Lecture #9 Redfield theory of NMR relaxation

Size: px
Start display at page:

Download "Lecture #9 Redfield theory of NMR relaxation"

Transcription

1 Lecture 9 Redfield theory of NMR relaxation Topics Redfield theory recap Relaxation supermatrix Dipolar coupling revisited Scalar relaxation of the st kind Handouts and Reading assignments van de Ven, Chapters 6.2. Kowalewski, Chapter 4. Abragam Chapter VIII.C, pp , 955.

2 Redfield theory We ended the last lecture with the following master equation dσ dt = iĥ 0 σ Γ σ σ B ( ) and we were happy! relaxation superoperator 2

3 Redfield theory The relaxation superoperator was defined as: - spectral density functions: J q e q - correlation functions: G q 0 ( ) = G q τ ( τ ) = F q ( t )F q t τ Γ = J ( q e ) q  q  q q ( )e ie qτ dτ. ( ) H 0 eigenoperators Recipe:. Given 3. Plug and chug. Ĥ ( t) = Ĥ0 + ( Ĥ t). Random functions of time 2. Express t as a linear combination of eigenoperators of Ĥ Ĥ ( ) Ĥ 0, ( t) = F q ( t)  q. q But how do we compute T or T 2? 3

4 The Relaxation Supermatrix Rather than directly solving the master equation, we often just want to calculate the time dependence of particular coherences, e.g. Î x, Î y, or Î z. Express the density operator in the product operator basis σ = j C j C j C = Tr( σ C )! σ =! I x S x! 2I z S z C j { 2 Two-spin case E, I x, S x, I y, S y,,2 I z S z } vector in a 6-D coherence (Liouville) space Rewrite the master equation as a vector/matrix equation: 4

5 The Relaxation Supermatrix Rewrite the master equation as a matrix equation: Γ R Supermatrix with elements R jk = Tr Ĉ j ΓĈ k! If we reorder σ to first list populations, then singlequantum terms, then doublequantum terms,... - Relaxation supermatrix, R, is block diagonal (secular approx). - Cross relaxation only occurs for coherences with degenerate eigenvalues of Ĥ 0. trace ( ) = Ĉ j Γ Ĉk Notation used in van de Ven. Don t confuse with expected value. H 0 eigenvalue 0 ±(ω I -ω S ) ±ω I, ±ω S From Problem Set, these eigenvalues are the transition frequencies, i.e. sums and differences of the system energy levels ±(ω I +ω S ) 5

6 Calculating Relaxation Times Rewrite the master equation in terms of the operator coefficients: d dt Ĉ j = i Ĉ j Ĥ 0 Ĉ k Ĉ k Ĉ k Ĉk k ( ) Ĉ j Γ Ĉ k B ( Rotations Relaxation Examples T,I = Îz Γ Îz T,S = Ŝz Γ Ŝz T,cross = Îz Γ Ŝz T 2,I = Î x Γ Î x = Î y Γ Î y we just need to compute some (a bunch) of commutators. 6

7 Relaxation due to a random field (or hints for Problem Set 5) Consider a Hamiltonian of the form Ĥ = Ĥ0 + Ĥ t ( ) = γb 0 Î z γδb( t)îz with ΔB t ( ) = 0 ΔB( t)δb t τ ( ) = B 2 e τ τ c Noting that Ĥ 0 Î z = 0 Îz Eigenvalue Eigenoperator ( ) = γδb ( t) J 0 ( ω) = γ 2 B 2 τ c then  0 = Îz, F 0 t, and T 2 = Î x Γ = J ( q e ) q  q  q q Γ Î x = J 0 ( 0)B 2 Î z Î z +ω 2 τ c 2 Assumed to be normalized = γ 2 B 2 τ c Tr( Î Î x z Î z Î ) = γ 2 x B 2 τ c Tr( iî Î x z Î ) = γ 2 y B 2 τ c Tr( Î xî ) x Hence: T 2 = γ 2 B 2 τ C T =? 7

8 Dipolar Coupling Revisited The complete dipolar coupling Hamiltonian is given by Ĥ dipole = γ Iγ S! µ 0! I Ŝ! 3 r 3 4π r (! Î r)(! Ŝ! r)! ( 2 This can be written as: Ĥ D ( t) = γ Iγ S! µ 0 r 3 4π q F q ( t) Âq where! r where vector from spin I to spin S With tumbling, both θ and φ are functions of time.  0 = ( 6 2ÎzŜz 2 Î+Ŝ ) 2 Î Ŝ+  ± = ± 2  ±2 = 2 αŜ± ( Î ± Ŝ z + ) ÎzŜ± and F 0 (t) = 2 3 ( 3cos 2 θ ) F ± (t) = ±3sinθ cosθe iφ F ±2 (t) = 3 2 sin2 θe 2iφ Hey! These look like rank 2 spherical harmonics.

9 Dipolar Coupling Revisited Noting the following are eigenoperators of (see Problem Set ) H 0 Eigenoperator Eigenvalue Î z Ŝ z Î + Ŝ + 0 ( ω I +ω S ) Î Ŝ Î + Ŝ ω I +ω S ( ω I ω S ) Together with F q * F q = 6 5 Î Ŝ + ω I ω S Î + Ŝ z ω I Î Ŝ z ω I Î z Ŝ + ω S Î z Ŝ ω S We can now compute Γ.

