Dynamic properties of interacting bosons and magnons

Size: px
Start display at page:

Download "Dynamic properties of interacting bosons and magnons"

Transcription

1 Ultracold Quantum Gases beyond Equilibrium Natal, Brasil, September 27 October 1, 2010 Dynamic properties of interacting bosons and magnons Peter Kopietz, Universität Frankfurt collaboration: A. Kreisel, T. Kloss, L. Bartosch, F. Sauli, J. Hick (Frankfurt) A. Sinner (Augsburg) N. Hasselmann (Natal) A. Serga, B. Hillebrands (Kaiserslautern, experiment) references: Eur. Phys. J. B 71, 59 (2009) Phys. Rev. B 81, (2010) arxiv: and Phys. Rev. Lett. 102, (2009) outline: 1. Towards a non equilibrium many body theory for YIG 2. Spectral function of interacting bosons in 2D 1

2 1.Towards a non-equilibrium many-body theory for YIG Motivation: collaboration with experimental group of B. Hillebrands (Kaiserslautern) non-equilibrium dynamics of interacting magnons in YIG Experiment: microwave-pumping of magnons in YIG measurement of magnon distriubution via Brillouin light scattering 2

3 Parallel pumping of magnons in YIG by microwaves what is parallel pumping of magnons? 3

4 Parallel pumping of magnons in YIG by microwaves what is parallel pumping of magnons? two pumps in parallel: 4

5 Parallel pumping of magnons in YIG by microwaves what is parallel pumping of magnons? two pumps in parallel: in context of YIG: oscillating magnetic field is parallel to magnetization: Hamiltonian in Bogoliubov basis: time-dependent off-diagonal terms: 5

6 Parametric resonance what is parametric resonance? classical harmonic oscillator with harmonic frequency modulation: resonance condition: oscillator absorbs energy at a rate proportional to the energy it already has! history: discovered: Melde experiment, 1859 excite oscillations of string by periodically varying its tension at twice its resonance frequency theoretically explained: Rayleigh

7 History: parametric resonance in YIG H. Suhl, 1957, E. Schlömann et al, 1960s, V. E. Zakharov, V. S. L vov, S. S. Starobionets, 1970s minimal model: S-theory : time-dependent self-consistent Hartree- Fock approximation for magnon distributions functions weak points: no microscopic description of dissipation and damping possibility of BEC not included! goals: consistent quantum kinetic theory for magnons in YIG beyond Hartree-Fock include time-evolution of Bose-condendsate develop functional renormalization group for non-equilibrium 7

8 Toy model for parametric resonance T. Kloss, A. Kreisel, PK, PRB 2010 anharmonic oscillator with off-diagonal pumping: rotating reference frame: instability of non-interacting system for large pumping: for oscillator has negative mass non-interacting Hamiltonian not positive definite interactions stabilize ground state for large pumping 8

9 Time-dependent Hartree-Fock approximation ( S-theory ) order parameter Gross-Pitaevskii equation: connected correlation functions: kinetic equations: order parameter: Hamiltonian dynamics in effective potential (Hartree-Fock) 9

10 Functional integral formulation of the Keldysh technique T. Kloss, PK, in preparation 6 types of non-equilibrium Green functions: retarded: advanced: Keldysh: Keldysh component at equal times gives distribution function functional integral formulation (Kamenev 2004) 10

11 Non-perturbative method: functional renormalization group exact equation for change of generating functional of irreducible vertices as IR cutoff is reduced (Wetterich 1993) exact RG flow equations for all vertices flow of self-energy: 11

12 FRG for bosons out of equilibrium introduce RG flow parameter which cuts off long-time behavior eventually exact RG flow equation for non-equilibrium self-energy: see also Gasenzer, Pawlowski 2008 self-energy defines collision integral in quantum kinetic equation: 12

13 Out-scattering rate cutoff scheme problem: perturbation theory fails for long time dynamics (secular terms: U*t) solution: non-equilibrium dynamics from the functional RG! RG flow parameter: out scattering rate: make infinitesimal imaginary part finite parameter for the FRG and use it as flow 13

14 Comparison of exact solution of toy model with FRG toy model can be solved numerically exactly by solving time-dependent Schrödinger equation comparison with various approximations: 14

15 2. Interacting bosons: Bogoliubov theory (1947) Bogoliubov-shift: Bogoliubov mean-field Hamiltonian: condensate density: excitation energy: long wavelength excitations: sound! 15

16 Beyond mean-field: infrared divergencies Bogoliubov mean-field Hamiltonian: normal self-energy: anomalous self-energy: mean-field fails due to infrared divergent fluctuation corrections: for Ginzburg scale 16

