frequency Matsubara FRG for the SIAM Finite-frequency Matsubara FRG for the SIAM Final status report Christoph Karrasch & Volker Meden Ralf Hedden & Kurt Schönhammer Numerical RG: Robert Peters & Thomas Pruschke Experiments on superconducting

More information

(r) 2.0 E N 1.0

(r) 2.0 E N 1.0 The Numerical Renormalization Group Ralf Bulla Institut für Theoretische Physik Universität zu Köln 4.0 3.0 Q=0, S=1/2 Q=1, S=0 Q=1, S=1 E N 2.0 1.0 Contents 1. introduction to basic rg concepts 2. introduction

More information

Kolloquium Universität Innsbruck October 13, The renormalization group: from the foundations to modern applications

Kolloquium Universität Innsbruck October 13, The renormalization group: from the foundations to modern applications Kolloquium Universität Innsbruck October 13, 2009 The renormalization group: from the foundations to modern applications Peter Kopietz, Universität Frankfurt 1.) Historical introduction: what is the RG?

More information

Serge Florens. ITKM - Karlsruhe. with: Lars Fritz and Matthias Vojta

Serge Florens. ITKM - Karlsruhe. with: Lars Fritz and Matthias Vojta 0.5 setgray0 0.5 setgray1 Universal crossovers and critical dynamics for quantum phase transitions in impurity models Serge Florens ITKM - Karlsruhe with: Lars Fritz and Matthias Vojta p. 1 Summary The

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 11 Dec 1997

arxiv:cond-mat/ v1 [cond-mat.supr-con] 11 Dec 1997 Anderson Model in a Superconductor: Φ-Derivable Theory arxiv:cond-mat912118v1 [cond-matsupr-con] 11 Dec 199 Ari T Alastalo (a), Robert J Joynt (b) and Martti M Salomaa (a,b) (a) Materials Physics Laboratory,

More information

Fate of the Kondo impurity in a superconducting medium

Fate of the Kondo impurity in a superconducting medium Karpacz, 2 8 March 214 Fate of the Kondo impurity in a superconducting medium T. Domański M. Curie Skłodowska University Lublin, Poland http://kft.umcs.lublin.pl/doman/lectures Motivation Physical dilemma

More information

Transport Coefficients of the Anderson Model via the numerical renormalization group

Transport Coefficients of the Anderson Model via the numerical renormalization group Transport Coefficients of the Anderson Model via the numerical renormalization group T. A. Costi 1, A. C. Hewson 1 and V. Zlatić 2 1 Department of Mathematics, Imperial College, London SW7 2BZ, UK 2 Institute

More information

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach Frithjof B Anders Institut für theoretische Physik, Universität Bremen Concepts in Electron Correlation,

More information

Non-equilibrium time evolution of bosons from the functional renormalization group

Non-equilibrium time evolution of bosons from the functional renormalization group March 14, 2013, Condensed Matter Journal Club University of Florida at Gainesville Non-equilibrium time evolution of bosons from the functional renormalization group Peter Kopietz, Universität Frankfurt

More information

Quantum impurities in a bosonic bath

Quantum impurities in a bosonic bath Ralf Bulla Institut für Theoretische Physik Universität zu Köln 27.11.2008 contents introduction quantum impurity systems numerical renormalization group bosonic NRG spin-boson model bosonic single-impurity

More information

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Prof. Luis Gregório Dias DFMT PG5295 Muitos Corpos 1 Electronic Transport in Quantum

More information

Dynamic properties of interacting bosons and magnons

Dynamic properties of interacting bosons and magnons Ultracold Quantum Gases beyond Equilibrium Natal, Brasil, September 27 October 1, 2010 Dynamic properties of interacting bosons and magnons Peter Kopietz, Universität Frankfurt collaboration: A. Kreisel,