10 Dipolar coupling superoperator Case : unlike spins, after much algebra Γ = 4 γ 2 ( Iγ 2 S! 2 * ) 2J 0 0r 6 + * + ( ) ÎzŜz Î z Ŝ z 4 J ( ω ω I S ) J ( ω +ω I S ) J ω I ( ) Î xŝz Î x Ŝ z+ Î y Ŝ z Î y Ŝ z 4 J ( ω ω I S ) 3 2 J ( ω +ω I S ) Î xŝx J ω S Î xŝx Î x Ŝ x+ Î y Ŝ y ( ) ÎzŜx Î y Ŝ y+ Î y Ŝ y Î y Ŝ y+ Î x Ŝ y Î z Ŝ x+ Î z Ŝ y Î x Ŝ x Î x Ŝ y Î x Ŝ y+ Î y Ŝ x Î z Ŝ y Î y Ŝ x Î y Ŝ x Î y Ŝ x Î x Ŝ y Note: Î z Ŝ z Î z Ŝ z

11 Dipolar coupling superoperator Before calculating a bunch of commutators, we should note that there are multiple terms of the form C q Ĉ q, and this can make things easier C q Ĉ q Ĉ p = 0 if Ĉ q Ĉ p = 0 Ĉ p if Ĉ q Ĉ p 0 Remember all product operators cyclically commute. Terms of the form C q Ĉ r give rise to cross relaxation Example: Î x Ŝ y Î y Ŝ x Î z = 4 Ŝz

12 Dipolar coupling unlike Spins Calculating T 2. Let q = µ 2 0 γ 2 I γ 2 S! 2 6π 2 0r 6 ΓÎ = q 2J 0 x ( ( ) + J ω 2 ( I ω S ) + 3J ( ω I +ω S ) J ( ω I ) + 3J ( ω S ))Î x T 2,I = Î x Γ Î x = q 4J 0 2 ( ( ) + J ( ω I ω S ) + 6J ( ω I +ω S ) + 3J ( ω I ) + 6J ( ω S )) Let s calculate T. ΓÎz = q ( J ( ω I ω S ) + 6J ( ω I +ω S ) + 3J ( ω I ))Îz + J ω I ω S T,I = Îz Γ Îz ( ( ) + 6J ( ω I +ω S ) + 3J ( ω I )) = q J ω I ω S And the cross relaxation term is: T,IS = Ŝz Γ Îz ( ( ) J ( ω I ω S )) = q 6J ω I +ω S ( ( ) 6J ( ω I +ω S ))Ŝz

13 Dipolar coupling like spins Case 2: The equation for spins with the same (or nearly the same) chemical shift, ~ω 0, is even longer due to cross terms between Î z Ŝ z and Î ± Ŝ. Γ = see van de Ven p. 355 T = q 3J(ω 0 )+2J(2ω 0 ) ( ) But now there is also transverse cross relaxation between spins I and S. T 2,I = Î x Γ Î x = q 5J 0 2 ( ( ) + 9J ( ω 0 ) + 6J ( 2ω 0 )) T 2,IS = Ŝx Γ Î x = q 2J 0 ( ( ) + 3J ( ω 0 )) This effect is exploited in some spin lock experiments.

14 Summary of Redfield theory dσ dt = iĥ 0 σ Γ σ σ B ( ) Relaxation arises from perturbations having energy at the transition frequencies. That is, if the eigenvalues of Ĥ 0 (= energies of the system/!) are e, e 2, etc. Then, the spectral density function is probed as frequencies ±(e i e j ). Cross relaxation only occurs between coherences with the same transition frequencies. Although Redfield theory may seem much more complicated than the Solomon equations for dipolar relaxation, it is actually very useful. For example, T and T 2 due to chemical shift anisotropy or scalar relaxation of the st and 2 nd kind are readily calculated. 4

15 Example: Scalar relaxation of the st kind Consider a J-coupled spin pair with the following Hamiltonian: ( ) Ĥ = Ĥ0 + Ĥ = ω I Î z ω S Ŝ z + 2π J ÎzŜz + Î xŝx + Î yŝy We would normally expect a doublet from the I spin, however chemical exchange by the S spin can become a relaxation mechanism. Under exchange, with an exchange time of τ ex, the coupling constant between the I spin and a spin S i becomes a random function of time. Rewriting the perturbing Hamiltonian:! where A 2 i = A i ( t) A i t +τ Ĥ A 2 = 4π 2 J 2 0 otherwise ( t) = A i ( t)!! I S if I and S i are on the same molecule ( ) = A 2 e τ τ ex = probability the I and S i spins are on the same molecule at time t + τ, given that they are at time t.

16 Example: Scalar relaxation of the st kind Thus we have: Ĥ 0 = ω I Î z ω S Ŝ z and Ĥ t Noting the eigenoperators and corresponding eigenvalues of Ĥ 0 Eigenoperator Eigenvalue Î z Ŝ z 0 Î + Ŝ ( ω I ω S ) Î Ŝ + ω I ω S Written as a sum of eigenoperators of, the perturbing Hamiltonian becomes Ĥ H 0 ( ) = A i ( t) ÎzŜz + Î xŝx + Î yŝy ( t) = A i ( t)îzŝz + A 2 i ( t)î+ŝ + A 2 i ( t)î Ŝ+ ( ). All we need now is the spectral density function, which we ll denote J ex ( ω). Let P i be the probability spins I and S i are on the same molecule, then J ex ( ω) = P i A i ( t) A i ( t +τ ) cosωτ dτ. i 0 Assume the I spin is always coupled to some S spin, i.e. P i = J ex ( ω) = A 2 τ ex +ω 2 2 τ ex i

17 Example: Scalar relaxation of the st kind Hence: Γ = A 2 J ex ( 0)ÎzŜz Î z Ŝ z+ 4 A 2 J ex ( ω I ω S )Î+Ŝ Î + Ŝ + 4 A 2 J ex ( ω I ω S )Î Ŝ+ Î Ŝ + From which it follows T,I = Îz ( ) Γ Îz = 2A S S τ ex + ( ω I ω S ) 2 2 τ ex = 8π 2 J 2 S( S +) 3 τ ex + ( ω I ω S ) 2 2 τ ex T 2,I = Î x Γ Î x = Î y ( ) = Note: the S(S+)/3 factor comes from Tr Ŝp 2 S(S +), p = product operator 3 where S = spin of the unpaired electron system or nucleus. ( ) Γ Î y = Γ Î+ Î + = 4π 2 J 2 S S + 3 τ ex + τ ex + ( ω I ω S ) 2 2 τ ex For those who complete the homework, we note that these equations have the same form as scalar relaxation of the 2 nd kind with the correlation time given by τ ex instead of T,S and T 2,S.