17 Exact result: Nepomnyashi-identity (1975) anomalous self-energy vanishes at zero momentum/frequency: Bogoliubov approximation wrong: need non-perturbative methods! 17

18 Origin of infrared divergencies reason for IR divergence: coupling between transverse and longitudinal fluctuations and resulting divergence of longitudinal susceptibility (Patashinskii+Pokrovskii, JETP 1973) consequence: critical continuum in longitudinal part of spectral function (for bosons not directly measurable!) experimentally accessible: longitudinal spin structure factor in quantum antiferromagnets: BEC of magnons! (Kreisel, Hasselmann, PK, PRL 2007) 18

19 FRG flow equations for order parameter and self-energies order parameter: normal self-energy: anomalous self-energy: 19

20 Low-density truncation: retain only two-body interactions bare action: ansatz for generating functional of irreducible vertices: depends on condensate density momentum-dependent functions and two frequency- and and analytic non-analytic 20

21 Parametrization of threeand four-point vertices: normal and anomalous self-energy: Hugenholtz-Pines relation Nepomnyashchy identity three-legged vertices: effective interaction: 21

22 Results: spectral function and quasi-particle damping in 2D spectral function: quasi-particle damping: 22

23 What about experiments? Cold atom experiments can now measure renormalized excitation spectrum of strongly interacting bosons: 23

24 Summary+Outlook magnon gas in yttrium-iron garnet: model system for non-equilibrium physics of interacting bosons functional RG out of equilibrium: non-perturbative calculation of time-evolution functional RG in equilibrium: non-perturbative calculation of spectral function of interacting bosons 24

Non-equilibrium time evolution of bosons from the functional renormalization group

Non-equilibrium time evolution of bosons from the functional renormalization group March 14, 2013, Condensed Matter Journal Club University of Florida at Gainesville Non-equilibrium time evolution of bosons from the functional renormalization group Peter Kopietz, Universität Frankfurt

More information

Theory Seminar Uni Marburg. Bose-Einstein Condensation and correlations in magnon systems

Theory Seminar Uni Marburg. Bose-Einstein Condensation and correlations in magnon systems Theory Seminar Uni Marburg 11 November, 2010 Bose-Einstein Condensation and correlations in magnon systems Peter Kopietz, Universität Frankfurt 1.) Bose-Einstein condensation 2.) Interacting magnons in

More information

Present and future prospects of the (functional) renormalization group

Present and future prospects of the (functional) renormalization group Schladming Winter School 2011: Physics at all scales: the renormalization group Present and future prospects of the (functional) renormalization group Peter Kopietz, Universität Frankfurt panel discussion

More information

Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets

Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets Talk at Rutherford Appleton Lab, March 13, 2007 Peter Kopietz, Universität Frankfurt collaborators: Nils Hasselmann,

More information

Andreas Kreisel. Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main. July,

Andreas Kreisel. Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main. July, BEC of magnons and spin wave interactions in QAF Andreas Kreisel Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main July, 18 2007 collaborators: N. Hasselmann, P. Kopietz

More information

Kolloquium Universität Innsbruck October 13, The renormalization group: from the foundations to modern applications

Kolloquium Universität Innsbruck October 13, The renormalization group: from the foundations to modern applications Kolloquium Universität Innsbruck October 13, 2009 The renormalization group: from the foundations to modern applications Peter Kopietz, Universität Frankfurt 1.) Historical introduction: what is the RG?

More information

FRG approach to interacting fermions with partial bosonization: from weak to strong coupling

FRG approach to interacting fermions with partial bosonization: from weak to strong coupling FRG approach to interacting fermions with partial bosonization: from weak to strong coupling Talk at conference ERG08, Heidelberg, June 30, 2008 Peter Kopietz, Universität Frankfurt collaborators: Lorenz

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

Bottleneck accumulation of hybrid bosons in a ferrimagnet

Bottleneck accumulation of hybrid bosons in a ferrimagnet Bottleneck accumulation of hybrid bosons in a ferrimagnet Alexander A. Serga Fachbereich Physik and Landesforschungszentrum OPTIMAS Technische Universität Kaiserslautern, Germany www.physik.uni-kl.de/hillebrands

More information

Landau Theory of Fermi Liquids : Equilibrium Properties

Landau Theory of Fermi Liquids : Equilibrium Properties Quantum Liquids LECTURE I-II Landau Theory of Fermi Liquids : Phenomenology and Microscopic Foundations LECTURE III Superfluidity. Bogoliubov theory. Bose-Einstein condensation. LECTURE IV Luttinger Liquids.