More information

Part III: Impurities in Luttinger liquids

Part III: Impurities in Luttinger liquids Functional RG for interacting fermions... Part III: Impurities in Luttinger liquids 1. Luttinger liquids 2. Impurity effects 3. Microscopic model 4. Flow equations 5. Results S. Andergassen, T. Enss (Stuttgart)

More information

Quantum Impurities In and Out of Equilibrium. Natan Andrei

Quantum Impurities In and Out of Equilibrium. Natan Andrei Quantum Impurities In and Out of Equilibrium Natan Andrei HRI 1- Feb 2008 Quantum Impurity Quantum Impurity - a system with a few degrees of freedom interacting with a large (macroscopic) system. Often

More information

Spontaneous symmetry breaking in fermion systems with functional RG

Spontaneous symmetry breaking in fermion systems with functional RG Spontaneous symmetry breaking in fermion systems with functional RG Andreas Eberlein and Walter Metzner MPI for Solid State Research, Stuttgart Lefkada, September 24 A. Eberlein and W. Metzner Spontaneous

More information

Spatial and temporal propagation of Kondo correlations. Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund

Spatial and temporal propagation of Kondo correlations. Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund Spatial and temporal propagation of Kondo correlations Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund Collaborators Collaborators Benedikt Lechtenberg Collaborators

More information

arxiv: v2 [cond-mat.str-el] 3 Sep 2012

arxiv: v2 [cond-mat.str-el] 3 Sep 2012 Full density matrix numerical renormalization group calculation of impurity susceptibility and specific heat of the Anderson impurity model arxiv:7.63v [cond-mat.str-el] 3 Sep L. Merker, A. Weichselbaum,

More information

Nonequilibrium current and relaxation dynamics of a charge-fluctuating quantum dot

Nonequilibrium current and relaxation dynamics of a charge-fluctuating quantum dot Nonequilibrium current and relaxation dynamics of a charge-fluctuating quantum dot Volker Meden Institut für Theorie der Statistischen Physik with Christoph Karrasch, Sabine Andergassen, Dirk Schuricht,

More information

Functional renormalization group approach to the Ising-nematic quantum critical point of two-dimensional metals

Functional renormalization group approach to the Ising-nematic quantum critical point of two-dimensional metals Functional renormalization group approach to the Ising-nematic quantum critical point of two-dimensional metals Casper Drukier, Lorenz Bartosch, Aldo Isidori, and Peter Kopietz Institut für Theoretische

More information

Renormalization Group and Fermi Liquid. Theory. A.C.Hewson. Dept. of Mathematics, Imperial College, London SW7 2BZ. Abstract

Renormalization Group and Fermi Liquid. Theory. A.C.Hewson. Dept. of Mathematics, Imperial College, London SW7 2BZ. Abstract Renormalization Group and Fermi Liquid Theory A.C.Hewson Dept. of Mathematics, Imperial College, London SW7 2BZ. Abstract We give a Hamiltonian based interpretation of microscopic Fermi liquid theory within

More information

Effet Kondo dans les nanostructures: Morceaux choisis

Effet Kondo dans les nanostructures: Morceaux choisis Effet Kondo dans les nanostructures: Morceaux choisis Pascal SIMON Rencontre du GDR Méso: Aussois du 05 au 08 Octobre 2009 OUTLINE I. The traditional (old-fashioned?) Kondo effect II. Direct access to

More information

Andreas Kreisel. Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main. July,

Andreas Kreisel. Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main. July, BEC of magnons and spin wave interactions in QAF Andreas Kreisel Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main July, 18 2007 collaborators: N. Hasselmann, P. Kopietz

More information

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 Kondo Effect in Metals and Quantum Dots Jan von Delft

More information

Quantum phase transition and conductivity of parallel quantum dots with a moderate Coulomb interaction

Quantum phase transition and conductivity of parallel quantum dots with a moderate Coulomb interaction Journal of Physics: Conference Series PAPER OPEN ACCESS Quantum phase transition and conductivity of parallel quantum dots with a moderate Coulomb interaction To cite this article: V S Protsenko and A

More information

Local moment approach to multi-orbital Anderson and Hubbard models

Local moment approach to multi-orbital Anderson and Hubbard models Local moment approach to multi-orbital Anderson and Hubbard models Anna Kauch 1 and Krzysztof Byczuk,1 1 Institute of Theoretical Physics, Warsaw University, ul. Hoża 69, PL--681 Warszawa, Poland Theoretical

More information

Can electron pairing promote the Kondo state?

