Cluster Functional Renormalization Group

Size: px
Start display at page:

Download "Cluster Functional Renormalization Group"

Transcription

1 Cluster Functional Renormalization Group Johannes Reuther Free University Berlin Helmholtz-Center Berlin California Institute of Technology (Pasadena) Lefkada, September 26, 2014 Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

2 Collaborators Ronny Thomale Würzburg Peter Wölfle Karlsruhe Christian Platt Würzburg JR and Ronny Thomale, Phys. Rev. B 89, (2014) JR and P. Wölfle, Phys. Rev. B 81, (2010) JR, R. Thomale, and S. Trebst, Phys. Rev. B 84, (2011) Y. Singh, S. Manni, JR, T. Berlijn, R. Thomale, W. Ku, S. Trebst, and P. Gegenwart, Phys. Rev. Lett. 108, (2012) JR, R. Thomale, S. Rachel, arxiv: (2014) Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

3 Cluster spin models J ij S i S j c J ij S i S j Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

4 Cluster spin models c J ij S i S j Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

5 Cluster spin models c J ij S i S j Use functional renomoralization-group method: Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

6 Outline 1 Pseudofermion FRG 2 Cluster implementation 3 Application to the bilayer Heisenberg model 4 Conclusion Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

7 Pseudofermion FRG Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

8 Pseudo fermions Introduce two fermionic operators f i, f i for each lattice site i. Then: S µ i = 1 2 f i σ µ f i with f i = ( fi f i ) Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

9 Pseudo fermions Introduce two fermionic operators f i, f i for each lattice site i. Then: S µ i = 1 2 f i σ µ f i with f i = ( fi Spin space is two-dimensional (, ) while two fermions define a four-dimensional space ( 0, 0, 0, 1, 1, 0, 1, 1 ). f i ) Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

10 Pseudo fermions Introduce two fermionic operators f i, f i for each lattice site i. Then: S µ i = 1 2 f i σ µ f i with f i = ( fi Spin space is two-dimensional (, ) while two fermions define a four-dimensional space ( 0, 0, 0, 1, 1, 0, 1, 1 ). A spin 1/2 is only realized in the subspace with f i f i + f i f i = 1 (one fermion per site)! f i ) Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

11 Pseudo fermions Introduce two fermionic operators f i, f i for each lattice site i. Then: S µ i = 1 2 f i σ µ f i with f i = ( fi Spin space is two-dimensional (, ) while two fermions define a four-dimensional space ( 0, 0, 0, 1, 1, 0, 1, 1 ). A spin 1/2 is only realized in the subspace with f i f i + f i f i = 1 (one fermion per site)! Empty and doubly occupied sites carry spin zero and act like vacancies in the lattice = excitation energy of order J = unphysical occupations are naturally suppressed at zero temperature f i ) Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

12 H = ij Fermionic Hamiltonian J ij S i S j 1 4 ( ) ( ) J ij f i σ µ f i f j σµ f j ij µ Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

13 Fermionic Hamiltonian H = ij J ij S i S j 1 4 ( ) ( ) J ij f i σ µ f i f j σµ f j ij µ Diagrammatics in the fermions: bare progagator: G 0 (iω) = 1 iω = bare self energy: Σ 0 = 0 interaction vertex: Γ 0 = J ij Propagator is strictly local (no fermion hopping). Interactions are non-local. Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

14 Fermionic Hamiltonian H = ij J ij S i S j 1 4 ( ) ( ) J ij f i σ µ f i f j σµ f j ij µ Diagrammatics in the fermions: bare progagator: G 0 (iω) = 1 iω = bare self energy: Σ 0 = 0 interaction vertex: Γ 0 = J ij Propagator is strictly local (no fermion hopping). Interactions are non-local. FRG may be applied (relatively) straightforwardly: Introduce infrared frequency cutoff in the propagator: G 0 (iω) = 1 iω G0 Λ Θ( ω Λ) (iω) = iω Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

15 Pseudofermion FRG Define a flowing self energy Σ Λ and a two-particle vertex Γ Λ (1, 2 ; 1, 2), 1 = {ω 1, i 1, α 1 }. = FRG equations:... Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