More information

Interaction between atoms

Interaction between atoms Interaction between atoms MICHA SCHILLING HAUPTSEMINAR: PHYSIK DER KALTEN GASE INSTITUT FÜR THEORETISCHE PHYSIK III UNIVERSITÄT STUTTGART 23.04.2013 Outline 2 Scattering theory slow particles / s-wave

More information

Spin Transport using Magneto-elastic Bosons Vitaliy I. Vasyuchka

Spin Transport using Magneto-elastic Bosons Vitaliy I. Vasyuchka Spin Transport using Magneto-elastic Bosons Vitaliy I. Vasyuchka Fachbereich Physik and Landesforschungszentrum OPTIMAS Technische Universität Kaiserslautern Germany Collaborators Team University of Kaiserslautern

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke BCS-BEC Crossover Hauptseminar: Physik der kalten Gase Robin Wanke Outline Motivation Cold fermions BCS-Theory Gap equation Feshbach resonance Pairing BEC of molecules BCS-BEC-crossover Conclusion 2 Motivation

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University January 25, 2011 2 Chapter 12 Collective modes in interacting Fermi

More information

The Turbulent Universe

The Turbulent Universe The Turbulent Universe WMAP Science Team J. Berges ALICE/CERN Universität Heidelberg JILA/NIST Festkolloquium der Karl Franzens Universität Graz FWF Doktoratskolleg Hadrons in Vacuum, Nuclei and Stars

More information

Non equilibrium Ferromagnetism and Stoner transition in an ultracold Fermi gas

Non equilibrium Ferromagnetism and Stoner transition in an ultracold Fermi gas Non equilibrium Ferromagnetism and Stoner transition in an ultracold Fermi gas Gareth Conduit, Ehud Altman Weizmann Institute of Science See: Phys. Rev. A 82, 043603 (2010) and arxiv: 0911.2839 Disentangling

More information

Impurities and disorder in systems of ultracold atoms

Impurities and disorder in systems of ultracold atoms Impurities and disorder in systems of ultracold atoms Eugene Demler Harvard University Collaborators: D. Abanin (Perimeter), K. Agarwal (Harvard), E. Altman (Weizmann), I. Bloch (MPQ/LMU), S. Gopalakrishnan

More information

Bogoliubov theory of disordered Bose-Einstein condensates

Bogoliubov theory of disordered Bose-Einstein condensates Bogoliubov theory of disordered Bose-Einstein condensates Christopher Gaul Universidad Complutense de Madrid BENASQUE 2012 DISORDER Bogoliubov theory of disordered Bose-Einstein condensates Abstract The

More information

.O. Demokritov niversität Münster, Germany

.O. Demokritov niversität Münster, Germany Quantum Thermodynamics of Magnons.O. Demokritov niversität Münster, Germany Magnon Frequency Population BEC-condensates http://www.uni-muenster.de/physik/ap/demokritov/ k z k y Group of NonLinea Magnetic

More information

Solution of the Anderson impurity model via the functional renormalization group

Solution of the Anderson impurity model via the functional renormalization group Solution of the Anderson impurity model via the functional renormalization group Simon Streib, Aldo Isidori, and Peter Kopietz Institut für Theoretische Physik, Goethe-Universität Frankfurt Meeting DFG-Forschergruppe

More information

Andreas Kreisel. University of Florida, Gainesville, FL. Bosons: Spin-waves and BEC in thin-film ferromagnets spin-wave theory interactions and BEC

Andreas Kreisel. University of Florida, Gainesville, FL. Bosons: Spin-waves and BEC in thin-film ferromagnets spin-wave theory interactions and BEC Andreas Kreisel University of Florida, Gainesville, FL Bosons: Spin-waves and BEC in thin-film ferromagnets spin-wave theory interactions and BEC Fermions: Spin fluctuation pairing and symmetry of order

More information

The Higgs particle in condensed matter

The Higgs particle in condensed matter The Higgs particle in condensed matter Assa Auerbach, Technion N. H. Lindner and A. A, Phys. Rev. B 81, 054512 (2010) D. Podolsky, A. A, and D. P. Arovas, Phys. Rev. B 84, 174522 (2011)S. Gazit, D. Podolsky,

More information

in BECs Fabian Grusdt Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Germany

in BECs Fabian Grusdt Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Germany 1 Polaron Seminar, AG Widera AG Fleischhauer, 05/06/14 Introduction to polaron physics in BECs Fabian Grusdt Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Germany Graduate