Can electron pairing promote the Kondo state? Czech Acad. Scien. in Prague, 6 X 2015 Can electron pairing promote the Kondo state? Tadeusz Domański Marie Curie-Skłodowska University, Lublin, Poland http://kft.umcs.lublin.pl/doman/lectures Issues to

More information

Coulomb-Blockade and Quantum Critical Points in Quantum Dots

Coulomb-Blockade and Quantum Critical Points in Quantum Dots Coulomb-Blockade and Quantum Critical Points in Quantum Dots Frithjof B Anders Institut für theoretische Physik, Universität Bremen, Germany funded by the NIC Jülich Collaborators: Theory: Experiment:

More information

The nature of superfluidity in the cold atomic unitary Fermi gas

The nature of superfluidity in the cold atomic unitary Fermi gas The nature of superfluidity in the cold atomic unitary Fermi gas Introduction Yoram Alhassid (Yale University) Finite-temperature auxiliary-field Monte Carlo (AFMC) method The trapped unitary Fermi gas

More information

QUANTUM CRITICAL BEHAVIOR IN KONDO SYSTEMS

QUANTUM CRITICAL BEHAVIOR IN KONDO SYSTEMS International Journal of Modern Physics B, Vol. 13, No. 18 (1999) 2331 2342 c World Scientific Publishing Company QUANTUM CRITICAL BEHAVIOR IN KONDO SYSTEMS QIMIAO SI, J. LLEWEILUN SMITH and KEVIN INGERSENT

More information

Non-Perturbative Many-Body Approach to the Hubbard Model and Single-Particle Pseudogap

Non-Perturbative Many-Body Approach to the Hubbard Model and Single-Particle Pseudogap J. Phys. I France 7 (1997) 1309 1368 NOVEMBER 1997, PAGE 1309 Non-Perturbative Many-Body Approach to the Hubbard Model and Single-Particle Pseudogap Y.M. Vilk ( 1,2 ) and A.-M.S. Tremblay ( 2, ) ( 1 )

More information

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory Renormalization of microscopic Hamiltonians Renormalization Group without Field Theory Alberto Parola Università dell Insubria (Como - Italy) Renormalization Group Universality Only dimensionality and

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Electronic correlations in models and materials. Jan Kuneš

Electronic correlations in models and materials. Jan Kuneš Electronic correlations in models and materials Jan Kuneš Outline Dynamical-mean field theory Implementation (impurity problem) Single-band Hubbard model MnO under pressure moment collapse metal-insulator

More information

Iterative real-time path integral approach to nonequilibrium quantum transport

Iterative real-time path integral approach to nonequilibrium quantum transport Iterative real-time path integral approach to nonequilibrium quantum transport Michael Thorwart Institut für Theoretische Physik Heinrich-Heine-Universität Düsseldorf funded by the SPP 1243 Quantum Transport

More information

Anomalous Behavior in an Anderston-Holstein Model. for a Single Molecule Transistor

Anomalous Behavior in an Anderston-Holstein Model. for a Single Molecule Transistor Anomalous Behavior in an Anderston-Holstein Model for a Single Molecule Transistor Alexander Davis Dr Kevin Ingersent August 3, 2011 Abstract This lab was designed to test whether Poisson statistics can

