NMR Dynamics and Relaxation

Size: px
Start display at page:

Download "NMR Dynamics and Relaxation"

Transcription

1 NMR Dynamics and Relaxation Günter Hempel MLU Halle, Institut für Physik, FG Festkörper-NMR 1

2 Introduction: Relaxation Two basic magnetic relaxation processes: Longitudinal relaxation: T 1 Relaxation Return to equilibrium Non-equilibrium states: Non-Boltzmannian level populations Transverse relaxation: T transverse phase correlations

3 Relaxation Thermal motion spin interactions Dipol-dipol interaction Chemical shift anisotropy Quadrupolar interaction Scalar coupling Spin-rotational interaction Nuclear spin system is forced to relax 3

4 Relaxation temperature dependence Two groups of relaxation times: ln T T 1, T 1ρ, T 1D, T SE, T eff T, T SE, T IS 1/T 4

5 Dipole-dipole interaction B 0 S 1 Detecting the resonance of the S spins in the neighbourhood of I we observe a freqency shift caused by the field of the I spin. I S B local = B 0 + B = B res = 0 + Local field > 0 for position 1 but < 0 for position. If I is antiparallel to B 0 then B and change sign. 5

6 Dipole-dipole interaction N S S N S N N S N S S N N S N S S N S N N S S N 6

7 Dipole-dipole interaction + thermal motion 7

8 Anisotropy of chemical shift x xx z B (1 ) B loc xx 0 z zz x B (1 ) B loc zz 0 The magnitude of the shielding of a nucleus depends on the spatial orientation of the electron cloud surrounding the nucleus. 8

9 Chemical Shift Anisotropy (CSA) B 0 z B loc x B 0X B 0Z B loc X, (1 XX) B 0X B loc Z, (1 ZZ) B 0Z H I σ B CSA 0 9

10 CSA + thermal motion 10

11 Quadrupolar interaction Nuclei with spin > 1/: Non-spherical charge distribution. electrical quadrupole moment eq This interacts with the electric field gradient eq caused by the electron shell. I = 1/ I 1 H Qu µ 0 eqq 1 3IZ II 1 I I 4 4I I 1 Quadrupole coupling constant: C q = e qq/h 11

12 Quadrupolar interaction H NMR = H Z + H Q (+ H CS ) I=1 I=5/ Zeeman 1 st order H Q nd order H Q -h 0 m (hc q /40)(3cos -1) (9hC q / ) H Z H Q -1 5(sin + sin 4 ) 0 3(sin 4 -sin ) +1 (sin 4 -sin ) observed splittings: cos 1 angle with B 0 -(sin 4 -sin ) -3(sin 4 -sin ) -5(sin + sin 4 ) 1

13 Scalar interaction H J I I J 1 Energy exchange between different nuclei Spin-rotation interaction H SR I C F Interaction of nuclear spin with the angular momentum of the molecule. 13

14 Effectiveness of the interactions I > ½: I = ½, I = ½, Quadrupolar interaction dominates (except on highly symmetric sites). small nuclei ( 1 H, 13 C, 9 Si), not too large fields: Dipolar interaction determines relaxation. large B 0 and/or larger nuclei: chemical-shift anisotropy can be the strongest mechanism. Spin-rotation interaction: Only detectable for small molecules and high temperatures Scalar interaction can be neglected as relaxation mechanism in almost all cases 14

15 Transitions between levels H H H Zeeman 't No fluctuation ω E / Medium fluctuation ω E / Fast fluctuation ω E / 15

16 Dephasing evolution evolution 16

17 Questions How we can obtain the relaxation time if the transition probability would be known? Master equations How to obtain the transition probability? time-dependent perturbation theory What is the frequency of a random process? description by correlation functions 17

18 Random functions Example: Two functions with values ±1 which are equally distributed, i.e. f = 0 Randomly changing sign. But they differ in the rate of change. f(t) 1 fs(t) t f f (t) f(t) How to define a frequency of such a function? t 18

19 Correlation function Definition autocorrelation function: * K τ f t f t τ t Properties: τ 0 : K 0 f t (Mean square) τ : lim K τ f t (Square of the mean value) τ because: There is no correlation between f(t) and f(t+τ) hence the averaging of the product ia the product of the averages. 19

20 0

21 Numeric example: Resulting correlation function 1,0 0,5 K s () K() K f () 0,0-0,

22 Real systems Averaging over much more data points. Spectral density: () = K () τ J ω FT{ } Markov processes: 1,0 Exponential correlations τ c : correlation time () exp - τ K τ = K0 τc J() / x10-3 s 0,5 Example: τ c = 10-3 s Spectral density: K c J ω τ 0 1 ωτ c 0, log /( Hz)

23 Spectral densities Markov process: log J() c =10-3 s c =10-6 s c =10-9 s log ( /) Other examples: See Noack, F., Nuclear Magnetic Relaxation Spectroscopy, in NMR Basic Principles and Progress Vol. 3, pp. 84, Springer

24 Two-level system (One spin 1/) W AB W AB Level A: N A spins Level B: N B spins Magnetisation ΔN = N B N A Master equation: Solution: dn A dt dn B dt NW NW NW B BA A AB NW A AB B BA AB BA N N N N e 0 W W t ΔN 1 WAB T 1 W BA ΔN t 4