More information

Fundamentals and New Frontiers of Bose Einstein Condensation

Fundamentals and New Frontiers of Bose Einstein Condensation Contents Preface v 1. Fundamentals of Bose Einstein Condensation 1 1.1 Indistinguishability of Identical Particles.......... 1 1.2 Ideal Bose Gas in a Uniform System............ 3 1.3 Off-Diagonal Long-Range

More information

Equation of state of the unitary Fermi gas

Equation of state of the unitary Fermi gas Equation of state of the unitary Fermi gas Igor Boettcher Institute for Theoretical Physics, University of Heidelberg with S. Diehl, J. M. Pawlowski, and C. Wetterich C o ld atom s Δ13, 11. 1. 2013 tio

More information

Part III: Impurities in Luttinger liquids

Part III: Impurities in Luttinger liquids Functional RG for interacting fermions... Part III: Impurities in Luttinger liquids 1. Luttinger liquids 2. Impurity effects 3. Microscopic model 4. Flow equations 5. Results S. Andergassen, T. Enss (Stuttgart)

More information

5. Gross-Pitaevskii theory

5. Gross-Pitaevskii theory 5. Gross-Pitaevskii theory Outline N noninteracting bosons N interacting bosons, many-body Hamiltonien Mean-field approximation, order parameter Gross-Pitaevskii equation Collapse for attractive interaction

More information

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 Kondo Effect in Metals and Quantum Dots Jan von Delft

More information

Many-Body Problems and Quantum Field Theory

Many-Body Problems and Quantum Field Theory Philippe A. Martin Francois Rothen Many-Body Problems and Quantum Field Theory An Introduction Translated by Steven Goldfarb, Andrew Jordan and Samuel Leach Second Edition With 102 Figures, 7 Tables and

More information

Dynamical phase transition and prethermalization. Mobile magnetic impurity in Fermi superfluids

Dynamical phase transition and prethermalization. Mobile magnetic impurity in Fermi superfluids Dynamical phase transition and prethermalization Pietro Smacchia, Alessandro Silva (SISSA, Trieste) Dima Abanin (Perimeter Institute, Waterloo) Michael Knap, Eugene Demler (Harvard) Mobile magnetic impurity

More information

Spinor Bose gases lecture outline

Spinor Bose gases lecture outline Spinor Bose gases lecture outline 1. Basic properties 2. Magnetic order of spinor Bose-Einstein condensates 3. Imaging spin textures 4. Spin-mixing dynamics 5. Magnetic excitations We re here Coupling

More information

Spontaneous symmetry breaking in fermion systems with functional RG

Spontaneous symmetry breaking in fermion systems with functional RG Spontaneous symmetry breaking in fermion systems with functional RG Andreas Eberlein and Walter Metzner MPI for Solid State Research, Stuttgart Lefkada, September 24 A. Eberlein and W. Metzner Spontaneous

More information

Green's Function in. Condensed Matter Physics. Wang Huaiyu. Alpha Science International Ltd. SCIENCE PRESS 2 Beijing \S7 Oxford, U.K.

Green's Function in. Condensed Matter Physics. Wang Huaiyu. Alpha Science International Ltd. SCIENCE PRESS 2 Beijing \S7 Oxford, U.K. Green's Function in Condensed Matter Physics Wang Huaiyu SCIENCE PRESS 2 Beijing \S7 Oxford, U.K. Alpha Science International Ltd. CONTENTS Part I Green's Functions in Mathematical Physics Chapter 1 Time-Independent

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA

Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA Lianyi He ( 何联毅 ) Department of Physics, Tsinghua University 2016 Hangzhou Workshop on Quantum Degenerate Fermi Gases,

More information

The XY model, the Bose Einstein Condensation and Superfluidity in 2d (I)

The XY model, the Bose Einstein Condensation and Superfluidity in 2d (I) The XY model, the Bose Einstein Condensation and Superfluidity in 2d (I) B.V. COSTA UFMG BRAZIL LABORATORY FOR SIMULATION IN PHYSICS A Guide to Monte Carlo Simulations in Statistical Physics by Landau

More information

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality Hans-Henning Klauss Institut für Festkörperphysik TU Dresden 1 References [1] Stephen Blundell, Magnetism in Condensed

More information

Towards a quantitative FRG approach for the BCS-BEC crossover

Towards a quantitative FRG approach for the BCS-BEC crossover Towards a quantitative FRG approach for the BCS-BEC crossover Michael M. Scherer Theoretisch Physikalisches Institut, Jena University in collaboration with Sebastian Diehl, Stefan Flörchinger, Holger Gies,