More information

Towards a quantitative FRG approach for the BCS-BEC crossover

Towards a quantitative FRG approach for the BCS-BEC crossover Towards a quantitative FRG approach for the BCS-BEC crossover Michael M. Scherer Theoretisch Physikalisches Institut, Jena University in collaboration with Sebastian Diehl, Stefan Flörchinger, Holger Gies,

More information

Coherence by elevated temperature

Coherence by elevated temperature Coherence by elevated temperature Volker Meden with Dante Kennes, Alex Kashuba, Mikhail Pletyukhov, Herbert Schoeller Institut für Theorie der Statistischen Physik Goal dynamics of dissipative quantum

More information

Superconducting properties of carbon nanotubes

Superconducting properties of carbon nanotubes Superconducting properties of carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf A. De Martino, F. Siano Overview Superconductivity in ropes of nanotubes

More information

A theoretical study of the single-molecule transistor

A theoretical study of the single-molecule transistor A theoretical study of the single-molecule transistor B. C. Friesen Department of Physics, Oklahoma Baptist University, Shawnee, OK 74804 J. K. Ingersent Department of Physics, University of Florida, Gainesville,

More information

Cluster Functional Renormalization Group

Cluster Functional Renormalization Group Cluster Functional Renormalization Group Johannes Reuther Free University Berlin Helmholtz-Center Berlin California Institute of Technology (Pasadena) Lefkada, September 26, 2014 Johannes Reuther Cluster

More information

Sweep from Superfluid to Mottphase in the Bose-Hubbard model p.1/14

Sweep from Superfluid to Mottphase in the Bose-Hubbard model p.1/14 Sweep from Superfluid to phase in the Bose-Hubbard model Ralf Schützhold Institute for Theoretical Physics Dresden University of Technology Sweep from Superfluid to phase in the Bose-Hubbard model p.1/14

More information

Topological Kondo Insulators!

Topological Kondo Insulators! Topological Kondo Insulators! Maxim Dzero, University of Maryland Collaborators: Kai Sun, University of Maryland Victor Galitski, University of Maryland Piers Coleman, Rutgers University Main idea Kondo

More information

The renormalized superperturbation theory (rspt) approach to the Anderson model in and out of equilibrium

The renormalized superperturbation theory (rspt) approach to the Anderson model in and out of equilibrium Journal of Physics: Conference Series PAPER The renormalized superperturbation theory rspt approach to the Anderson model in and out of equilibrium To cite this article: Enrique Muñoz et al 2017 J. Phys.:

More information

5 Numerical renormalization group and multiorbital

5 Numerical renormalization group and multiorbital 5 Numerical renormalization group and multiorbital Kondo physics T. A. Costi Institute for Advanced Simulation (IAS-3) Forschungszentrum Jülich GmbH Contents 1 Introduction 2 2 Quantum impurity models

More information

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Krzysztof Byczuk Institute of Physics, Augsburg University Institute of Theoretical Physics, Warsaw University October

More information

Numerical Renormalization Group for Quantum Impurities 1

Numerical Renormalization Group for Quantum Impurities 1 B 3 Numerical Renormalization Group for Quantum Impurities 1 T. A. Costi Institute for Advanced Simulation (IAS-3) Forschungszentrum Jülich GmbH Contents 1 Introduction 2 2 Quantum impurity models 3 3

More information

Functional renormalization group approach to interacting Fermi systems DMFT as a booster rocket

Functional renormalization group approach to interacting Fermi systems DMFT as a booster rocket Functional renormalization group approach to interacting Fermi systems DMFT as a booster rocket Walter Metzner, Max-Planck-Institute for Solid State Research 1. Introduction 2. Functional RG for Fermi

More information

Time Evolving Block Decimation Algorithm

Time Evolving Block Decimation Algorithm Time Evolving Block Decimation Algorithm Application to bosons on a lattice Jakub Zakrzewski Marian Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Center, Jagiellonian University,