25 Four-level system (Two spins 1/) 1 3 W 13 W 1 Magnetisation N 3 N 1, because level does not contribute W1 dn 1 dt dn dt dn dt 3 Master equation: W N W N W N W N W N W N W N W N W N W N W N N N N N e Solution: 0 W W t 1 W W T

26 Time-dependent perturbation theory 1st order: Transition probability per time unit: 1 t W lim φ H ' t ' φ exp iω t' dt' ; ω t AB A B AB AB t 0 E A E B Transformation into a form where we can realize the correlation of H at different times: 1 t WAB FT KAB τ ; KAB τ H ' AB th ' AB * t τ 1 Particularly: Dipolar interaction within spin pairs (see above: W1 W13 ): T 1 1 J ω J ω T ; J ω FT K τ AB AB 6

27 Dipolar Hamiltonian Two spins: H DD µ 4 r Ir Sr 0 IS 3 3 µ 4 r 0 3 A B C D E F r Dipolar alphabet A I S m 1 3cos z z 0 1 B 1 3cos IS IS 4 m 0 3 sin cos i C e ISz IzS m 1 3 sin cos i D e ISz IzS m 1 3 sin i E e I S m 4 3 sin i F e I S m 4 7

28 1 3 4 and two matrix elements: Basis set (order: I - S) Now we need H 1 and H 13. µ 0 3 µ 0 H' 1 C sincos e r 4 4 r µ 0 3 µ 0 i H' 13 E sin e r 4 4 r i Correlation functions: Time dependence is included in r,, and. We use the approach * t t F t F t F t exp t t µ µ H' t ; H' t 4 r 40 4 r 10 C Spectral density: 3 µ C J r 1 C 0 C 1 C 6 µ C J r C exp exp it dt C 8

29 Result: BPP equations ln T 1 µ 0 C 4 C II ( 1) 6 T1 54 r 10C 140C T µ 0 5C C II ( 1) 3 6 C T 54 r 1 0 C 14 0 C T µ 0 C II ( 1) 6 T 54 r C Bloembergen N, Purcell EM, Pound RV, Phys. Rev. 73 (1948) 679 Conditions: Isolated Pairs of equal spins; Sinle, isotropic motion (i.e. the correlation decays completely) τ C << T Asymptotic behaviour: High temperature ( 0 C << 1): 0 C = 0,615 1 C = 1/ T ln C µ 0 ( II1) T T r Low temperature ( 0 C >> 1): 1 µ II ( 1) 6 T 4 5 r C 1 0 C T : Third condition violated. 9

30 Summary and outlook Thermal motion Particular thermal motion spin interactions Creating transition probability reducing dephasing dephasing Correlation function What is the meaning of the correlation function? Possible temp. depend.: Arrhenius? WLF? Other? Shape of the correlation function? Order parameter? transition probability Relaxation time Nuclear spin system is forced to relax Properties of particular rel.times? Spin temperature Formalisms in intermediate range 30

Spin Relaxation and NOEs BCMB/CHEM 8190

Spin Relaxation and NOEs BCMB/CHEM 8190 Spin Relaxation and NOEs BCMB/CHEM 8190 T 1, T 2 (reminder), NOE T 1 is the time constant for longitudinal relaxation - the process of re-establishing the Boltzmann distribution of the energy level populations

More information

T 1, T 2, NOE (reminder)

T 1, T 2, NOE (reminder) T 1, T 2, NOE (reminder) T 1 is the time constant for longitudinal relaxation - the process of re-establishing the Boltzmann distribution of the energy level populations of the system following perturbation

More information

Relaxation. Ravinder Reddy

Relaxation. Ravinder Reddy Relaxation Ravinder Reddy Relaxation What is nuclear spin relaxation? What causes it? Effect on spectral line width Field dependence Mechanisms Thermal equilibrium ~10-6 spins leads to NMR signal! T1 Spin-lattice

More information

NMR: Formalism & Techniques

NMR: Formalism & Techniques NMR: Formalism & Techniques Vesna Mitrović, Brown University Boulder Summer School, 2008 Why NMR? - Local microscopic & bulk probe - Can be performed on relatively small samples (~1 mg +) & no contacts

More information

Introduction to Relaxation Theory James Keeler

Introduction to Relaxation Theory James Keeler EUROMAR Zürich, 24 Introduction to Relaxation Theory James Keeler University of Cambridge Department of Chemistry What is relaxation? Why might it be interesting? relaxation is the process which drives

More information

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft MR Fundamentals 26 October 2010 Mitglied der Helmholtz-Gemeinschaft Mitglied der Helmholtz-Gemeinschaft Nuclear Spin Nuclear Spin Nuclear magnetic resonance is observed in atoms with odd number of protons

More information

An introduction to Solid State NMR and its Interactions

An introduction to Solid State NMR and its Interactions An introduction to Solid State NMR and its Interactions From tensor to NMR spectra CECAM Tutorial September 9 Calculation of Solid-State NMR Parameters Using the GIPAW Method Thibault Charpentier - CEA

More information

Spin Interactions. Giuseppe Pileio 24/10/2006

Spin Interactions. Giuseppe Pileio 24/10/2006 Spin Interactions Giuseppe Pileio 24/10/2006 Magnetic moment µ = " I ˆ µ = " h I(I +1) " = g# h Spin interactions overview Zeeman Interaction Zeeman interaction Interaction with the static magnetic field