16 Pseudofermion FRG Define a flowing self energy Σ Λ and a two-particle vertex Γ Λ (1, 2 ; 1, 2), 1 = {ω 1, i 1, α 1 }. = FRG equations:... Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

17 Pseudofermion FRG Define a flowing self energy Σ Λ and a two-particle vertex Γ Λ (1, 2 ; 1, 2), 1 = {ω 1, i 1, α 1 }. = FRG equations:... Initial conditions: Σ Λ = 0 Γ Λ (1, 2 ; 1, 2) = 1 4 J i 1,i 2 σ µ α 1 α 1 σ µ α 2 α 2 δ i1 i 1 δ i2 i 2 (i 1 i 2, α 1 α 2 ) Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

18 Pseudofermion FRG This type of FRG approach works surprisingly well for 2D spin models JR and P. Wölfle, Phys. Rev. B 81, (2010) JR, R. Thomale, and S. Trebst, Phys. Rev. B 84, (2011) Y. Singh, S. Manni, JR, T. Berlijn, R. Thomale, W. Ku, S. Trebst, and P. Gegenwart, Phys. Rev. Lett. 108, (2012) JR, R. Thomale, S. Rachel, arxiv: (2014) even though: there is no well defined point of expansion (however, certain mean-field limits describing magnetic order and disorder are included exactly). 0D spin clusters may not be treated accurately. Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

19 Pseudofermion FRG This type of FRG approach works surprisingly well for 2D spin models JR and P. Wölfle, Phys. Rev. B 81, (2010) JR, R. Thomale, and S. Trebst, Phys. Rev. B 84, (2011) Y. Singh, S. Manni, JR, T. Berlijn, R. Thomale, W. Ku, S. Trebst, and P. Gegenwart, Phys. Rev. Lett. 108, (2012) JR, R. Thomale, S. Rachel, arxiv: (2014) even though: there is no well defined point of expansion (however, certain mean-field limits describing magnetic order and disorder are included exactly). 0D spin clusters may not be treated accurately. Can this be resolved within an cluster FRG approach which: uses the isolated cluster limit as well defined expansion point? treats finite spin clusters exactly? Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

20 Cluster implementation See also: A. Rançon and N. Dupuis, Phys. Rev. B 83, (2011) A. Rançon and N. Dupuis, Phys. Rev. B 84, (2011) M. Kinza, J. Ortloff, J. Bauer, and C. Honerkamp, Phys. Rev. B 87, (2013) C. Taranto, S. Andergassen, J. Bauer, K. Held, A. Katanin, W. Metzner, G. Rohringer, and A. Toschi, Phys. Rev. Lett. 112, (2014) Talk by A. Toschi, 17:50 Session VIII Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

21 General idea: Replace Exact cluster vertices Γ Λ (1, 2 ; 1, 2) = 1 4 J i 1,i 2 σ µ α 1 α 1 σ µ α 2 α 2 δ i1 i 1 δ i2 i 2 (i 1 i 2, α 1 α 2 ) in the initial conditions by the exact cluster vertex Γ ex (1, 2 ; 1, 2) if J i1,i 2 is a coupling within a cluster. Then the isolated clusters are treated exactly! J S S i i 1 2 i 1 i 2 Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

22 General idea: Replace Exact cluster vertices Γ Λ (1, 2 ; 1, 2) = 1 4 J i 1,i 2 σ µ α 1 α 1 σ µ α 2 α 2 δ i1 i 1 δ i2 i 2 (i 1 i 2, α 1 α 2 ) in the initial conditions by the exact cluster vertex Γ ex (1, 2 ; 1, 2) if J i1,i 2 is a coupling within a cluster. Then the isolated clusters are treated exactly! J S S i i 1 2 i 1 i 2 Is this allowed? Which consequences does it have on the FRG scheme? One severe difficulty indeed arises: Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