More information

arxiv:cond-mat/ v3 [cond-mat.str-el] 11 Dec 1997

arxiv:cond-mat/ v3 [cond-mat.str-el] 11 Dec 1997 Non-perturbative many-body approach to the Hubbard model and single-particle pseudogap. arxiv:cond-mat/9702188v3 [cond-mat.str-el] 11 Dec 1997 Y.M. Vilk Materials Science Division, Bldg. 223, 9700 S. Case

More information

Pairing Phases of Polaritons

Pairing Phases of Polaritons Pairing Phases of Polaritons Jonathan Keeling University of St Andrews 6 YEARS St Petersburg, March 14 Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 1 / 11 Outline 1 Introduction

More information

Diagrammatic Green s Functions Approach to the Bose-Hubbard Model

Diagrammatic Green s Functions Approach to the Bose-Hubbard Model Diagrammatic Green s Functions Approach to the Bose-Hubbard Model Matthias Ohliger Institut für Theoretische Physik Freie Universität Berlin 22nd of January 2008 Content OVERVIEW CONSIDERED SYSTEM BASIC

More information

2 LOCAL MOMENTS AND THE KONDO LATTICE. 2.1 Local moment formation The Anderson model. Heavy fermions: electrons at the edge of magnetism 105

2 LOCAL MOMENTS AND THE KONDO LATTICE. 2.1 Local moment formation The Anderson model. Heavy fermions: electrons at the edge of magnetism 105 Heavy fermions: electrons at the edge of magnetism 05 t s 000 t a K w s w (a) 20 H A L 00 0 5 0 5 (b) dhva frequency ( 0 7 Oe) Figure 9. (a) Fermi surface of UPt 3 calculated from band theory assuming

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

Strange metal from local quantum chaos

Strange metal from local quantum chaos Strange metal from local quantum chaos John McGreevy (UCSD) hello based on work with Daniel Ben-Zion (UCSD) 2017-08-26 Compressible states of fermions at finite density The metallic states that we understand

More information

Mean field theories of quantum spin glasses

Mean field theories of quantum spin glasses Mean field theories of quantum spin glasses Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Talk online: Sachdev Classical Sherrington-Kirkpatrick model H = JS S i j ij i j J ij : a

More information

8.512 Theory of Solids II Spring 2009

8.512 Theory of Solids II Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 8.5 Theory of Solids II Spring 009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Lecture : The Kondo Problem:

More information

Standard Model with Four Generations and Multiple Higgs Doublets

Standard Model with Four Generations and Multiple Higgs Doublets RGE,SDE,SM4 p. 1/2 Standard Model with Four Generations and Multiple Higgs Doublets 1st IAS-CERN School Jan 26th, 2012, Singapore Chi Xiong Institute of Advanced Studies Nanyang Technological University

More information

Interacting Electrons in Disordered Quantum Wires: Localization and Dephasing. Alexander D. Mirlin

Interacting Electrons in Disordered Quantum Wires: Localization and Dephasing. Alexander D. Mirlin Interacting Electrons in Disordered Quantum Wires: Localization and Dephasing Alexander D. Mirlin Forschungszentrum Karlsruhe & Universität Karlsruhe, Germany I.V. Gornyi, D.G. Polyakov (Forschungszentrum

More information

Diagrammatic Monte Carlo simulation of quantum impurity models

Diagrammatic Monte Carlo simulation of quantum impurity models Diagrammatic Monte Carlo simulation of quantum impurity models Philipp Werner ETH Zurich IPAM, UCLA, Jan. 2009 Outline Continuous-time auxiliary field method (CT-AUX) Weak coupling expansion and auxiliary

More information

Anderson impurity model at finite Coulomb interaction U: Generalized noncrossing approximation

Anderson impurity model at finite Coulomb interaction U: Generalized noncrossing approximation PHYSICAL REVIEW B, VOLUME 64, 155111 Anderson impurity model at finite Coulomb interaction U: Generalized noncrossing approximation K. Haule, 1,2 S. Kirchner, 2 J. Kroha, 2 and P. Wölfle 2 1 J. Stefan