More information

Chemistry 431. Lecture 23

Chemistry 431. Lecture 23 Chemistry 431 Lecture 23 Introduction The Larmor Frequency The Bloch Equations Measuring T 1 : Inversion Recovery Measuring T 2 : the Spin Echo NC State University NMR spectroscopy The Nuclear Magnetic

More information

Classical Description of NMR Parameters: The Bloch Equations

Classical Description of NMR Parameters: The Bloch Equations Classical Description of NMR Parameters: The Bloch Equations Pascale Legault Département de Biochimie Université de Montréal 1 Outline 1) Classical Behavior of Magnetic Nuclei: The Bloch Equation 2) Precession

More information

Classical Description of NMR Parameters: The Bloch Equations

Classical Description of NMR Parameters: The Bloch Equations Classical Description of NMR Parameters: The Bloch Equations Pascale Legault Département de Biochimie Université de Montréal 1 Outline 1) Classical Behavior of Magnetic Nuclei: The Bloch Equation 2) Precession

More information

1 Magnetism, Curie s Law and the Bloch Equations

1 Magnetism, Curie s Law and the Bloch Equations 1 Magnetism, Curie s Law and the Bloch Equations In NMR, the observable which is measured is magnetization and its evolution over time. In order to understand what this means, let us first begin with some

More information

Nuclear magnetic resonance in condensed matter

Nuclear magnetic resonance in condensed matter University of Ljubljana Faculty of mathematics and physics Physics department SEMINAR Nuclear magnetic resonance in condensed matter Author: Miha Bratkovič Mentor: prof. dr. Janez Dolinšek Ljubljana, October

More information

Biophysical Chemistry: NMR Spectroscopy

Biophysical Chemistry: NMR Spectroscopy Relaxation & Multidimensional Spectrocopy Vrije Universiteit Brussel 9th December 2011 Outline 1 Relaxation 2 Principles 3 Outline 1 Relaxation 2 Principles 3 Establishment of Thermal Equilibrium As previously

More information

NMR Relaxation and Molecular Dynamics

NMR Relaxation and Molecular Dynamics Ecole RMN Cargese Mars 2008 NMR Relaxation and Molecular Dynamics Martin Blackledge IBS Grenoble Carine van Heijenoort ICSN, CNRS Gif-sur-Yvette Solution NMR Timescales for Biomolecular Motion ps ns µs

More information

More NMR Relaxation. Longitudinal Relaxation. Transverse Relaxation

More NMR Relaxation. Longitudinal Relaxation. Transverse Relaxation More NMR Relaxation Longitudinal Relaxation Transverse Relaxation Copyright Peter F. Flynn 2017 Experimental Determination of T1 Gated Inversion Recovery Experiment The gated inversion recovery pulse sequence

More information

6 NMR Interactions: Zeeman and CSA

6 NMR Interactions: Zeeman and CSA 6 NMR Interactions: Zeeman and CSA 6.1 Zeeman Interaction Up to this point, we have mentioned a number of NMR interactions - Zeeman, quadrupolar, dipolar - but we have not looked at the nature of these

More information

Chapter 7. Nuclear Magnetic Resonance Spectroscopy

Chapter 7. Nuclear Magnetic Resonance Spectroscopy Chapter 7 Nuclear Magnetic Resonance Spectroscopy I. Introduction 1924, W. Pauli proposed that certain atomic nuclei have spin and magnetic moment and exposure to magnetic field would lead to energy level

More information

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt Spin Dynamics Basics of Nuclear Magnetic Resonance Second edition Malcolm H. Levitt The University of Southampton, UK John Wiley &. Sons, Ltd Preface xxi Preface to the First Edition xxiii Introduction

More information

Principles of Magnetic Resonance Imaging

Principles of Magnetic Resonance Imaging Principles of Magnetic Resonance Imaging Hi Klaus Scheffler, PhD Radiological Physics University of 1 Biomedical Magnetic Resonance: 1 Introduction Magnetic Resonance Imaging Contents: Hi 1 Introduction

More information

Chapter 8 Magnetic Resonance

Chapter 8 Magnetic Resonance Chapter 8 Magnetic Resonance 9.1 Electron paramagnetic resonance 9.2 Ferromagnetic resonance 9.3 Nuclear magnetic resonance 9.4 Other resonance methods TCD March 2007 1 A resonance experiment involves

More information

NMR-spectroscopy of proteins in solution. Peter Schmieder

NMR-spectroscopy of proteins in solution. Peter Schmieder NMR-spectroscopy of proteins in solution Basic aspects of NMR-Spektroskopie Basic aspects of NMR-spectroscopy 3/84 Prerequisite for NMR-spectroscopy is a nuclear spin that can be thought of as a mixture

More information

Chem8028(1314) - Spin Dynamics: Spin Interactions

Chem8028(1314) - Spin Dynamics: Spin Interactions Chem8028(1314) - Spin Dynamics: Spin Interactions Malcolm Levitt see also IK m106 1 Nuclear spin interactions (diamagnetic materials) 2 Chemical Shift 3 Direct dipole-dipole coupling 4 J-coupling 5 Nuclear