18 Next Lecture: Redfield theory- Examples 8

Problem Set #6 BioE 326B/Rad 226B

Problem Set #6 BioE 326B/Rad 226B . Chemical shift anisotropy Problem Set #6 BioE 26B/Rad 226B 2. Scalar relaxation of the 2 nd kind. 0 imaging 4. NMRD curves Chemical Shift Anisotropy The Hamiltonian a single-spin system in a magnetic

More information

Lecture #6 Chemical Exchange

Lecture #6 Chemical Exchange Lecture #6 Chemical Exchange Topics Introduction Effects on longitudinal magnetization Effects on transverse magnetization Examples Handouts and Reading assignments Kowalewski, Chapter 13 Levitt, sections

More information

Lecture #6 NMR in Hilbert Space

Lecture #6 NMR in Hilbert Space Lecture #6 NMR in Hilbert Space Topics Review of spin operators Single spin in a magnetic field: longitudinal and transverse magnetiation Ensemble of spins in a magnetic field RF excitation Handouts and

More information

Lecture #8 Redfield theory of NMR relaxation

Lecture #8 Redfield theory of NMR relaxation Lecure #8 Redfield heory of NMR relaxaion Topics The ineracion frame of reference Perurbaion heory The Maser Equaion Handous and Reading assignmens van de Ven, Chapers 6.2. Kowalewski, Chaper 4. Abragam

More information

Prob (solution by Michael Fisher) 1

Prob (solution by Michael Fisher) 1 Prob 975 (solution by Michael Fisher) We begin by expressing the initial state in a basis of the spherical harmonics, which will allow us to apply the operators ˆL and ˆL z θ, φ φ() = 4π sin θ sin φ =

More information

Introduction to NMR Product Operators. C. Griesinger. Max Planck Institute for Biophysical Chemistry. Am Faßberg 11. D Göttingen.

Introduction to NMR Product Operators. C. Griesinger. Max Planck Institute for Biophysical Chemistry. Am Faßberg 11. D Göttingen. ntroduction to NMR Product Operato C. Griesinger Max Planck nstitute for Biophysical Chemistry Am Faßberg 11 D-3777 Göttingen Germany cigr@nmr.mpibpc.mpg.de http://goenmr.de EMBO Coue Heidelberg Sept.

More information

8 NMR Interactions: Dipolar Coupling

8 NMR Interactions: Dipolar Coupling 8 NMR Interactions: Dipolar Coupling 8.1 Hamiltonian As discussed in the first lecture, a nucleus with spin I 1/2 has a magnetic moment, µ, associated with it given by µ = γ L. (8.1) If two different nuclear

More information

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in:

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in: Solution Set Hand out:.. Hand in:.. Repetition. The magnetization moves adiabatically during the application of an r.f. pulse if it is always aligned along the effective field axis. This behaviour is observed

More information

Tutorial Session - Exercises. Problem 1: Dipolar Interaction in Water Moleclues

Tutorial Session - Exercises. Problem 1: Dipolar Interaction in Water Moleclues Tutorial Session - Exercises Problem 1: Dipolar Interaction in Water Moleclues The goal of this exercise is to calculate the dipolar 1 H spectrum of the protons in an isolated water molecule which does

More information

Solution Set 3. Hand out : i d dt. Ψ(t) = Ĥ Ψ(t) + and

Solution Set 3. Hand out : i d dt. Ψ(t) = Ĥ Ψ(t) + and Physikalische Chemie IV Magnetische Resonanz HS Solution Set 3 Hand out : 5.. Repetition. The Schrödinger equation describes the time evolution of a closed quantum system: i d dt Ψt Ĥ Ψt Here the state

More information

16.1. PROBLEM SET I 197

16.1. PROBLEM SET I 197 6.. PROBLEM SET I 97 Answers: Problem set I. a In one dimension, the current operator is specified by ĵ = m ψ ˆpψ + ψˆpψ. Applied to the left hand side of the system outside the region of the potential,

More information

Lecture #7 In Vivo Water

Lecture #7 In Vivo Water Lecture #7 In Vivo Water Topics Hydration layers Tissue relaxation times Magic angle effects Magnetization Transfer Contrast (MTC) CEST Handouts and Reading assignments Mathur-De Vre, R., The NMR studies

More information

NMR Dynamics and Relaxation

NMR Dynamics and Relaxation NMR Dynamics and Relaxation Günter Hempel MLU Halle, Institut für Physik, FG Festkörper-NMR 1 Introduction: Relaxation Two basic magnetic relaxation processes: Longitudinal relaxation: T 1 Relaxation Return

More information

Phys 622 Problems Chapter 5

Phys 622 Problems Chapter 5 1 Phys 622 Problems Chapter 5 Problem 1 The correct basis set of perturbation theory Consider the relativistic correction to the electron-nucleus interaction H LS = α L S, also known as the spin-orbit

More information

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft MR Fundamentals 26 October 2010 Mitglied der Helmholtz-Gemeinschaft Mitglied der Helmholtz-Gemeinschaft Nuclear Spin Nuclear Spin Nuclear magnetic resonance is observed in atoms with odd number of protons

More information

0 + E (1) and the first correction to the ground state energy is given by

0 + E (1) and the first correction to the ground state energy is given by 1 Problem set 9 Handout: 1/24 Due date: 1/31 Problem 1 Prove that the energy to first order for the lowest-energy state of a perturbed system is an upper bound for the exact energy of the lowest-energy

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 20, March 8, 2006

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 20, March 8, 2006 Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer Lecture 20, March 8, 2006 Solved Homework We determined that the two coefficients in our two-gaussian

More information

C/CS/Phy191 Problem Set 6 Solutions 3/23/05

C/CS/Phy191 Problem Set 6 Solutions 3/23/05 C/CS/Phy191 Problem Set 6 Solutions 3/3/05 1. Using the standard basis (i.e. 0 and 1, eigenstates of Ŝ z, calculate the eigenvalues and eigenvectors associated with measuring the component of spin along