More information

Hole dynamics in frustrated antiferromagnets: Coexistence of many-body and free-like excitations

Hole dynamics in frustrated antiferromagnets: Coexistence of many-body and free-like excitations Hole dynamics in frustrated antiferromagnets: Coexistence of many-body and free-like excitations Collaborators: Luis O. Manuel Instituto de Física Rosario Rosario, Argentina Adolfo E. Trumper (Rosario)

More information

Mott metal-insulator transition on compressible lattices

Mott metal-insulator transition on compressible lattices Mott metal-insulator transition on compressible lattices Markus Garst Universität zu Köln T p in collaboration with : Mario Zacharias (Köln) Lorenz Bartosch (Frankfurt) T c Mott insulator p c T metal pressure

More information

Reference for most of this talk:

Reference for most of this talk: Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding ultracold Fermi gases. in Ultracold Fermi Gases, Proceedings of the International School

More information

A guide to. Feynman diagrams in the many-body problem

A guide to. Feynman diagrams in the many-body problem A guide to. Feynman diagrams in the many-body problem Richard D. Mattuck SECOND EDITION PAGE Preface to second edition v Preface to first edition. vi i 0. The Many-Body Problem for Everybody 1 0.0 What

More information

1 Equal-time and Time-ordered Green Functions

1 Equal-time and Time-ordered Green Functions 1 Equal-time and Time-ordered Green Functions Predictions for observables in quantum field theories are made by computing expectation values of products of field operators, which are called Green functions

More information

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas / 6 Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas Giovanni Italo Martone with G. V. Shlyapnikov Worhshop on Exploring Nuclear Physics with Ultracold Atoms

More information

Spin- and heat pumps from approximately integrable spin-chains Achim Rosch, Cologne

Spin- and heat pumps from approximately integrable spin-chains Achim Rosch, Cologne Spin- and heat pumps from approximately integrable spin-chains Achim Rosch, Cologne Zala Lenarčič, Florian Lange, Achim Rosch University of Cologne theory of weakly driven quantum system role of approximate

More information

Collective behavior, from particles to fields

Collective behavior, from particles to fields 978-0-51-87341-3 - Statistical Physics of Fields 1 Collective behavior, from particles to fields 1.1 Introduction One of the most successful aspects of physics in the twentieth century was revealing the

More information

Landau damping of transverse quadrupole oscillations of an elongated Bose-Einstein condensate

Landau damping of transverse quadrupole oscillations of an elongated Bose-Einstein condensate PHYSICAL REVIEW A 67, 053607 2003 Landau damping of transverse quadrupole oscillations of an elongated Bose-Einstein condensate M. Guilleumas 1 and L. P. Pitaevskii 2,3 1 Departament d Estructura i Constituents

More information

Quasi-1d Antiferromagnets

Quasi-1d Antiferromagnets Quasi-1d Antiferromagnets Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Quantum Fluids, Nordita 2007 Outline Motivation: Quantum magnetism and the search for spin liquids Neutron

More information

INTERACTING BOSE GAS AND QUANTUM DEPLETION

INTERACTING BOSE GAS AND QUANTUM DEPLETION 922 INTERACTING BOSE GAS AND QUANTUM DEPLETION Chelagat, I., *Tanui, P.K., Khanna, K.M.,Tonui, J.K., Murunga G.S.W., Chelimo L.S.,Sirma K. K., Cheruiyot W.K. &Masinde F. W. Department of Physics, University

More information

Positronium in Basis Light-front Quantization

Positronium in Basis Light-front Quantization Positronium in Basis Light-front Quantization Xingbo Zhao With Yang Li, Pieter Maris, James P. Vary Institute of Modern Physics Chinese Academy of Sciences Lanzhou, China Lightcone 2016, Lisbon, Portugal,

More information

We can then linearize the Heisenberg equation for in the small quantity obtaining a set of linear coupled equations for and :

We can then linearize the Heisenberg equation for in the small quantity obtaining a set of linear coupled equations for and : Wednesday, April 23, 2014 9:37 PM Excitations in a Bose condensate So far: basic understanding of the ground state wavefunction for a Bose-Einstein condensate; We need to know: elementary excitations in

More information

Towards Quantum Gravity Measurement by Cold Atoms

Towards Quantum Gravity Measurement by Cold Atoms Towards Quantum Gravity Measurement by Cold Atoms SUPA, RAL, Sonangol, IMechE, IOP Quantum Gravity and Gauge Group University of Aberdeen University of Nottingham Quantum Fields, Gravity & Information

More information

Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length

Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length I. Vidanović, A. Balaž, H. Al-Jibbouri 2, A. Pelster 3 Scientific Computing Laboratory, Institute of Physics Belgrade, Serbia 2

More information

Probing the Optical Conductivity of Harmonically-confined Quantum Gases!