More information

Slow symmetric exchange

Slow symmetric exchange Slow symmetric exchange ϕ A k k B t A B There are three things you should notice compared with the Figure on the previous slide: 1) The lines are broader, 2) the intensities are reduced and 3) the peaks

More information

Classical behavior of magnetic dipole vector. P. J. Grandinetti

Classical behavior of magnetic dipole vector. P. J. Grandinetti Classical behavior of magnetic dipole vector Z μ Y X Z μ Y X Quantum behavior of magnetic dipole vector Random sample of spin 1/2 nuclei measure μ z μ z = + γ h/2 group μ z = γ h/2 group Quantum behavior

More information

Physical fundamentals of magnetic resonance imaging

Physical fundamentals of magnetic resonance imaging Physical fundamentals of magnetic resonance imaging Stepan Sereda University of Bonn 1 / 26 Why? Figure 1 : Full body MRI scan (Source: [4]) 2 / 26 Overview Spin angular momentum Rotating frame and interaction

More information

NMR, the vector model and the relaxation

NMR, the vector model and the relaxation NMR, the vector model and the relaxation Reading/Books: One and two dimensional NMR spectroscopy, VCH, Friebolin Spin Dynamics, Basics of NMR, Wiley, Levitt Molecular Quantum Mechanics, Oxford Univ. Press,

More information

III.4 Nuclear Magnetic Resonance

III.4 Nuclear Magnetic Resonance III.4 Nuclear Magnetic Resonance Radiofrequency (rf) spectroscopy on nuclear spin states in a uniaxial constant magnetic field B = B 0 z (III.4.1) B 0 is on the order of 1-25 T The rf frequencies vary

More information

Superoperators for NMR Quantum Information Processing. Osama Usman June 15, 2012

Superoperators for NMR Quantum Information Processing. Osama Usman June 15, 2012 Superoperators for NMR Quantum Information Processing Osama Usman June 15, 2012 Outline 1 Prerequisites 2 Relaxation and spin Echo 3 Spherical Tensor Operators 4 Superoperators 5 My research work 6 References.

More information

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations CONTENTS Preface Acknowledgements Symbols Abbreviations 1 INTRODUCTION 1.1 Scope of pulse EPR 1.2 A short history of pulse EPR 1.3 Examples of Applications 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon

More information

NMR spectroscopy. Matti Hotokka Physical Chemistry Åbo Akademi University

NMR spectroscopy. Matti Hotokka Physical Chemistry Åbo Akademi University NMR spectroscopy Matti Hotokka Physical Chemistry Åbo Akademi University Angular momentum Quantum numbers L and m (general case) The vector precesses Nuclear spin The quantum numbers are I and m Quantum

More information

The Nuclear Emphasis

The Nuclear Emphasis The Nuclear Emphasis Atoms are composed of electrons and nuclei we ll focus almost exclusively on the physical properties of the nucleus and the chemicoelectronic attributes of its environment. The nucleus

More information

V27: RF Spectroscopy

V27: RF Spectroscopy Martin-Luther-Universität Halle-Wittenberg FB Physik Advanced Lab Course V27: RF Spectroscopy ) Electron spin resonance (ESR) Investigate the resonance behaviour of two coupled LC circuits (an active rf

More information

NMR journey. Introduction to solution NMR. Alexandre Bonvin. Topics. Why use NMR...? Bijvoet Center for Biomolecular Research

NMR journey. Introduction to solution NMR. Alexandre Bonvin. Topics. Why use NMR...? Bijvoet Center for Biomolecular Research 2 NMR journey Introduction to solution NMR Alexandre Bonvin Bijvoet Center for Biomolecular Research with thanks to Dr. Klaartje Houben EMBO Global Exchange course, CCMB, Hyderabad, India November 29th

More information

The Physical Basis of the NMR Experiment

The Physical Basis of the NMR Experiment The Physical Basis of the NMR Experiment 1 Interaction of Materials with Magnetic Fields F F S N S N Paramagnetism Diamagnetism 2 Microscopic View: Single Spins an electron has mass and charge in addition

More information

Ferdowsi University of Mashhad

Ferdowsi University of Mashhad Spectroscopy in Inorganic Chemistry Nuclear Magnetic Resonance Spectroscopy spin deuterium 2 helium 3 The neutron has 2 quarks with a -e/3 charge and one quark with a +2e/3 charge resulting in a total

More information

Lecture #6 NMR in Hilbert Space

Lecture #6 NMR in Hilbert Space Lecture #6 NMR in Hilbert Space Topics Review of spin operators Single spin in a magnetic field: longitudinal and transverse magnetiation Ensemble of spins in a magnetic field RF excitation Handouts and

More information

MOLECULAR SPECTROSCOPY AND PHOTOCHEMISTRY

MOLECULAR SPECTROSCOPY AND PHOTOCHEMISTRY 20 CHAPTER MOLECULAR SPECTROSCOPY AND PHOTOCHEMISTRY 20.1 Introduction to Molecular Spectroscopy 20.2 Experimental Methods in Molecular Spectroscopy 20.3 Rotational and Vibrational Spectroscopy 20.4 Nuclear

More information

Solid-state NMR and proteins : basic concepts (a pictorial introduction) Barth van Rossum,

Solid-state NMR and proteins : basic concepts (a pictorial introduction) Barth van Rossum, Solid-state NMR and proteins : basic concepts (a pictorial introduction) Barth van Rossum, 16.02.2009 Solid-state and solution NMR spectroscopy have many things in common Several concepts have been/will

More information

Nuclear Magnetic Resonance Imaging

Nuclear Magnetic Resonance Imaging Nuclear Magnetic Resonance Imaging Simon Lacoste-Julien Electromagnetic Theory Project 198-562B Department of Physics McGill University April 21 2003 Abstract This paper gives an elementary introduction

More information

IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance

IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance The foundation of electronic spectroscopy is the exact solution of the time-independent Schrodinger equation for the hydrogen atom.