More information

Diagrammatic Monte Carlo methods for Fermions

Diagrammatic Monte Carlo methods for Fermions Diagrammatic Monte Carlo methods for Fermions Philipp Werner Department of Physics, Columbia University PRL 97, 7645 (26) PRB 74, 15517 (26) PRB 75, 8518 (27) PRB 76, 235123 (27) PRL 99, 12645 (27) PRL

More information

Matériaux et dispositifs à fortes corrélations électroniques

Matériaux et dispositifs à fortes corrélations électroniques Chaire de Physique de la Matière Condensée Matériaux et dispositifs à fortes corrélations électroniques I.2 Blocage de Coulomb vs. Quasiparticules Antoine Georges Cycle 2014-2015 4 mai 2015 I.2 N.B.: Dans

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

arxiv: v1 [cond-mat.mes-hall] 13 Sep 2016

arxiv: v1 [cond-mat.mes-hall] 13 Sep 2016 Bi-stability in single impurity Anderson model with strong electron-phonon interaction(polaron regime) arxiv:1609.03749v1 [cond-mat.mes-hall] 13 Sep 2016 Amir Eskandari-asl a, a Department of physics,

More information

The interplay of flavour- and Polyakov-loop- degrees of freedom

The interplay of flavour- and Polyakov-loop- degrees of freedom The interplay of flavour- and Polyakov-loopdegrees of freedom A PNJL model analysis Simon Rößner, Nino Bratović, Thomas Hell and Wolfram Weise Physik Department Technische Universität München Thursday,

More information

NMR Dynamics and Relaxation

NMR Dynamics and Relaxation NMR Dynamics and Relaxation Günter Hempel MLU Halle, Institut für Physik, FG Festkörper-NMR 1 Introduction: Relaxation Two basic magnetic relaxation processes: Longitudinal relaxation: T 1 Relaxation Return

More information

Examples of Lifshitz topological transition in interacting fermionic systems

Examples of Lifshitz topological transition in interacting fermionic systems Examples of Lifshitz topological transition in interacting fermionic systems Joseph Betouras (Loughborough U. Work in collaboration with: Sergey Slizovskiy (Loughborough, Sam Carr (Karlsruhe/Kent and Jorge

More information

Quantum phase transitions and the Luttinger theorem.

Quantum phase transitions and the Luttinger theorem. Quantum phase transitions and the Luttinger theorem. Leon Balents (UCSB) Matthew Fisher (UCSB) Stephen Powell (Yale) Subir Sachdev (Yale) T. Senthil (MIT) Ashvin Vishwanath (Berkeley) Matthias Vojta (Karlsruhe)

More information

CFT approach to multi-channel SU(N) Kondo effect

CFT approach to multi-channel SU(N) Kondo effect CFT approach to multi-channel SU(N) Kondo effect Sho Ozaki (Keio Univ.) In collaboration with Taro Kimura (Keio Univ.) Seminar @ Chiba Institute of Technology, 2017 July 8 Contents I) Introduction II)

More information

Towards thermodynamics from lattice QCD with dynamical charm Project A4

Towards thermodynamics from lattice QCD with dynamical charm Project A4 Towards thermodynamics from lattice QCD with dynamical charm Project A4 Florian Burger Humboldt University Berlin for the tmft Collaboration: E.-M. Ilgenfritz (JINR Dubna), M. Müller-Preussker (HU Berlin),

More information

arxiv: v1 [cond-mat.str-el] 10 May 2011

arxiv: v1 [cond-mat.str-el] 10 May 2011 The Anderson impurity model with a narrow-band host: from orbital physics to the Kondo effect arxiv:5.983v [cond-mat.str-el] May Steffen Schäfer Aix-Marseille Université and Institut Matériaux Microélectronique