Probing the Optical Conductivity of Harmonically-confined Quantum Gases! Probing the Optical Conductivity of Harmonically-confined Quantum Gases! Eugene Zaremba Queen s University, Kingston, Ontario, Canada Financial support from NSERC Work done in collaboration with Ed Taylor

More information

Magnetic ordering of local moments

Magnetic ordering of local moments Magnetic ordering Types of magnetic structure Ground state of the Heisenberg ferromagnet and antiferromagnet Spin wave High temperature susceptibility Mean field theory Magnetic ordering of local moments

More information

Quantum Electrodynamics with Ultracold Atoms

Quantum Electrodynamics with Ultracold Atoms Quantum Electrodynamics with Ultracold Atoms Valentin Kasper Harvard University Collaborators: F. Hebenstreit, F. Jendrzejewski, M. K. Oberthaler, and J. Berges Motivation for QED (1+1) Theoretical Motivation

More information

Non-Equilibrium Physics with Quantum Gases

Non-Equilibrium Physics with Quantum Gases Non-Equilibrium Physics with Quantum Gases David Weiss Yang Wang Laura Adams Cheng Tang Lin Xia Aishwarya Kumar Josh Wilson Teng Zhang Tsung-Yao Wu Neel Malvania NSF, ARO, DARPA, Outline Intro: cold atoms

More information

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION P. W. Atkins and R. S. Friedman Molecular Quantum Mechanics THIRD EDITION Oxford New York Tokyo OXFORD UNIVERSITY PRESS 1997 Introduction and orientation 1 Black-body radiation 1 Heat capacities 2 The

More information

MASTER OF SCIENCE IN PHYSICS

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCE IN PHYSICS The Master of Science in Physics program aims to develop competent manpower to fill the demands of industry and academe. At the end of the program, the students should have

More information

Superfluidity and spin superfluidity (in spinor Bose gases and magnetic insulators)

Superfluidity and spin superfluidity (in spinor Bose gases and magnetic insulators) Superfluidity and spin superfluidity (in spinor Bose gases and magnetic insulators) Rembert Duine Institute for Theoretical Physics, Utrecht University Department of Applied Physics, Eindhoven University

More information

Analytic continuation of functional renormalization group equations

Analytic continuation of functional renormalization group equations Analytic continuation of functional renormalization group equations Stefan Flörchinger (CERN) Aachen, 07.03.2012 Short outline Quantum effective action and its analytic continuation Functional renormalization

More information

Lecture 2: Weak Interactions and BEC

Lecture 2: Weak Interactions and BEC Lecture 2: Weak Interactions and BEC Previous lecture: Ideal gas model gives a fair intuition for occurrence of BEC but is unphysical (infinite compressibility, shape of condensate...) Order parameter

More information

Separation of molecules by chirality using circularly polarized light

Separation of molecules by chirality using circularly polarized light Separation of molecules by chirality using circularly polarized light Anton Andreev Boris Spivak Department of Physics University of Washington Phys. Rev. Lett. 102, 063004 (2009) Quantum Coherent Properties

More information

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles October, 011 PROGRESS IN PHYSICS olume 4 Ultracold Fermi Bose Gases Spinless Bose Charged Sound Particles ahan N. Minasyan alentin N. Samoylov Scientific Center of Applied Research, JINR, Dubna, 141980,

More information

Lecture 2: Ultracold fermions

Lecture 2: Ultracold fermions Lecture 2: Ultracold fermions Fermions in optical lattices. Fermi Hubbard model. Current state of experiments Lattice modulation experiments Doublon lifetimes Stoner instability Ultracold fermions in optical

More information

Bose-Hubbard Model (BHM) at Finite Temperature

Bose-Hubbard Model (BHM) at Finite Temperature Bose-Hubbard Model (BHM) at Finite Temperature - a Layman s (Sebastian Schmidt) proposal - pick up Diploma work at FU-Berlin with PD Dr. Axel Pelster (Uni Duisburg-Essen) ~ Diagrammatic techniques, high-order,

More information

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT ICAP Summer School, Paris, 2012 Three lectures on quantum gases Wolfgang Ketterle, MIT Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding

More information

The Superfluid Phase s of Helium 3

The Superfluid Phase s of Helium 3 The Superfluid Phase s of Helium 3 DIETER VOLLHARD T Rheinisch-Westfälische Technische Hochschule Aachen, Federal Republic of German y PETER WÖLFL E Universität Karlsruhe Federal Republic of Germany PREFACE

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Phase Diagram for Magnon Condensate in Yttrium Iron Garnet film

Phase Diagram for Magnon Condensate in Yttrium Iron Garnet film (Accepted by Nature Scientific Reports: Jan. 9, 013) Phase Diagram for Magnon Condensate in Yttrium Iron Garnet film Phase Diagram. We consider a YIG film of thickness d with in-plane magnetic field H

More information

From cavity optomechanics to the Dicke quantum phase transition

From cavity optomechanics to the Dicke quantum phase transition From cavity optomechanics to the Dicke quantum phase transition (~k; ~k)! p Rafael Mottl Esslinger Group, ETH Zurich Cavity Optomechanics Conference 2013, Innsbruck Motivation & Overview Engineer optomechanical

More information

Nonequilibrium dynamics of interacting systems of cold atoms

Nonequilibrium dynamics of interacting systems of cold atoms Nonequilibrium dynamics of interacting systems of cold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin,

More information

Aditi Mitra New York University

Aditi Mitra New York University Superconductivity following a quantum quench Aditi Mitra New York University Supported by DOE-BES and NSF- DMR 1 Initially system of free electrons. Quench involves turning on attractive pairing interactions.

More information

2D Bose and Non-Fermi Liquid Metals

2D Bose and Non-Fermi Liquid Metals 2D Bose and Non-Fermi Liquid Metals MPA Fisher, with O. Motrunich, D. Sheng, E. Gull, S. Trebst, A. Feiguin KITP Cold Atoms Workshop 10/5/2010 Interest: A class of exotic gapless 2D Many-Body States a)

More information

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany)

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany) Phase Diagram of interacting Bose gases in one-dimensional disordered optical lattices R. Citro In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L.

More information

Anomalous scaling at non-thermal fixed points of Gross-Pitaevskii and KPZ turbulence

Anomalous scaling at non-thermal fixed points of Gross-Pitaevskii and KPZ turbulence Anomalous scaling at non-thermal fixed points of Gross-Pitaevskii and KPZ turbulence Thomas Gasenzer Steven Mathey Jan M. Pawlowski ITP - Heidelberg 24 September 2014 Non-thermal fixed points Non-thermal

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

Cluster Functional Renormalization Group

Cluster Functional Renormalization Group Cluster Functional Renormalization Group Johannes Reuther Free University Berlin Helmholtz-Center Berlin California Institute of Technology (Pasadena) Lefkada, September 26, 2014 Johannes Reuther Cluster

More information

Summary lecture IX. The electron-light Hamilton operator reads in second quantization

Summary lecture IX. The electron-light Hamilton operator reads in second quantization Summary lecture IX The electron-light Hamilton operator reads in second quantization Absorption coefficient α(ω) is given by the optical susceptibility Χ(ω) that is determined by microscopic polarization

More information

Functional renormalization for ultracold quantum gases

Functional renormalization for ultracold quantum gases Functional renormalization for ultracold quantum gases Stefan Floerchinger (Heidelberg) S. Floerchinger and C. Wetterich, Phys. Rev. A 77, 053603 (2008); S. Floerchinger and C. Wetterich, arxiv:0805.2571.

More information

Tunneling Into a Luttinger Liquid Revisited

Tunneling Into a Luttinger Liquid Revisited Petersburg Nuclear Physics Institute Tunneling Into a Luttinger Liquid Revisited V.Yu. Kachorovskii Ioffe Physico-Technical Institute, St.Petersburg, Russia Co-authors: Alexander Dmitriev (Ioffe) Igor

More information

The Gutzwiller Density Functional Theory

The Gutzwiller Density Functional Theory The Gutzwiller Density Functional Theory Jörg Bünemann, BTU Cottbus I) Introduction 1. Model for an H 2 -molecule 2. Transition metals and their compounds II) Gutzwiller variational theory 1. Gutzwiller

More information

Loop current order in optical lattices

Loop current order in optical lattices JQI Summer School June 13, 2014 Loop current order in optical lattices Xiaopeng Li JQI/CMTC Outline Ultracold atoms confined in optical lattices 1. Why we care about lattice? 2. Band structures and Berry

More information

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9 Preface v Chapter 1 Introduction 1 1.1 Prerequisites and textbooks......................... 1 1.2 Physical phenomena and theoretical tools................. 5 1.3 The path integrals..............................