More information

Muon Spin Relaxation Functions

Muon Spin Relaxation Functions Muon Spin Relaxation Functions Bob Cywinski Department of Physics and Astronomy University of eeds eeds S 9JT Muon Training Course, February 005 Introduction Positive muon spin relaxation (µsr) is a point-like

More information

THEORY OF MAGNETIC RESONANCE

THEORY OF MAGNETIC RESONANCE THEORY OF MAGNETIC RESONANCE Second Edition Charles P. Poole, Jr., and Horacio A. Farach Department of Physics University of South Carolina, Columbia A Wiley-lnterscience Publication JOHN WILEY & SONS

More information

Principles of Magnetic Resonance

Principles of Magnetic Resonance С. Р. Slichter Principles of Magnetic Resonance Third Enlarged and Updated Edition With 185 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Contents 1. Elements of Resonance

More information

10.4 Continuous Wave NMR Instrumentation

10.4 Continuous Wave NMR Instrumentation 10.4 Continuous Wave NMR Instrumentation coherent detection bulk magnetization the rotating frame, and effective magnetic field generating a rotating frame, and precession in the laboratory frame spin-lattice

More information

Spectral Broadening Mechanisms

Spectral Broadening Mechanisms Spectral Broadening Mechanisms Lorentzian broadening (Homogeneous) Gaussian broadening (Inhomogeneous, Inertial) Doppler broadening (special case for gas phase) The Fourier Transform NC State University

More information

Polarised Nucleon Targets for Europe, 2nd meeting, Bochum 2005

Polarised Nucleon Targets for Europe, 2nd meeting, Bochum 2005 Polarised Nucleon Targets for Europe, nd meeting, Bochum Temperature dependence of nuclear spin-lattice relaxations in liquid ethanol with dissolved TEMPO radicals H. Štěpánková, J. Englich, J. Kohout,

More information

Biophysical Chemistry: NMR Spectroscopy

Biophysical Chemistry: NMR Spectroscopy Spin Dynamics & Vrije Universiteit Brussel 25th November 2011 Outline 1 Pulse/Fourier Transform NMR Thermal Equilibrium Effect of RF Pulses The Fourier Transform 2 Symmetric Exchange Between Two Sites

More information

Magnetic Resonance Spectroscopy

Magnetic Resonance Spectroscopy INTRODUCTION TO Magnetic Resonance Spectroscopy ESR, NMR, NQR D. N. SATHYANARAYANA Formerly, Chairman Department of Inorganic and Physical Chemistry Indian Institute of Science, Bangalore % I.K. International

More information

Solid-state NMR of spin > 1/2

Solid-state NMR of spin > 1/2 Solid-state NMR of spin > 1/2 Nuclear spins with I > 1/2 possess an electrical quadrupole moment. Anisotropic Interactions Dipolar Interaction 1 H- 1 H, 1 H- 13 C: typically 50 khz Anisotropy of the chemical

More information

Nuclear Quadrupole Resonance Spectroscopy. Some examples of nuclear quadrupole moments

Nuclear Quadrupole Resonance Spectroscopy. Some examples of nuclear quadrupole moments Nuclear Quadrupole Resonance Spectroscopy Review nuclear quadrupole moments, Q A negative value for Q denotes a distribution of charge that is "football-shaped", i.e. a sphere elongated at the poles; a

More information

Problem Set #6 BioE 326B/Rad 226B

Problem Set #6 BioE 326B/Rad 226B . Chemical shift anisotropy Problem Set #6 BioE 26B/Rad 226B 2. Scalar relaxation of the 2 nd kind. 0 imaging 4. NMRD curves Chemical Shift Anisotropy The Hamiltonian a single-spin system in a magnetic

More information

General NMR basics. Solid State NMR workshop 2011: An introduction to Solid State NMR spectroscopy. # nuclei

General NMR basics. Solid State NMR workshop 2011: An introduction to Solid State NMR spectroscopy. # nuclei : An introduction to Solid State NMR spectroscopy Dr. Susanne Causemann (Solid State NMR specialist/ researcher) Interaction between nuclear spins and applied magnetic fields B 0 application of a static

More information

Introduction to solution NMR. Alexandre Bonvin. The NMR research group. Bijvoet Center for Biomolecular Research

Introduction to solution NMR. Alexandre Bonvin. The NMR research group. Bijvoet Center for Biomolecular Research Introduction to solution NMR 1 Alexandre Bonvin Bijvoet Center for Biomolecular Research with thanks to Dr. Klaartje Houben Bente%Vestergaard% The NMR research group Prof. Marc Baldus Prof. Rolf Boelens