More information

Physics 221A Fall 2005 Homework 11 Due Thursday, November 17, 2005

Physics 221A Fall 2005 Homework 11 Due Thursday, November 17, 2005 Physics 221A Fall 2005 Homework 11 Due Thursday, November 17, 2005 Reading Assignment: Sakurai pp. 234 242, 248 271, Notes 15. 1. Show that Eqs. (15.64) follow from the definition (15.61) of an irreducible

More information

Rotational motion of a rigid body spinning around a rotational axis ˆn;

Rotational motion of a rigid body spinning around a rotational axis ˆn; Physics 106a, Caltech 15 November, 2018 Lecture 14: Rotations The motion of solid bodies So far, we have been studying the motion of point particles, which are essentially just translational. Bodies with

More information

Relaxation. Ravinder Reddy

Relaxation. Ravinder Reddy Relaxation Ravinder Reddy Relaxation What is nuclear spin relaxation? What causes it? Effect on spectral line width Field dependence Mechanisms Thermal equilibrium ~10-6 spins leads to NMR signal! T1 Spin-lattice

More information

4 Quantum Mechanical Description of NMR

4 Quantum Mechanical Description of NMR 4 Quantum Mechanical Description of NMR Up to this point, we have used a semi-classical description of NMR (semi-classical, because we obtained M 0 using the fact that the magnetic dipole moment is quantized).

More information

Chm 331 Fall 2015, Exercise Set 4 NMR Review Problems

Chm 331 Fall 2015, Exercise Set 4 NMR Review Problems Chm 331 Fall 015, Exercise Set 4 NMR Review Problems Mr. Linck Version.0. Compiled December 1, 015 at 11:04:44 4.1 Diagonal Matrix Elements for the nmr H 0 Find the diagonal matrix elements for H 0 (the

More information

Physics 115C Homework 2

Physics 115C Homework 2 Physics 5C Homework Problem Our full Hamiltonian is H = p m + mω x +βx 4 = H +H where the unperturbed Hamiltonian is our usual and the perturbation is H = p m + mω x H = βx 4 Assuming β is small, the perturbation

More information

MATH325 - QUANTUM MECHANICS - SOLUTION SHEET 11

MATH325 - QUANTUM MECHANICS - SOLUTION SHEET 11 MATH35 - QUANTUM MECHANICS - SOLUTION SHEET. The Hamiltonian for a particle of mass m moving in three dimensions under the influence of a three-dimensional harmonic oscillator potential is Ĥ = h m + mω

More information

BCMB/CHEM Spin Operators and QM Applications

BCMB/CHEM Spin Operators and QM Applications BCMB/CHEM 8190 Spin Operators and QM Applications Quantum Description of NMR Experiments Not all experiments can be described by the Bloch equations A quantum description is necessary for understanding

More information

Introduction to Relaxation Theory James Keeler

Introduction to Relaxation Theory James Keeler EUROMAR Zürich, 24 Introduction to Relaxation Theory James Keeler University of Cambridge Department of Chemistry What is relaxation? Why might it be interesting? relaxation is the process which drives

More information

Principles of Nuclear Magnetic Resonance in One and Two Dimensions

Principles of Nuclear Magnetic Resonance in One and Two Dimensions Principles of Nuclear Magnetic Resonance in One and Two Dimensions Richard R. Ernst, Geoffrey Bodenhausen, and Alexander Wokaun Laboratorium für Physikalische Chemie Eidgenössische Technische Hochschule

More information

Quantum Mechanics II Lecture 11 (www.sp.phy.cam.ac.uk/~dar11/pdf) David Ritchie

Quantum Mechanics II Lecture 11 (www.sp.phy.cam.ac.uk/~dar11/pdf) David Ritchie Quantum Mechanics II Lecture (www.sp.phy.cam.ac.u/~dar/pdf) David Ritchie Michaelmas. So far we have found solutions to Section 4:Transitions Ĥ ψ Eψ Solutions stationary states time dependence with time

More information

Massachusetts Institute of Technology Physics Department

Massachusetts Institute of Technology Physics Department Massachusetts Institute of Technology Physics Department Physics 8.32 Fall 2006 Quantum Theory I October 9, 2006 Assignment 6 Due October 20, 2006 Announcements There will be a makeup lecture on Friday,

More information

20 The Hydrogen Atom. Ze2 r R (20.1) H( r, R) = h2 2m 2 r h2 2M 2 R

20 The Hydrogen Atom. Ze2 r R (20.1) H( r, R) = h2 2m 2 r h2 2M 2 R 20 The Hydrogen Atom 1. We want to solve the time independent Schrödinger Equation for the hydrogen atom. 2. There are two particles in the system, an electron and a nucleus, and so we can write the Hamiltonian

More information

Chapter 4. Q. A hydrogen atom starts out in the following linear combination of the stationary. (ψ ψ 21 1 ). (1)

Chapter 4. Q. A hydrogen atom starts out in the following linear combination of the stationary. (ψ ψ 21 1 ). (1) Tor Kjellsson Stockholm University Chapter 4 4.5 Q. A hydrogen atom starts out in the following linear combination of the stationary states n, l, m =,, and n, l, m =,, : Ψr, 0 = ψ + ψ. a Q. Construct Ψr,

More information

Homework assignment 3: due Thursday, 10/26/2017

Homework assignment 3: due Thursday, 10/26/2017 Homework assignment 3: due Thursday, 10/6/017 Physics 6315: Quantum Mechanics 1, Fall 017 Problem 1 (0 points The spin Hilbert space is defined by three non-commuting observables, S x, S y, S z. These

More information

PRACTICAL ASPECTS OF NMR RELAXATION STUDIES OF BIOMOLECULAR DYNAMICS

PRACTICAL ASPECTS OF NMR RELAXATION STUDIES OF BIOMOLECULAR DYNAMICS PRACTICAL ASPECTS OF MR RELAXATIO STUDIES OF BIOMOLECULAR DYAMICS Further reading: Can be downloaded from my web page Korzhnev D.E., Billeter M., Arseniev A.S., and Orekhov V. Y., MR Studies of Brownian