23 FRG equations First parametrize: Γ Λ (1, 2 ; 1, 2) = γ Λ (1, 2 ; 1, 2) γ Λ (1, 2 ; 2, 1) with γ Λ (1, 2 ; 1, 2) = γ Λ (2, 1 ; 2, 1) and γ Λ (1, 2 2 2' ; 1, 2) = δi1 1 1' i 1 δ i2 i 2 FRG equation for γ Λ (1, 2 ; 1, 2): Λ γλ (1, 2 ; 1, 2) = 1 2π [ γ Λ (1, 2 ; 3, 4)γ Λ (3, 4; 1, 2) 3,4 + γ Λ (2, 4; 3, 1)γ Λ (3, 1 ; 2, 4) γ Λ (1, 4; 1, 3)γ Λ (3, 2 ; 4, 2) + γ Λ (1, 4; 1, 3)γ Λ (3, 2 ; 2, 4) + γ Λ (1, 4; 3, 1)γ Λ (3, 2 ; 4, 2) ] (G Λ (iω 3 )S Λ (iω 4 ) + G Λ (iω 4 )S Λ (iω 3 )) single scale propagator S Λ = G Λ [ Λ (G Λ 0 ) 1 ]G Λ Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

24 FRG equations First parametrize: Γ Λ (1, 2 ; 1, 2) = γ Λ (1, 2 ; 1, 2) γ Λ (1, 2 ; 2, 1) with γ Λ (1, 2 ; 1, 2) = γ Λ (2, 1 ; 2, 1) and γ Λ (1, 2 2 2' ; 1, 2) = δi1 1 1' i 1 δ i2 i 2 FRG equation for γ Λ (1, 2 ; 1, 2): Integrated up: γ Λ (1, 2 ; 1, 2) = γ (1, 2 ; 1, 2) + Λ dλ 1 2π 3,4 [ γ Λ (1, 2 ; 3, 4)γ Λ (3, 4; 1, 2) + γ Λ (2, 4; 3, 1)γ Λ (3, 1 ; 2, 4) γ Λ (1, 4; 1, 3)γ Λ (3, 2 ; 4, 2) + γ Λ (1, 4; 1, 3)γ Λ (3, 2 ; 2, 4) + γ Λ (1, 4; 3, 1)γ Λ (3, 2 ; 4, 2) ] P Λ (iω 3, iω 4 ) with P Λ (iω 3, iω 4 ) = G Λ (iω 3 )S Λ (iω 4 ) + G Λ (iω 4 )S Λ (iω 3 ) Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

25 FRG equations First parametrize: Γ Λ (1, 2 ; 1, 2) = γ Λ (1, 2 ; 1, 2) γ Λ (1, 2 ; 2, 1) with γ Λ (1, 2 ; 1, 2) = γ Λ (2, 1 ; 2, 1) and γ Λ (1, 2 2 2' ; 1, 2) = δi1 1 1' i 1 δ i2 i 2 FRG equation for γ Λ (1, 2 ; 1, 2): Iterative solution: Set γ 0 = γ and insert the solutions successively, yielding γ 1, γ 2,... γ Λ n+1(1, 2 ; 1, 2) = γ (1, 2 ; 1, 2) + Λ dλ 1 2π 3,4 [ γ Λ n (1, 2 ; 3, 4)γ Λ n (3, 4; 1, 2) + γ Λ n (2, 4; 3, 1)γ Λ n (3, 1 ; 2, 4) γ Λ n (1, 4; 1, 3)γ Λ n (3, 2 ; 4, 2) + γ Λ n (1, 4; 1, 3)γ Λ n (3, 2 ; 2, 4) + γ Λ n (1, 4; 3, 1)γ Λ n (3, 2 ; 4, 2) ] P Λ (iω 3, iω 4 ) Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

26 Iterative solution Example for a diagrammatic contribution to γ Λ 3 (1,2 ;1,2): Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

27 Iterative solution Example for a diagrammatic contribution to γ Λ 3 (1,2 ;1,2): Assume that the propagator lines (sites) 4,5,6 and 3,7,8,9,10 are located on the same cluster, respectively. Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

28 Iterative solution Example for a diagrammatic contribution to γ Λ 3 (1,2 ;1,2): Using the new initial conditions, the bare interaction needs to be replaced by the exact cluster vertex for all intra-cluster couplings,. Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

29 Iterative solution Example for a diagrammatic contribution to γ Λ 3 (1,2 ;1,2): Using the new initial conditions, the bare interaction needs to be replaced by the exact cluster vertex for all intra-cluster couplings,. Over-counting of sub diagrams! Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