More information

INTRODUCTION TO NMR and NMR QIP

INTRODUCTION TO NMR and NMR QIP Books (NMR): Spin dynamics: basics of nuclear magnetic resonance, M. H. Levitt, Wiley, 2001. The principles of nuclear magnetism, A. Abragam, Oxford, 1961. Principles of magnetic resonance, C. P. Slichter,

More information

Principios Básicos de RMN en sólidos destinado a usuarios. Gustavo Monti. Fa.M.A.F. Universidad Nacional de Córdoba Argentina

Principios Básicos de RMN en sólidos destinado a usuarios. Gustavo Monti. Fa.M.A.F. Universidad Nacional de Córdoba Argentina Principios Básicos de RMN en sólidos destinado a usuarios Gustavo Monti Fa.M.A.F. Universidad Nacional de Córdoba Argentina CONTENIDOS MODULO 2: Alta resolución en sólidos para espines 1/2 Introducción

More information

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure:

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure: Physical properties, chemical properties, formulas Shedding real light on molecular structure: Wavelength Frequency ν Wavelength λ Frequency ν Velocity c = 2.998 10 8 m s -1 The Electromagnetic Spectrum

More information

Hyperfine interaction

Hyperfine interaction Hyperfine interaction The notion hyperfine interaction (hfi) comes from atomic physics, where it is used for the interaction of the electronic magnetic moment with the nuclear magnetic moment. In magnetic

More information

Lecture #6 Chemical Exchange

Lecture #6 Chemical Exchange Lecture #6 Chemical Exchange Topics Introduction Effects on longitudinal magnetization Effects on transverse magnetization Examples Handouts and Reading assignments Kowalewski, Chapter 13 Levitt, sections

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance Spectroscopy Ecole Polytechnique Département de Chimie CHI 551 Dr. Grégory Nocton Bureau 01 30 11 A Tel: 44 02 Ecole polytechnique / CNRS Laboratoire de Chimie Moléculaire E-mail:

More information

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in:

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in: Solution Set Hand out:.. Hand in:.. Repetition. The magnetization moves adiabatically during the application of an r.f. pulse if it is always aligned along the effective field axis. This behaviour is observed

More information

Nuclear Spin and Stability. PHY 3101 D. Acosta

Nuclear Spin and Stability. PHY 3101 D. Acosta Nuclear Spin and Stability PHY 3101 D. Acosta Nuclear Spin neutrons and protons have s = ½ (m s = ± ½) so they are fermions and obey the Pauli- Exclusion Principle The nuclear magneton is eh m µ e eh 1

More information

Direct dipolar interaction - utilization

Direct dipolar interaction - utilization Direct dipolar interaction - utilization Two main uses: I: magnetization transfer II: probing internuclear distances Direct dipolar interaction - utilization Probing internuclear distances ˆ hetero D d

More information

Second Order Effects, Overtone NMR, and their Application to Overtone Rotary Recoupling of 14 N- 13 C Spin Pairs under Magic-Angle-Spinning

Second Order Effects, Overtone NMR, and their Application to Overtone Rotary Recoupling of 14 N- 13 C Spin Pairs under Magic-Angle-Spinning Second Order Effects, Overtone NMR, and their Application to Overtone Rotary Recoupling of 14 N- 13 C Spin Pairs under Magic-Angle-Spinning 1. The NMR Interactions NMR is defined by a series of interactions,

More information

Magnetic Resonance in magnetic materials

Magnetic Resonance in magnetic materials Ferdinando Borsa, Dipartimento di Fisica, Universita di Pavia Magnetic Resonance in magnetic materials Information on static and dynamic magnetic properties from Nuclear Magnetic Resonance and Relaxation

More information

3. Perturbed Angular Correlation Spectroscopy

3. Perturbed Angular Correlation Spectroscopy 3. Perturbed Angular Correlation Spectroscopy Dileep Mampallil Augustine K.U.Leuven, Belgium Perturbed Angular Correlation Spectroscopy (PAC) is a gamma ray spectroscopy and can be used to investigate

More information

7. Basics of Magnetization Switching

7. Basics of Magnetization Switching Beyond CMOS computing 7. Basics of Magnetization Switching Dmitri Nikonov Dmitri.e.nikonov@intel.com 1 Outline Energies in a nanomagnet Precession in a magnetic field Anisotropies in a nanomagnet Hysteresis

More information

Supplementary Information: Dependence of nuclear spin singlet lifetimes on RF spin-locking power

Supplementary Information: Dependence of nuclear spin singlet lifetimes on RF spin-locking power Supplementary Information: Dependence of nuclear spin singlet lifetimes on RF spin-locking power Stephen J. DeVience a, Ronald L. Walsworth b,c, Matthew S. Rosen c,d,e a Department of Chemistry and Chemical

More information

The NMR Inverse Imaging Problem

The NMR Inverse Imaging Problem The NMR Inverse Imaging Problem Nuclear Magnetic Resonance Protons and Neutrons have intrinsic angular momentum Atoms with an odd number of proton and/or odd number of neutrons have a net magnetic moment=>

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

PRACTICAL ASPECTS OF NMR RELAXATION STUDIES OF BIOMOLECULAR DYNAMICS

PRACTICAL ASPECTS OF NMR RELAXATION STUDIES OF BIOMOLECULAR DYNAMICS PRACTICAL ASPECTS OF MR RELAXATIO STUDIES OF BIOMOLECULAR DYAMICS Further reading: Can be downloaded from my web page Korzhnev D.E., Billeter M., Arseniev A.S., and Orekhov V. Y., MR Studies of Brownian