More information

NMR Relaxation and Molecular Dynamics

NMR Relaxation and Molecular Dynamics Ecole RMN Cargese Mars 2008 NMR Relaxation and Molecular Dynamics Martin Blackledge IBS Grenoble Carine van Heijenoort ICSN, CNRS Gif-sur-Yvette Solution NMR Timescales for Biomolecular Motion ps ns µs

More information

Biophysical Chemistry: NMR Spectroscopy

Biophysical Chemistry: NMR Spectroscopy Relaxation & Multidimensional Spectrocopy Vrije Universiteit Brussel 9th December 2011 Outline 1 Relaxation 2 Principles 3 Outline 1 Relaxation 2 Principles 3 Establishment of Thermal Equilibrium As previously

More information

Slow symmetric exchange

Slow symmetric exchange Slow symmetric exchange ϕ A k k B t A B There are three things you should notice compared with the Figure on the previous slide: 1) The lines are broader, 2) the intensities are reduced and 3) the peaks

More information

Spin Relaxation and NOEs BCMB/CHEM 8190

Spin Relaxation and NOEs BCMB/CHEM 8190 Spin Relaxation and NOEs BCMB/CHEM 8190 T 1, T 2 (reminder), NOE T 1 is the time constant for longitudinal relaxation - the process of re-establishing the Boltzmann distribution of the energy level populations

More information

8.05 Quantum Physics II, Fall 2011 FINAL EXAM Thursday December 22, 9:00 am -12:00 You have 3 hours.

8.05 Quantum Physics II, Fall 2011 FINAL EXAM Thursday December 22, 9:00 am -12:00 You have 3 hours. 8.05 Quantum Physics II, Fall 0 FINAL EXAM Thursday December, 9:00 am -:00 You have 3 hours. Answer all problems in the white books provided. Write YOUR NAME and YOUR SECTION on your white books. There

More information

Rotational Brownian motion; Fluorescence correlation spectroscpy; Photobleaching and FRET. David A. Case Rutgers, Spring 2009

Rotational Brownian motion; Fluorescence correlation spectroscpy; Photobleaching and FRET. David A. Case Rutgers, Spring 2009 Rotational Brownian motion; Fluorescence correlation spectroscpy; Photobleaching and FRET David A. Case Rutgers, Spring 2009 Techniques based on rotational motion What we studied last time probed translational

More information

Control of Spin Systems

Control of Spin Systems Control of Spin Systems The Nuclear Spin Sensor Many Atomic Nuclei have intrinsic angular momentum called spin. The spin gives the nucleus a magnetic moment (like a small bar magnet). Magnetic moments

More information

CHAPTER 5 DIPOLAR COHERENCE TRANSFER IN THE PRESENCE OF CHEMICAL SHIFT FOR UNORIENTED AND ORIENTED HOMONUCLEAR TWO SPIN-½ SOLID STATE SYSTEMS

CHAPTER 5 DIPOLAR COHERENCE TRANSFER IN THE PRESENCE OF CHEMICAL SHIFT FOR UNORIENTED AND ORIENTED HOMONUCLEAR TWO SPIN-½ SOLID STATE SYSTEMS CHAPTE 5 DIPOLA COHEENCE TANSFE IN THE PESENCE OF CHEMICAL SHIFT FO UNOIENTED AND OIENTED HOMONUCLEA TWO SPIN-½ SOLID STATE SYSTEMS Introduction In this chapter, coherence transfer is examined for the

More information

Problem 1: Spin 1 2. particles (10 points)

Problem 1: Spin 1 2. particles (10 points) Problem 1: Spin 1 particles 1 points 1 Consider a system made up of spin 1/ particles. If one measures the spin of the particles, one can only measure spin up or spin down. The general spin state of a

More information

1 Time-Dependent Two-State Systems: Rabi Oscillations

1 Time-Dependent Two-State Systems: Rabi Oscillations Advanced kinetics Solution 7 April, 16 1 Time-Dependent Two-State Systems: Rabi Oscillations a In order to show how Ĥintt affects a bound state system in first-order time-dependent perturbation theory

More information

Problem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1

Problem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1 Problem Set 2 Due Tuesday, September 27, 211 Problems from Carter: Chapter 2: 2a-d,g,h,j 2.6, 2.9; Chapter 3: 1a-d,f,g 3.3, 3.6, 3.7 Additional problems: (1) Consider the D 4 point group and use a coordinate

More information

Concepts and Methods of 2D Infrared Spectroscopy. Peter Hamm and Martin T. Zanni. Answer Keys: Chapter 5

Concepts and Methods of 2D Infrared Spectroscopy. Peter Hamm and Martin T. Zanni. Answer Keys: Chapter 5 Concepts and Methods of 2D Infrared Spectroscopy 1 Peter Hamm and Martin T. Zanni Answer Keys: Chapter 5 Problem 5.1: Derive Eq. 5.26. Solution: As stated in the text, there are several ways to solve this

More information

26 Group Theory Basics

26 Group Theory Basics 26 Group Theory Basics 1. Reference: Group Theory and Quantum Mechanics by Michael Tinkham. 2. We said earlier that we will go looking for the set of operators that commute with the molecular Hamiltonian.

More information

PhD in Theoretical Particle Physics Academic Year 2017/2018

PhD in Theoretical Particle Physics Academic Year 2017/2018 July 10, 017 SISSA Entrance Examination PhD in Theoretical Particle Physics Academic Year 017/018 S olve two among the four problems presented. Problem I Consider a quantum harmonic oscillator in one spatial

More information

1.6. Quantum mechanical description of the hydrogen atom

1.6. Quantum mechanical description of the hydrogen atom 29.6. Quantum mechanical description of the hydrogen atom.6.. Hamiltonian for the hydrogen atom Atomic units To avoid dealing with very small numbers, let us introduce the so called atomic units : Quantity

More information

IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance

IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance The foundation of electronic spectroscopy is the exact solution of the time-independent Schrodinger equation for the hydrogen atom.