30 New classes of vertices How can this over-counting of terms be avoided? Define classes of vertices γ Λ 1,n, γλ 2,n,..., γλ 10,n with γλ n = 10 x=1 γλ x,n + γ ex Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

31 New classes of vertices Express the FRG flow equations in terms of these new classes. Example: particle-particle channel {Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

32 New classes of vertices Express the FRG flow equations in terms of these new classes. Example: particle-particle channel {Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

33 [ [ [ [ [ [ [ [ Introduce counter terms Counter terms cancel the redundant diagrams in each iteration step separately! (works similarly for the other interaction channels) = Well defined cluster-expansion scheme. Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

34 Application to the bilayer Heisenberg model Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

35 Bilayer Heisenberg model H =J S ia S ja ij a=1,2 + J S i1 S i2 i Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

36 Bilayer Heisenberg model Phase diagram for J, J > 0 and g = J /J : H =J S ia S ja ij a=1,2 + J S i1 S i2 i ~ 8g Numerical value from Monte Carlo: g c = L. Wang, K. S. D. Beach, and A. W. Sandvik, Phys. Rev. B 73, (2006) Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

37 Bilayer Heisenberg model Calculate the frequency dependent susceptibility via χ Λ=0 (k, ω) = + k = (k x, k y, k z ) with k x, k y [ π, π] and k z = 0, π. In the following k z = π. For a stable numerical implementation of the cluster FRG, some approximations and modifications are necessary. (for details, see JR and Ronny Thomale, Phys. Rev. B 89, (2014)) Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

38 Bilayer Heisenberg model Results for the static susceptibility χ(k) = χ(k, ω = 0): Sharp peaks at k = (±π, ±π) indicate a transition into the antiferromagnetic Néel phase at g Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

39 Bilayer Heisenberg model Calculate the spin-excitation spectrum A(k, ω) = 1 π Im χ(k, ω + i0+ ) via analytical continuation (Padé approximation): Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

40 Bilayer Heisenberg model Calculate the spin-excitation spectrum A(k, ω) = 1 π Im χ(k, ω + i0+ ) via analytical continuation (Padé approximation): Fit a bosonic Green s function with a single excitation to χ(k, ω) ( 1 χ(k, z) = W k ) 1 z+e k +iδ k z E k +iδ k to obtain the dispersion of spin excitations E k the quasiparticle weight W k the damping (inverse lifetime) δ k Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

41 Bilayer Heisenberg model Dispersion E k in comparison to dimer expansion: (Z. Weihong, Phys. Rev. B 55, (1997)) g= Quasiparticle weight W k and damping δ k : ~ ~ Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

42 Conclusion Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

43 Conclusion Within a cluster FRG approach the spin clusters are treated exactly while the inter-cluster couplings are addressed via RG. In order to circumvent an over-counting of diagrams, counter terms need to be introduced. A simplified numerical implementation yields qualitatively correct results for the bilayer Heisenberg model. (Improvements concerning g c are possible.) The exact cluster vertices enter the initial conditions and only need to be evaluated once = Large spin clusters are possible (as long as the exact cluster vertices can be calculated)! Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

44 Thank you for your attention! Johannes Reuther Cluster Functional Renormalization Group () Lefkada, September 26, / 25

Quantum phase transition and conductivity of parallel quantum dots with a moderate Coulomb interaction

Quantum phase transition and conductivity of parallel quantum dots with a moderate Coulomb interaction Journal of Physics: Conference Series PAPER OPEN ACCESS Quantum phase transition and conductivity of parallel quantum dots with a moderate Coulomb interaction To cite this article: V S Protsenko and A

More information

Part III: Impurities in Luttinger liquids

Part III: Impurities in Luttinger liquids Functional RG for interacting fermions... Part III: Impurities in Luttinger liquids 1. Luttinger liquids 2. Impurity effects 3. Microscopic model 4. Flow equations 5. Results S. Andergassen, T. Enss (Stuttgart)

More information

FRG approach to interacting fermions with partial bosonization: from weak to strong coupling

FRG approach to interacting fermions with partial bosonization: from weak to strong coupling FRG approach to interacting fermions with partial bosonization: from weak to strong coupling Talk at conference ERG08, Heidelberg, June 30, 2008 Peter Kopietz, Universität Frankfurt collaborators: Lorenz