More information

8 NMR Interactions: Dipolar Coupling

8 NMR Interactions: Dipolar Coupling 8 NMR Interactions: Dipolar Coupling 8.1 Hamiltonian As discussed in the first lecture, a nucleus with spin I 1/2 has a magnetic moment, µ, associated with it given by µ = γ L. (8.1) If two different nuclear

More information

NMR course at the FMP: NMR of organic compounds and small biomolecules - II -

NMR course at the FMP: NMR of organic compounds and small biomolecules - II - NMR course at the FMP: NMR of organic compounds and small biomolecules - II - 16.03.2009 The program 2/76 CW vs. FT NMR What is a pulse? Vectormodel Water-flip-back 3/76 CW vs. FT CW vs. FT 4/76 Two methods

More information

COPYRIGHTED MATERIAL. Production of Net Magnetization. Chapter 1

COPYRIGHTED MATERIAL. Production of Net Magnetization. Chapter 1 Chapter 1 Production of Net Magnetization Magnetic resonance (MR) is a measurement technique used to examine atoms and molecules. It is based on the interaction between an applied magnetic field and a

More information

Protein dynamics from NMR Relaxation data

Protein dynamics from NMR Relaxation data Protein dynamics from NMR Relaxation data Clubb 3/15/17 (S f2 ) ( e ) Nitrogen-15 relaxation ZZ-exchange R 1 = 1/T 1 Longitudinal relaxation (decay back to z-axis) R 2 = 1/T 2 Spin-spin relaxation (dephasing

More information

Simulations of spectra and spin relaxation

Simulations of spectra and spin relaxation 43 Chapter 6 Simulations of spectra and spin relaxation Simulations of two-spin spectra We have simulated the noisy spectra of two-spin systems in order to characterize the sensitivity of the example resonator

More information

Principles of Molecular Spectroscopy: Electromagnetic Radiation and Molecular structure. Nuclear Magnetic Resonance (NMR)

Principles of Molecular Spectroscopy: Electromagnetic Radiation and Molecular structure. Nuclear Magnetic Resonance (NMR) Principles of Molecular Spectroscopy: Electromagnetic Radiation and Molecular structure Nuclear Magnetic Resonance (NMR) !E = h" Electromagnetic radiation is absorbed when the energy of photon corresponds

More information

Spectral Broadening Mechanisms. Broadening mechanisms. Lineshape functions. Spectral lifetime broadening

Spectral Broadening Mechanisms. Broadening mechanisms. Lineshape functions. Spectral lifetime broadening Spectral Broadening echanisms Lorentzian broadening (Homogeneous) Gaussian broadening (Inhomogeneous, Inertial) Doppler broadening (special case for gas phase) The Fourier Transform NC State University

More information

Shimming of a Magnet for Calibration of NMR Probes UW PHYSICS REU 2013

Shimming of a Magnet for Calibration of NMR Probes UW PHYSICS REU 2013 Shimming of a Magnet for Calibration of NMR Probes RACHEL BIELAJEW UW PHYSICS REU 2013 Outline Background The muon anomaly The g-2 Experiment NMR Design Helmholtz coils producing a gradient Results Future

More information

Chaotic Scattering of Microwaves in Billiards: Induced Time-Reversal Symmetry Breaking and Fluctuations in GOE and GUE Systems 2008

Chaotic Scattering of Microwaves in Billiards: Induced Time-Reversal Symmetry Breaking and Fluctuations in GOE and GUE Systems 2008 Chaotic Scattering of Microwaves in Billiards: Induced Time-Reversal Symmetry Breaking and Fluctuations in GOE and GUE Systems 2008 Quantum billiards and microwave resonators as a model of the compound

More information

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution.

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution. Introduction to MRI Spin & Magnetic Moments Relaxation (T1, T2) Spin Echoes 2DFT Imaging Selective excitation, phase & frequency encoding K-space & Spatial Resolution Contrast (T1, T2) Acknowledgement:

More information

PROTEIN NMR SPECTROSCOPY

PROTEIN NMR SPECTROSCOPY List of Figures List of Tables xvii xxvi 1. NMR SPECTROSCOPY 1 1.1 Introduction to NMR Spectroscopy 2 1.2 One Dimensional NMR Spectroscopy 3 1.2.1 Classical Description of NMR Spectroscopy 3 1.2.2 Nuclear

More information

Physics 221A Fall 1996 Notes 13 Spins in Magnetic Fields

Physics 221A Fall 1996 Notes 13 Spins in Magnetic Fields Physics 221A Fall 1996 Notes 13 Spins in Magnetic Fields A nice illustration of rotation operator methods which is also important physically is the problem of spins in magnetic fields. The earliest experiments

More information

e 2m p c I, (22.1) = g N β p I(I +1), (22.2) = erg/gauss. (22.3)

e 2m p c I, (22.1) = g N β p I(I +1), (22.2) = erg/gauss. (22.3) Chemistry 26 Molecular Spectra & Molecular Structure Week # 7 Nuclear Magnetic Resonance Spectroscopy Along with infrared spectroscopy, nuclear magnetic resonance (NMR) is the most important method available