More information

The bosonic Kondo effect:

The bosonic Kondo effect: The bosonic Kondo effect: probing spin liquids and multicomponent cold gases Serge Florens Institut für Theorie der Kondensierten Materie (Karlsruhe) with: Lars Fritz, ITKM (Karlsruhe) Matthias Vojta,

More information

Summary of Mattuck Chapters 16 and 17

Summary of Mattuck Chapters 16 and 17 Summary of Mattuck Chapters 16 and 17 Tomas Petersson Växjö university 2008-02-05 1 Phonons form a Many-Body Viewpoint Hamiltonian for coupled Einstein phonons Definition of Einstein phonon propagator

More information

Monday, April 13. Today: equation of motion method (EOM) Dyson equation and Self-energy. Many-Body Green s Functions

Monday, April 13. Today: equation of motion method (EOM) Dyson equation and Self-energy. Many-Body Green s Functions Monday, April 13 Today: equation of motion method (EOM) Dyson equation and Self-energy Unperturbed propagator Take a system of non interacting fermions The unperturbed propagator is: ( ) or Unperturbed

More information

GENERATION OF COLORED NOISE

GENERATION OF COLORED NOISE International Journal of Modern Physics C, Vol. 12, No. 6 (2001) 851 855 c World Scientific Publishing Company GENERATION OF COLORED NOISE LORENZ BARTOSCH Institut für Theoretische Physik, Johann Wolfgang

More information

Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model

Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model FAIRNESS 2013, 15-21 September 1 Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model A Meistrenko 1, C Wesp 1, H van Hees 1,2 and C Greiner 1 1 Institut für Theoretische

More information

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions Lecture Models for heavy-ion collisions (Part III: transport models SS06: Dynamical models for relativistic heavy-ion collisions Quantum mechanical description of the many-body system Dynamics of heavy-ion

More information

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Frithjof B. Anders Institut für Theoretische Physik Universität Bremen Göttingen, December

More information

A guide to. Feynman diagrams in the many-body problem

A guide to. Feynman diagrams in the many-body problem A guide to. Feynman diagrams in the many-body problem Richard D. Mattuck SECOND EDITION PAGE Preface to second edition v Preface to first edition. vi i 0. The Many-Body Problem for Everybody 1 0.0 What

More information

Increasing localization

Increasing localization 4f Rare Earth Increasing localization 5f Actinide Localized Moment 3d Transition metal Outline: 1. Chemistry of Kondo. 2. Key Properties. 3. Tour of Heavy Fermions. 4. Anderson model: the atomic limit.

More information

Tritium β decay in pionless EFT

Tritium β decay in pionless EFT Ohio University June 0, 207 Recipe for EFT(/π) For momenta p < m π pions can be integrated out as degrees of freedom and only nucleons and external currents are left. Write down all possible terms of nucleons

More information

w2dynamics : operation and applications

w2dynamics : operation and applications w2dynamics : operation and applications Giorgio Sangiovanni ERC Kick-off Meeting, 2.9.2013 Hackers Nico Parragh (Uni Wü) Markus Wallerberger (TU) Patrik Gunacker (TU) Andreas Hausoel (Uni Wü) A solver

More information

Magnetic Moment Collapse drives Mott transition in MnO

Magnetic Moment Collapse drives Mott transition in MnO Magnetic Moment Collapse drives Mott transition in MnO J. Kuneš Institute of Physics, Uni. Augsburg in collaboration with: V. I. Anisimov, A. V. Lukoyanov, W. E. Pickett, R. T. Scalettar, D. Vollhardt,

More information

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Overview 2 1.Motivation and Introduction 4. 3PI DSE results 2. DSEs and BSEs 3. npi effective action 6. Outlook and conclusion 5. 3PI meson

More information

Theory Seminar Uni Marburg. Bose-Einstein Condensation and correlations in magnon systems