More information

Functional renormalization group approach to interacting Fermi systems DMFT as a booster rocket

Functional renormalization group approach to interacting Fermi systems DMFT as a booster rocket Functional renormalization group approach to interacting Fermi systems DMFT as a booster rocket Walter Metzner, Max-Planck-Institute for Solid State Research 1. Introduction 2. Functional RG for Fermi

More information

Kondo satellites in photoemission spectra of heavy fermion compounds

Kondo satellites in photoemission spectra of heavy fermion compounds Kondo satellites in photoemission spectra of heavy fermion compounds P. Wölfle, Universität Karlsruhe J. Kroha, Universität Bonn Outline Introduction: Kondo resonances in the photoemission spectra of Ce

More information

Spontaneous symmetry breaking in fermion systems with functional RG

Spontaneous symmetry breaking in fermion systems with functional RG Spontaneous symmetry breaking in fermion systems with functional RG Andreas Eberlein and Walter Metzner MPI for Solid State Research, Stuttgart Lefkada, September 24 A. Eberlein and W. Metzner Spontaneous

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Hole dynamics in frustrated antiferromagnets: Coexistence of many-body and free-like excitations

Hole dynamics in frustrated antiferromagnets: Coexistence of many-body and free-like excitations Hole dynamics in frustrated antiferromagnets: Coexistence of many-body and free-like excitations Collaborators: Luis O. Manuel Instituto de Física Rosario Rosario, Argentina Adolfo E. Trumper (Rosario)

More information

Nodal and nodeless superconductivity in Iron-based superconductors

Nodal and nodeless superconductivity in Iron-based superconductors Nodal and nodeless superconductivity in Iron-based superconductors B. Andrei Bernevig Department of Physics Princeton University Minneapolis, 2011 Collaborators: R. Thomale, Yangle Wu (Princeton) J. Hu

More information

Lattice modulation experiments with fermions in optical lattices and more

Lattice modulation experiments with fermions in optical lattices and more Lattice modulation experiments with fermions in optical lattices and more Nonequilibrium dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University Rajdeep Sensarma Harvard

More information

Dynamic properties of interacting bosons and magnons

Dynamic properties of interacting bosons and magnons Ultracold Quantum Gases beyond Equilibrium Natal, Brasil, September 27 October 1, 2010 Dynamic properties of interacting bosons and magnons Peter Kopietz, Universität Frankfurt collaboration: A. Kreisel,

More information

Electronic correlations in models and materials. Jan Kuneš

Electronic correlations in models and materials. Jan Kuneš Electronic correlations in models and materials Jan Kuneš Outline Dynamical-mean field theory Implementation (impurity problem) Single-band Hubbard model MnO under pressure moment collapse metal-insulator

More information

Linked-Cluster Expansions for Quantum Many-Body Systems

Linked-Cluster Expansions for Quantum Many-Body Systems Linked-Cluster Expansions for Quantum Many-Body Systems Boulder Summer School 2010 Simon Trebst Lecture overview Why series expansions? Linked-cluster expansions From Taylor expansions to linked-cluster

More information

Nano-DMFT : the electronic structure of small, strongly correlated, systems

Nano-DMFT : the electronic structure of small, strongly correlated, systems Nano-DMFT : the electronic structure of small, strongly correlated, systems Nanoscale Dynamical Mean-Field Theory for Molecules and Mesoscopic Devices in the Strong-Correlation Regime Author: S. Florens,

More information

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University Quantum Monte Carlo Simulations in the Valence Bond Basis Anders Sandvik, Boston University Outline The valence bond basis for S=1/2 spins Projector QMC in the valence bond basis Heisenberg model with

More information

Quantum Monte Carlo Simulations in the Valence Bond Basis

Quantum Monte Carlo Simulations in the Valence Bond Basis NUMERICAL APPROACHES TO QUANTUM MANY-BODY SYSTEMS, IPAM, January 29, 2009 Quantum Monte Carlo Simulations in the Valence Bond Basis Anders W. Sandvik, Boston University Collaborators Kevin Beach (U. of