More information

Matrices and Deformation

Matrices and Deformation ES 111 Mathematical Methods in the Earth Sciences Matrices and Deformation Lecture Outline 13 - Thurs 9th Nov 2017 Strain Ellipse and Eigenvectors One way of thinking about a matrix is that it operates

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance Spectroscopy Ecole Polytechnique Département de Chimie CHI 551 Dr. Grégory Nocton Bureau 01 30 11 A Tel: 44 02 Ecole polytechnique / CNRS Laboratoire de Chimie Moléculaire E-mail:

More information

T 1, T 2, NOE (reminder)

T 1, T 2, NOE (reminder) T 1, T 2, NOE (reminder) T 1 is the time constant for longitudinal relaxation - the process of re-establishing the Boltzmann distribution of the energy level populations of the system following perturbation

More information

Fun With Carbon Monoxide. p. 1/2

Fun With Carbon Monoxide. p. 1/2 Fun With Carbon Monoxide p. 1/2 p. 1/2 Fun With Carbon Monoxide E = 0.25 ± 0.05 ev Electron beam results p. 1/2 Fun With Carbon Monoxide E = 0.25 ± 0.05 ev Electron beam results C V (J/K-mole) 35 30 25

More information

Problem Set 2 Due Thursday, October 1, & & & & # % (b) Construct a representation using five d orbitals that sit on the origin as a basis:

Problem Set 2 Due Thursday, October 1, & & & & # % (b) Construct a representation using five d orbitals that sit on the origin as a basis: Problem Set 2 Due Thursday, October 1, 29 Problems from Cotton: Chapter 4: 4.6, 4.7; Chapter 6: 6.2, 6.4, 6.5 Additional problems: (1) Consider the D 3h point group and use a coordinate system wherein

More information

1 Measurement and expectation values

1 Measurement and expectation values C/CS/Phys 191 Measurement and expectation values, Intro to Spin 2/15/05 Spring 2005 Lecture 9 1 Measurement and expectation values Last time we discussed how useful it is to work in the basis of energy

More information

Spin-Boson Model. A simple Open Quantum System. M. Miller F. Tschirsich. Quantum Mechanics on Macroscopic Scales Theory of Condensed Matter July 2012

Spin-Boson Model. A simple Open Quantum System. M. Miller F. Tschirsich. Quantum Mechanics on Macroscopic Scales Theory of Condensed Matter July 2012 Spin-Boson Model A simple Open Quantum System M. Miller F. Tschirsich Quantum Mechanics on Macroscopic Scales Theory of Condensed Matter July 2012 Outline 1 Bloch-Equations 2 Classical Dissipations 3 Spin-Boson

More information

Longitudinal relaxation in dipole-coupled homonuclear three-spin systems: Distinct correlations and odd spectral densities

Longitudinal relaxation in dipole-coupled homonuclear three-spin systems: Distinct correlations and odd spectral densities THE JOURNAL OF CHEMICAL PHYSICS 43, 340 (05) Longitudinal relaxation in dipole-coupled homonuclear three-spin systems: Distinct correlations and odd spectral densities Zhiwei Chang and Bertil Halle a)

More information

QUANTUM MECHANICS I PHYS 516. Solutions to Problem Set # 5

QUANTUM MECHANICS I PHYS 516. Solutions to Problem Set # 5 QUANTUM MECHANICS I PHYS 56 Solutions to Problem Set # 5. Crossed E and B fields: A hydrogen atom in the N 2 level is subject to crossed electric and magnetic fields. Choose your coordinate axes to make

More information

NOTES ON LINEAR ALGEBRA CLASS HANDOUT

NOTES ON LINEAR ALGEBRA CLASS HANDOUT NOTES ON LINEAR ALGEBRA CLASS HANDOUT ANTHONY S. MAIDA CONTENTS 1. Introduction 2 2. Basis Vectors 2 3. Linear Transformations 2 3.1. Example: Rotation Transformation 3 4. Matrix Multiplication and Function

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 5.76 Modern Topics in Physical Chemistry Spring, Problem Set #2

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 5.76 Modern Topics in Physical Chemistry Spring, Problem Set #2 Reading Assignment: Bernath Chapter 5 MASSACHUSETTS INSTITUTE O TECHNOLOGY 5.76 Modern Topics in Physical Chemistry Spring 994 Problem Set # The following handouts also contain useful information: C &

More information

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt Spin Dynamics Basics of Nuclear Magnetic Resonance Second edition Malcolm H. Levitt The University of Southampton, UK John Wiley &. Sons, Ltd Preface xxi Preface to the First Edition xxiii Introduction

More information

Addition of Angular Momenta

Addition of Angular Momenta Addition of Angular Momenta What we have so far considered to be an exact solution for the many electron problem, should really be called exact non-relativistic solution. A relativistic treatment is needed

More information

Introduction to quantum information processing

Introduction to quantum information processing Introduction to quantum information processing Measurements and quantum probability Brad Lackey 25 October 2016 MEASUREMENTS AND QUANTUM PROBABILITY 1 of 22 OUTLINE 1 Probability 2 Density Operators 3

More information

PRACTICAL ASPECTS OF NMR RELAXATION STUDIES OF BIOMOLECULAR DYNAMICS

PRACTICAL ASPECTS OF NMR RELAXATION STUDIES OF BIOMOLECULAR DYNAMICS PRACTICAL ASPECTS OF MR RELAXATIO STUDIES OF BIOMOLECULAR DYAMICS Further reading: (Can be downloaded from my web page Korzhnev D.E., Billeter M., Arseniev A.S., and Orekhov V. Y., MR Studies of Brownian