More information

Vladimir S. Melezhik. Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia

Vladimir S. Melezhik. Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia Vladimir S. Melezhik Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia BRZIL-JINR FORUM, Dubna 18 June 2015 Results were obtained in collaboration with Peter

More information

Dipolar Interactions and Rotons in Atomic Quantum Gases. Falk Wächtler. Workshop of the RTG March 13., 2014

Dipolar Interactions and Rotons in Atomic Quantum Gases. Falk Wächtler. Workshop of the RTG March 13., 2014 Dipolar Interactions and Rotons in Ultracold Atomic Quantum Gases Workshop of the RTG 1729 Lüneburg March 13., 2014 Table of contents Realization of dipolar Systems Erbium 1 Realization of dipolar Systems

More information

BEC in one dimension

BEC in one dimension BEC in one dimension Tilmann John 11. Juni 2013 Outline 1 one-dimensional BEC 2 theoretical description Tonks-Girardeau gas Interaction exact solution (Lieb and Liniger) 3 experimental realization 4 conclusion

More information

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Leonard Fister, Jan M. Pawlowski, Universität Heidelberg... work in progress ERG Corfu - September 2 Motivation ultimate goal: computation

More information

Spinons and triplons in spatially anisotropic triangular antiferromagnet

Spinons and triplons in spatially anisotropic triangular antiferromagnet Spinons and triplons in spatially anisotropic triangular antiferromagnet Oleg Starykh, University of Utah Leon Balents, UC Santa Barbara Masanori Kohno, NIMS, Tsukuba PRL 98, 077205 (2007); Nature Physics

More information

I. Collective Behavior, From Particles to Fields

I. Collective Behavior, From Particles to Fields I. Collective Behavior, From Particles to Fields I.A Introduction The object of the first part of this course was to introduce the principles of statistical mechanics which provide a bridge between the

More information

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Quasi-1d Frustrated Antiferromagnets Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Outline Frustration in quasi-1d systems Excitations: magnons versus spinons Neutron scattering

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 2 Aug 2004

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 2 Aug 2004 Ground state energy of a homogeneous Bose-Einstein condensate beyond Bogoliubov Christoph Weiss and André Eckardt Institut für Physik, Carl von Ossietzky Universität, D-6 Oldenburg, Germany (Dated: November

More information

Explana'on of the Higgs par'cle

Explana'on of the Higgs par'cle Explana'on of the Higgs par'cle Condensed ma7er physics: The Anderson- Higgs excita'on Press release of Nature magazine Unity of Physics laws fev pev nev µev mev ev kev MeV GeV TeV pk nk µk mk K Cold atoms

More information

Spinon magnetic resonance. Oleg Starykh, University of Utah

Spinon magnetic resonance. Oleg Starykh, University of Utah Spinon magnetic resonance Oleg Starykh, University of Utah May 17-19, 2018 Examples of current literature 200 cm -1 = 6 THz Spinons? 4 mev = 1 THz The big question(s) What is quantum spin liquid? No broken

More information

Quantum superpositions and correlations in coupled atomic-molecular BECs

Quantum superpositions and correlations in coupled atomic-molecular BECs Quantum superpositions and correlations in coupled atomic-molecular BECs Karén Kheruntsyan and Peter Drummond Department of Physics, University of Queensland, Brisbane, AUSTRALIA Quantum superpositions

More information

DYNAMICS of a QUANTUM VORTEX

DYNAMICS of a QUANTUM VORTEX PCE STAMP DYNAMICS of a QUANTUM VORTEX (ORLANDO, Dec 21st, 2010) Physics & Astronomy UBC Vancouver Pacific Institute for Theoretical Physics DYNAMICS of a QUANTUM VORTEX L THOMPSON & PCE STAMP I WILL TALK

More information

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois BCS Pairing Dynamics 1 ShengQuan Zhou Dec.10, 2006, Physics Department, University of Illinois Abstract. Experimental control over inter-atomic interactions by adjusting external parameters is discussed.

More information

Quantum Quenches in Extended Systems

Quantum Quenches in Extended Systems Quantum Quenches in Extended Systems Spyros Sotiriadis 1 Pasquale Calabrese 2 John Cardy 1,3 1 Oxford University, Rudolf Peierls Centre for Theoretical Physics, Oxford, UK 2 Dipartimento di Fisica Enrico

More information

(Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System

(Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System (Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System Daisuke Satow (RIKEN/BNL) Collaborators: Jean-Paul Blaizot (Saclay CEA, France) Yoshimasa Hidaka (RIKEN, Japan) Supersymmetry

More information