More information

Control of Spin Systems

Control of Spin Systems Control of Spin Systems The Nuclear Spin Sensor Many Atomic Nuclei have intrinsic angular momentum called spin. The spin gives the nucleus a magnetic moment (like a small bar magnet). Magnetic moments

More information

A Hands on Introduction to NMR Lecture #1 Nuclear Spin and Magnetic Resonance

A Hands on Introduction to NMR Lecture #1 Nuclear Spin and Magnetic Resonance A Hands on Introduction to NMR 22.920 Lecture #1 Nuclear Spin and Magnetic Resonance Introduction - The aim of this short course is to present a physical picture of the basic principles of Nuclear Magnetic

More information

Parity Violation in Diatomic Molecules

Parity Violation in Diatomic Molecules Parity Violation in Diatomic Molecules Jeff Ammon, E. Altuntas, S.B. Cahn, R. Paolino*, D. DeMille Physics Department, Yale University *Physics Department, US Coast Guard Academy DeMille Group Funding:

More information

Quantification of Dynamics in the Solid-State

Quantification of Dynamics in the Solid-State Bernd Reif Quantification of Dynamics in the Solid-State Technische Universität München Helmholtz-Zentrum München Biomolecular Solid-State NMR Winter School Stowe, VT January 0-5, 206 Motivation. Solid

More information

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe A. Yoshimi RIKEN K. Asahi, S. Emori, M. Tsukui, RIKEN, Tokyo Institute of Technology Nuclear

More information

11.1. FÖRSTER RESONANCE ENERGY TRANSFER

11.1. FÖRSTER RESONANCE ENERGY TRANSFER 11-1 11.1. FÖRSTER RESONANCE ENERGY TRANSFER Förster resonance energy transfer (FRET) refers to the nonradiative transfer of an electronic excitation from a donor molecule to an acceptor molecule: D *

More information

Fluorescence Spectroscopy

Fluorescence Spectroscopy Fluorescence Spectroscopy Raleigh light scattering light all freqs Fluorescence emission Raleigh Scattering 10 nm Raleigh light scattering Fluorescence emission 400 nm Scattering - TWO particle 10 nm Particle

More information

Lecture #9 Redfield theory of NMR relaxation

Lecture #9 Redfield theory of NMR relaxation Lecture 9 Redfield theory of NMR relaxation Topics Redfield theory recap Relaxation supermatrix Dipolar coupling revisited Scalar relaxation of the st kind Handouts and Reading assignments van de Ven,

More information

In this lecture, we will go through the hyperfine structure of atoms. The coupling of nuclear and electronic total angular momentum is explained.

In this lecture, we will go through the hyperfine structure of atoms. The coupling of nuclear and electronic total angular momentum is explained. Lecture : Hyperfine Structure of Spectral Lines: Page- In this lecture, we will go through the hyperfine structure of atoms. Various origins of the hyperfine structure are discussed The coupling of nuclear

More information

2m 2 Ze2. , where δ. ) 2 l,n is the quantum defect (of order one but larger

2m 2 Ze2. , where δ. ) 2 l,n is the quantum defect (of order one but larger PHYS 402, Atomic and Molecular Physics Spring 2017, final exam, solutions 1. Hydrogenic atom energies: Consider a hydrogenic atom or ion with nuclear charge Z and the usual quantum states φ nlm. (a) (2

More information

7 Spin Lattice Relaxation

7 Spin Lattice Relaxation D. Freude and J. Haase, version of April 205 7 7 Spin Lattice Relaxation The recovery of the population ratio / of the Zeeman levels and from an off equilibrium state to the Boltzmann equilibrium / exp

More information

Lecture 11: calculation of magnetic parameters, part II

Lecture 11: calculation of magnetic parameters, part II TO DO IS TO BE SOCRATES TO BE IS TO DO SARTRE OO BE DO BE DO SINATRA Lecture 11: calculation of magnetic parameters, part II classification of magnetic perturbations, nuclear quadrupole interaction, J-coupling,

More information

Nuclear spin spectroscopy for semiconductor hetero and nano structures

Nuclear spin spectroscopy for semiconductor hetero and nano structures (Interaction and Nanostructural Effects in Low-Dimensional Systems) November 16th, Kyoto, Japan Nuclear spin spectroscopy for semiconductor hetero and nano structures Yoshiro Hirayama Tohoku University

More information

VIII. NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY

VIII. NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY 1 VIII. NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY Molecules are extremely small entities; thus, their direct detection and direct investigation is still almost impossible. For the detection and detailed

More information

Topics. The concept of spin Precession of magnetic spin Relaxation Bloch Equation. Bioengineering 280A Principles of Biomedical Imaging

Topics. The concept of spin Precession of magnetic spin Relaxation Bloch Equation. Bioengineering 280A Principles of Biomedical Imaging Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2006 MRI Lecture 1 Topics The concept of spin Precession of magnetic spin Relaxation Bloch Equation 1 Spin Intrinsic angular momentum of

More information

NMR-spectroscopy in solution - an introduction. Peter Schmieder

NMR-spectroscopy in solution - an introduction. Peter Schmieder NMR-spectroscopy in solution - an introduction 2/92 Advanced Bioanalytics NMR-Spectroscopy Introductory session (11:00 12:30) Basic aspects of NMR-spectroscopy NMR parameter Multidimensional NMR-spectroscopy

More information