More information

Physics 4022 Notes on Density Matrices

Physics 4022 Notes on Density Matrices Physics 40 Notes on Density Matrices Definition: For a system in a definite normalized state ψ > the density matrix ρ is ρ = ψ >< ψ 1) From Eq 1 it is obvious that in the basis defined by ψ > and other

More information

Problem Set No. 3: Canonical Quantization Due Date: Wednesday October 19, 2018, 5:00 pm. 1 Spin waves in a quantum Heisenberg antiferromagnet

Problem Set No. 3: Canonical Quantization Due Date: Wednesday October 19, 2018, 5:00 pm. 1 Spin waves in a quantum Heisenberg antiferromagnet Physics 58, Fall Semester 018 Professor Eduardo Fradkin Problem Set No. 3: Canonical Quantization Due Date: Wednesday October 19, 018, 5:00 pm 1 Spin waves in a quantum Heisenberg antiferromagnet In this

More information

Chimica Inorganica 3

Chimica Inorganica 3 A symmetry operation carries the system into an equivalent configuration, which is, by definition physically indistinguishable from the original configuration. Clearly then, the energy of the system must

More information

1 Recall what is Spin

1 Recall what is Spin C/CS/Phys C191 Spin measurement, initialization, manipulation by precession10/07/08 Fall 2008 Lecture 10 1 Recall what is Spin Elementary particles and composite particles carry an intrinsic angular momentum

More information

Quantum Physics II (8.05) Fall 2002 Assignment 12 and Study Aid

Quantum Physics II (8.05) Fall 2002 Assignment 12 and Study Aid Quantum Physics II (8.05) Fall 2002 Assignment 12 and Study Aid Announcement This handout includes 9 problems. The first 5 are the problem set due. The last 4 cover material from the final few lectures

More information

5.61 Physical Chemistry Lecture #36 Page

5.61 Physical Chemistry Lecture #36 Page 5.61 Physical Chemistry Lecture #36 Page 1 NUCLEAR MAGNETIC RESONANCE Just as IR spectroscopy is the simplest example of transitions being induced by light s oscillating electric field, so NMR is the simplest

More information

PHYS Quantum Mechanics I - Fall 2011 Problem Set 7 Solutions

PHYS Quantum Mechanics I - Fall 2011 Problem Set 7 Solutions PHYS 657 - Fall PHYS 657 - Quantum Mechanics I - Fall Problem Set 7 Solutions Joe P Chen / joepchen@gmailcom For our reference, here are some useful identities invoked frequentl on this problem set: J

More information

5.61 Physical Chemistry Lecture #35+ Page 1

5.61 Physical Chemistry Lecture #35+ Page 1 5.6 Physical Chemistry Lecture #35+ Page NUCLEAR MAGNETIC RESONANCE ust as IR spectroscopy is the simplest example of transitions being induced by light s oscillating electric field, so NMR is the simplest

More information

PROTEIN NMR SPECTROSCOPY

PROTEIN NMR SPECTROSCOPY List of Figures List of Tables xvii xxvi 1. NMR SPECTROSCOPY 1 1.1 Introduction to NMR Spectroscopy 2 1.2 One Dimensional NMR Spectroscopy 3 1.2.1 Classical Description of NMR Spectroscopy 3 1.2.2 Nuclear

More information

Lecture 10. Central potential

Lecture 10. Central potential Lecture 10 Central potential 89 90 LECTURE 10. CENTRAL POTENTIAL 10.1 Introduction We are now ready to study a generic class of three-dimensional physical systems. They are the systems that have a central

More information

Solid-state NMR and proteins : basic concepts (a pictorial introduction) Barth van Rossum,

Solid-state NMR and proteins : basic concepts (a pictorial introduction) Barth van Rossum, Solid-state NMR and proteins : basic concepts (a pictorial introduction) Barth van Rossum, 16.02.2009 Solid-state and solution NMR spectroscopy have many things in common Several concepts have been/will

More information

Sommerfeld (1920) noted energy levels of Li deduced from spectroscopy looked like H, with slight adjustment of principal quantum number:

Sommerfeld (1920) noted energy levels of Li deduced from spectroscopy looked like H, with slight adjustment of principal quantum number: Spin. Historical Spectroscopy of Alkali atoms First expt. to suggest need for electron spin: observation of splitting of expected spectral lines for alkali atoms: i.e. expect one line based on analogy

More information

An introduction to Solid State NMR and its Interactions

An introduction to Solid State NMR and its Interactions An introduction to Solid State NMR and its Interactions From tensor to NMR spectra CECAM Tutorial September 9 Calculation of Solid-State NMR Parameters Using the GIPAW Method Thibault Charpentier - CEA

More information

d 3 r d 3 vf( r, v) = N (2) = CV C = n where n N/V is the total number of molecules per unit volume. Hence e βmv2 /2 d 3 rd 3 v (5)

d 3 r d 3 vf( r, v) = N (2) = CV C = n where n N/V is the total number of molecules per unit volume. Hence e βmv2 /2 d 3 rd 3 v (5) LECTURE 12 Maxwell Velocity Distribution Suppose we have a dilute gas of molecules, each with mass m. If the gas is dilute enough, we can ignore the interactions between the molecules and the energy will

More information

Physics 342 Lecture 26. Angular Momentum. Lecture 26. Physics 342 Quantum Mechanics I

Physics 342 Lecture 26. Angular Momentum. Lecture 26. Physics 342 Quantum Mechanics I Physics 342 Lecture 26 Angular Momentum Lecture 26 Physics 342 Quantum Mechanics I Friday, April 2nd, 2010 We know how to obtain the energy of Hydrogen using the Hamiltonian operator but given a particular

More information

Lecture 6. A More Quantitative Description of Pulsed NMR: Product Operator Formalism.

Lecture 6. A More Quantitative Description of Pulsed NMR: Product Operator Formalism. Lecture 6. A More Quantitative Description of Pulsed NMR: Product Operator Formalism. So far we ve been describing NMR phenomena using vectors, with a minimal of mathematics. Sure, we discussed the Bloch

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechanics Rajdeep Sensarma sensarma@theory.tifr.res.in Quantum Dynamics Lecture #2 Recap of Last Class Schrodinger and Heisenberg Picture Time Evolution operator/ Propagator : Retarded

More information

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. There are 10 problems, totalling 180 points. Do all problems. Answer all problems in the white books provided.