Theory Seminar Uni Marburg. Bose-Einstein Condensation and correlations in magnon systems Theory Seminar Uni Marburg 11 November, 2010 Bose-Einstein Condensation and correlations in magnon systems Peter Kopietz, Universität Frankfurt 1.) Bose-Einstein condensation 2.) Interacting magnons in

More information

1 From Gutzwiller Wave Functions to Dynamical Mean-Field Theory

1 From Gutzwiller Wave Functions to Dynamical Mean-Field Theory 1 From Gutzwiller Wave Functions to Dynamical Mean-Field Theory Dieter Vollhardt Center for Electronic Correlations and Magnetism University of Augsburg Contents 1 Introduction 2 1.1 Modeling of correlated

More information

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta C. Buragohain K. Damle M. Vojta Subir Sachdev Phys. Rev. Lett. 78, 943 (1997). Phys. Rev. B 57, 8307 (1998). Science 286, 2479 (1999). cond-mat/9912020 Quantum Phase Transitions, Cambridge University Press

More information

arxiv: v2 [cond-mat.str-el] 7 Jul 2016

arxiv: v2 [cond-mat.str-el] 7 Jul 2016 The Functional Integral formulation of the Schrieffer-Wolff transformation arxiv:165.2373v2 [cond-mat.str-el] 7 Jul 216 Farzaneh Zamani Email: farzaneh@pks.mpg.de Max Planck Institute for the Physics of

More information

Local moment physics in heavy electron systems

Local moment physics in heavy electron systems Local moment physics in heavy electron systems P. Coleman Center for Materials Theory, Department of Physics and Astronomy, Rutgers University, 136 Frelinghausen Road, Piscataway, NJ 08855, USA Abstract.

More information

Strong coupling resistivity in the Kondo model.

Strong coupling resistivity in the Kondo model. Strong coupling resistivity in the Kondo model. F. Lesage H. Saleur CRM-578 October 998 Centre de recherches mathématiques, Université de Montréal, C.P. 68 Succ. Centre-ville, Montréal, H3C 3J7. Department

More information

"From a theoretical tool to the lab"

From a theoretical tool to the lab N "From a theoretical tool to the lab" Aline Ramires Institute for Theoretical Studies - ETH - Zürich Cold Quantum Coffee ITP - Heidelberg University - 13th June 2017 ETH - Hauptgebäude The Institute for

More information

Quantum Cluster Methods (CPT/CDMFT)

Quantum Cluster Methods (CPT/CDMFT) Quantum Cluster Methods (CPT/CDMFT) David Sénéchal Département de physique Université de Sherbrooke Sherbrooke (Québec) Canada Autumn School on Correlated Electrons Forschungszentrum Jülich, Sept. 24,

More information

Pions in the quark matter phase diagram

Pions in the quark matter phase diagram Pions in the quark matter phase diagram Daniel Zabłocki Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski, Poland Institut für Physik, Universität Rostock, Germany Bogoliubov Laboratory of Theoretical

More information

Magnetic ordering of local moments

Magnetic ordering of local moments Magnetic ordering Types of magnetic structure Ground state of the Heisenberg ferromagnet and antiferromagnet Spin wave High temperature susceptibility Mean field theory Magnetic ordering of local moments

More information

Functional renormalization for ultracold quantum gases

Functional renormalization for ultracold quantum gases Functional renormalization for ultracold quantum gases Stefan Floerchinger (Heidelberg) S. Floerchinger and C. Wetterich, Phys. Rev. A 77, 053603 (2008); S. Floerchinger and C. Wetterich, arxiv:0805.2571.

More information

Lecture notes on many-body theory

Lecture notes on many-body theory Lecture notes on many-body theory Michele Fabrizio updated to 203, but still work in progress!! All comments are most welcome! Contents Landau-Fermi-liquid theory: Phenomenology 5. The Landau energy functional

More information