More information

Ground State Projector QMC in the valence-bond basis

Ground State Projector QMC in the valence-bond basis Quantum Monte Carlo Methods at Work for Novel Phases of Matter Trieste, Italy, Jan 23 - Feb 3, 2012 Ground State Projector QMC in the valence-bond basis Anders. Sandvik, Boston University Outline: The

More information

Coupled Cluster Method for Quantum Spin Systems

Coupled Cluster Method for Quantum Spin Systems Coupled Cluster Method for Quantum Spin Systems Sven E. Krüger Department of Electrical Engineering, IESK, Cognitive Systems Universität Magdeburg, PF 4120, 39016 Magdeburg, Germany sven.krueger@e-technik.uni-magdeburg.de

More information

Solution of the Anderson impurity model via the functional renormalization group

Solution of the Anderson impurity model via the functional renormalization group Solution of the Anderson impurity model via the functional renormalization group Simon Streib, Aldo Isidori, and Peter Kopietz Institut für Theoretische Physik, Goethe-Universität Frankfurt Meeting DFG-Forschergruppe

More information

The Superfluid-Insulator transition

The Superfluid-Insulator transition The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989). Superfluid-insulator transition Ultracold 87 Rb atoms

More information

Non-equilibrium time evolution of bosons from the functional renormalization group

Non-equilibrium time evolution of bosons from the functional renormalization group March 14, 2013, Condensed Matter Journal Club University of Florida at Gainesville Non-equilibrium time evolution of bosons from the functional renormalization group Peter Kopietz, Universität Frankfurt

More information

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber title 1 team 2 Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber motivation: topological states of matter 3 fermions non-interacting, filled band (single particle physics) topological

More information

Anderson impurity model at finite Coulomb interaction U: Generalized noncrossing approximation

Anderson impurity model at finite Coulomb interaction U: Generalized noncrossing approximation PHYSICAL REVIEW B, VOLUME 64, 155111 Anderson impurity model at finite Coulomb interaction U: Generalized noncrossing approximation K. Haule, 1,2 S. Kirchner, 2 J. Kroha, 2 and P. Wölfle 2 1 J. Stefan

More information

Stochastic series expansion (SSE) and ground-state projection

Stochastic series expansion (SSE) and ground-state projection Institute of Physics, Chinese Academy of Sciences, Beijing, October 31, 2014 Stochastic series expansion (SSE) and ground-state projection Anders W Sandvik, Boston University Review article on quantum

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu Quantum phases of antiferromagnets and the underdoped cuprates Talk online: sachdev.physics.harvard.edu Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and

More information

Quantum s=1/2 antiferromagnet on the Bethe lattice at percolation I. Low-energy states, DMRG, and diagnostics

Quantum s=1/2 antiferromagnet on the Bethe lattice at percolation I. Low-energy states, DMRG, and diagnostics Quantum s=1/2 antiferromagnet on the Bethe lattice at percolation I. Low-energy states, DMRG, and diagnostics Hitesh J. Changlani, Shivam Ghosh, Sumiran Pujari, Christopher L. Henley Laboratory of Atomic

More information

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory From utzwiller Wave Functions to Dynamical Mean-Field Theory Dieter Vollhardt Autumn School on Correlated Electrons DMFT at 25: Infinite Dimensions Forschungszentrum Jülich, September 15, 2014 Supported

More information

Talk online at

Talk online at Talk online at http://sachdev.physics.harvard.edu Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic

More information

Quantum criticality of Fermi surfaces

Quantum criticality of Fermi surfaces Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface

More information

Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets

Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets Talk at Rutherford Appleton Lab, March 13, 2007 Peter Kopietz, Universität Frankfurt collaborators: Nils Hasselmann,

More information

Andreas Kreisel. Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main. July,

Andreas Kreisel. Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main. July, BEC of magnons and spin wave interactions in QAF Andreas Kreisel Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main July, 18 2007 collaborators: N. Hasselmann, P. Kopietz

More information

Anomalous Behavior in an Anderston-Holstein Model. for a Single Molecule Transistor

Anomalous Behavior in an Anderston-Holstein Model. for a Single Molecule Transistor Anomalous Behavior in an Anderston-Holstein Model for a Single Molecule Transistor Alexander Davis Dr Kevin Ingersent August 3, 2011 Abstract This lab was designed to test whether Poisson statistics can