More information

We now turn to our first quantum mechanical problems that represent real, as

We now turn to our first quantum mechanical problems that represent real, as 84 Lectures 16-17 We now turn to our first quantum mechanical problems that represent real, as opposed to idealized, systems. These problems are the structures of atoms. We will begin first with hydrogen-like

More information

Angular Momentum set II

Angular Momentum set II Angular Momentum set II PH - QM II Sem, 7-8 Problem : Using the commutation relations for the angular momentum operators, prove the Jacobi identity Problem : [ˆL x, [ˆL y, ˆL z ]] + [ˆL y, [ˆL z, ˆL x

More information

St Hugh s 2 nd Year: Quantum Mechanics II. Reading. Topics. The following sources are recommended for this tutorial:

St Hugh s 2 nd Year: Quantum Mechanics II. Reading. Topics. The following sources are recommended for this tutorial: St Hugh s 2 nd Year: Quantum Mechanics II Reading The following sources are recommended for this tutorial: The key text (especially here in Oxford) is Molecular Quantum Mechanics, P. W. Atkins and R. S.

More information

Quantum Theory of Angular Momentum and Atomic Structure

Quantum Theory of Angular Momentum and Atomic Structure Quantum Theory of Angular Momentum and Atomic Structure VBS/MRC Angular Momentum 0 Motivation...the questions Whence the periodic table? Concepts in Materials Science I VBS/MRC Angular Momentum 1 Motivation...the

More information

NANOSCALE SCIENCE & TECHNOLOGY

NANOSCALE SCIENCE & TECHNOLOGY . NANOSCALE SCIENCE & TECHNOLOGY V Two-Level Quantum Systems (Qubits) Lecture notes 5 5. Qubit description Quantum bit (qubit) is an elementary unit of a quantum computer. Similar to classical computers,

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Wednesday, January 14, 015 1:00PM to 3:00PM Modern Physics Section 3. Quantum Mechanics Two hours are permitted for the completion of this

More information

Rad 226b/BioE 326b In Vivo MR: Relaxation Theory and Contrast Mechanisms

Rad 226b/BioE 326b In Vivo MR: Relaxation Theory and Contrast Mechanisms Rad 226b/BioE 326b In Vivo MR: Relaxation Theory and Contrast Mechanisms Daniel Spielman, Ph.D., Dept. of Radiology Lucas Center for MR Spectroscopy and Imaging (corner of Welch Rd and Pasteur Dr) office:

More information

Quantum Many Body Theory

Quantum Many Body Theory Quantum Many Body Theory Victor Gurarie Week 4 4 Applications of the creation and annihilation operators 4.1 A tight binding model Consider bosonic particles which hops around on the lattice, for simplicity,

More information

Solutions to chapter 4 problems

Solutions to chapter 4 problems Chapter 9 Solutions to chapter 4 problems Solution to Exercise 47 For example, the x component of the angular momentum is defined as ˆL x ŷˆp z ẑ ˆp y The position and momentum observables are Hermitian;

More information

CHEMISTRY 333 Fall 2006 Exam 3, in class

CHEMISTRY 333 Fall 2006 Exam 3, in class CHEMISTRY 333 Fall 006 Exam 3, in class Name SHOW YOUR WORK. Mathematica & calculators. You may use Mathematica or a calculator to do arithmetic. Do not use Mathematica for any higher-level manipulations

More information

Lecture 2: Open quantum systems

Lecture 2: Open quantum systems Phys 769 Selected Topics in Condensed Matter Physics Summer 21 Lecture 2: Open quantum systems Lecturer: Anthony J. Leggett TA: Bill Coish 1. No (micro- or macro-) system is ever truly isolated U = S +

More information

Review of paradigms QM. Read McIntyre Ch. 1, 2, 3.1, , , 7, 8

Review of paradigms QM. Read McIntyre Ch. 1, 2, 3.1, , , 7, 8 Review of paradigms QM Read McIntyre Ch. 1, 2, 3.1, 5.1-5.7, 6.1-6.5, 7, 8 QM Postulates 1 The state of a quantum mechanical system, including all the informaion you can know about it, is represented mathemaically

More information

B2.III Revision notes: quantum physics

B2.III Revision notes: quantum physics B.III Revision notes: quantum physics Dr D.M.Lucas, TT 0 These notes give a summary of most of the Quantum part of this course, to complement Prof. Ewart s notes on Atomic Structure, and Prof. Hooker s

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechanics Rajdeep Sensarma sensarma@theory.tifr.res.in Quantum Dynamics Lecture #3 Recap of Last lass Time Dependent Perturbation Theory Linear Response Function and Spectral Decomposition

More information

Quantum Mechanics (Draft 2010 Nov.)

Quantum Mechanics (Draft 2010 Nov.) Quantum Mechanics (Draft 00 Nov) For a -dimensional simple harmonic quantum oscillator, V (x) = mω x, it is more convenient to describe the dynamics by dimensionless position parameter ρ = x/a (a = h )

More information

Physics 351 Wednesday, January 14, 2015

Physics 351 Wednesday, January 14, 2015 Physics 351 Wednesday, January 14, 2015 Read Chapter 1 for today. Two-thirds of you answered the Chapter 1 questions so far. Read Chapters 2+3 for Friday. Skim Chapter 4 for next Wednesday (1/21). Homework

More information

Quantum Physics III (8.06) Spring 2008 Final Exam Solutions

Quantum Physics III (8.06) Spring 2008 Final Exam Solutions Quantum Physics III (8.6) Spring 8 Final Exam Solutions May 19, 8 1. Short answer questions (35 points) (a) ( points) α 4 mc (b) ( points) µ B B, where µ B = e m (c) (3 points) In the variational ansatz,

More information