More information

'etion 4. Surfaces and -interface. Chapter 1 Statistical Mechanics of SurfcSytman Quantum -Correlated Systems. Chapter 2 Synchrotron X-Ray Studies o

'etion 4. Surfaces and -interface. Chapter 1 Statistical Mechanics of SurfcSytman Quantum -Correlated Systems. Chapter 2 Synchrotron X-Ray Studies o 'etion 4 Surfaces and -interface Chapter 1 Statistical Mechanics of SurfcSytman Quantum -Correlated Systems Chapter 2 Synchrotron X-Ray Studies o ufc iodrn Chapter 3 Chemical Reaction Dynamics tsrae Chapter

More information

Sarma phase in relativistic and non-relativistic systems

Sarma phase in relativistic and non-relativistic systems phase in relativistic and non-relativistic systems Tina Katharina Herbst In Collaboration with I. Boettcher, J. Braun, J. M. Pawlowski, D. Roscher, N. Strodthoff, L. von Smekal and C. Wetterich arxiv:149.5232

More information

Phonon II Thermal Properties

Phonon II Thermal Properties Phonon II Thermal Properties Physics, UCF OUTLINES Phonon heat capacity Planck distribution Normal mode enumeration Density of states in one dimension Density of states in three dimension Debye Model for

More information

Strong Correlation Effects in Fullerene Molecules and Solids

Strong Correlation Effects in Fullerene Molecules and Solids Strong Correlation Effects in Fullerene Molecules and Solids Fei Lin Physics Department, Virginia Tech, Blacksburg, VA 2461 Fei Lin (Virginia Tech) Correlations in Fullerene SESAPS 211, Roanoke, VA 1 /

More information

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory Renormalization of microscopic Hamiltonians Renormalization Group without Field Theory Alberto Parola Università dell Insubria (Como - Italy) Renormalization Group Universality Only dimensionality and

More information

Quantum spin systems - models and computational methods

Quantum spin systems - models and computational methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Quantum spin systems - models and computational methods Anders W. Sandvik, Boston University Lecture outline Introduction

More information

WORLD SCIENTIFIC (2014)

WORLD SCIENTIFIC (2014) WORLD SCIENTIFIC (2014) LIST OF PROBLEMS Chapter 1: Magnetism of Free Electrons and Atoms 1. Orbital and spin moments of an electron: Using the theory of angular momentum, calculate the orbital

More information

Lattice Monte Carlo for carbon nanostructures. Timo A. Lähde. In collaboration with Thomas Luu (FZ Jülich)

Lattice Monte Carlo for carbon nanostructures. Timo A. Lähde. In collaboration with Thomas Luu (FZ Jülich) Lattice Monte Carlo for carbon nanostructures Timo A. Lähde In collaboration with Thomas Luu (FZ Jülich) Institute for Advanced Simulation and Institut für Kernphysik Forschungszentrum Jülich GmbH, D-52425

More information

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta C. Buragohain K. Damle M. Vojta Subir Sachdev Phys. Rev. Lett. 78, 943 (1997). Phys. Rev. B 57, 8307 (1998). Science 286, 2479 (1999). cond-mat/9912020 Quantum Phase Transitions, Cambridge University Press

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

The nature of superfluidity in the cold atomic unitary Fermi gas

The nature of superfluidity in the cold atomic unitary Fermi gas The nature of superfluidity in the cold atomic unitary Fermi gas Introduction Yoram Alhassid (Yale University) Finite-temperature auxiliary-field Monte Carlo (AFMC) method The trapped unitary Fermi gas

More information

Green Functions in Many Body Quantum Mechanics

Green Functions in Many Body Quantum Mechanics Green Functions in Many Body Quantum Mechanics NOTE This section contains some advanced material, intended to give a brief introduction to methods used in many body quantum mechanics. The material at the

More information

Magnetic ordering of local moments

Magnetic ordering of local moments Magnetic ordering Types of magnetic structure Ground state of the Heisenberg ferromagnet and antiferromagnet Spin wave High temperature susceptibility Mean field theory Magnetic ordering of local moments

More information

Diagrammatic extensions of (E)DMFT: Dual boson

Diagrammatic extensions of (E)DMFT: Dual boson Diagrammatic extensions of (E)DMFT: Dual boson IPhT, CEA Saclay, France ISSP, June 25, 2014 Collaborators Mikhail Katsnelson (University of Nijmegen, The Netherlands) Alexander Lichtenstein (University

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature09910 Supplementary Online Material METHODS Single crystals were made at Kyoto University by the electrooxidation of BEDT-TTF in an 1,1,2- tetrachloroethylene solution of KCN, CuCN, and

More information

Examples of Lifshitz topological transition in interacting fermionic systems

Examples of Lifshitz topological transition in interacting fermionic systems Examples of Lifshitz topological transition in interacting fermionic systems Joseph Betouras (Loughborough U. Work in collaboration with: Sergey Slizovskiy (Loughborough, Sam Carr (Karlsruhe/Kent and Jorge

More information

Rotor Spectra, Berry Phases, and Monopole Fields: From Antiferromagnets to QCD

Rotor Spectra, Berry Phases, and Monopole Fields: From Antiferromagnets to QCD Rotor Spectra, Berry Phases, and Monopole Fields: From Antiferromagnets to QCD Uwe-Jens Wiese Bern University LATTICE08, Williamsburg, July 14, 008 S. Chandrasekharan (Duke University) F.-J. Jiang, F.

More information

w2dynamics : operation and applications

w2dynamics : operation and applications w2dynamics : operation and applications Giorgio Sangiovanni ERC Kick-off Meeting, 2.9.2013 Hackers Nico Parragh (Uni Wü) Markus Wallerberger (TU) Patrik Gunacker (TU) Andreas Hausoel (Uni Wü) A solver

More information

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models arxiv:1609.03760 Lode Pollet Dario Hügel Hugo Strand, Philipp Werner (Uni Fribourg) Algorithmic developments diagrammatic

More information

Mean field theories of quantum spin glasses

Mean field theories of quantum spin glasses Mean field theories of quantum spin glasses Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Talk online: Sachdev Classical Sherrington-Kirkpatrick model H = JS S i j ij i j J ij : a

More information

Solving the sign problem for a class of frustrated antiferromagnets

Solving the sign problem for a class of frustrated antiferromagnets Solving the sign problem for a class of frustrated antiferromagnets Fabien Alet Laboratoire de Physique Théorique Toulouse with : Kedar Damle (TIFR Mumbai), Sumiran Pujari (Toulouse Kentucky TIFR Mumbai)

More information

LPTM. Quantum-Monte-Carlo Approach to the Thermodynamics of Highly Frustrated Spin-½ Antiferromagnets. Andreas Honecker 1

LPTM. Quantum-Monte-Carlo Approach to the Thermodynamics of Highly Frustrated Spin-½ Antiferromagnets. Andreas Honecker 1 Quantum-Monte-Carlo Approach to the Thermodynamics of Highly Frustrated Spin-½ Antiferromagnets LPTM Laboratoire de Physique Théorique et Modélisation Andreas Honecker 1 Laboratoire de Physique Théorique

More information

Dimensional BCS-BEC crossover

Dimensional BCS-BEC crossover Dimensional BCS-BEC crossover Igor Boettcher Institute for Theoretical Physics, Heidelberg University ERG 2014 Outline Ultracold atoms BCS-BEC Crossover 2D Experiments with... Theory Experiment C. Wetterich

More information

Lecture 2: Ultracold fermions

Lecture 2: Ultracold fermions Lecture 2: Ultracold fermions Fermions in optical lattices. Fermi Hubbard model. Current state of experiments Lattice modulation experiments Doublon lifetimes Stoner instability Ultracold fermions in optical

More information

Supersymmetry breaking and Nambu-Goldstone fermions in lattice models

Supersymmetry breaking and Nambu-Goldstone fermions in lattice models YKIS2016@YITP (2016/6/15) Supersymmetry breaking and Nambu-Goldstone fermions in lattice models Hosho Katsura (Department of Physics, UTokyo) Collaborators: Yu Nakayama (IPMU Rikkyo) Noriaki Sannomiya

More information

Quantum phase transitions and the Luttinger theorem.

Quantum phase transitions and the Luttinger theorem. Quantum phase transitions and the Luttinger theorem. Leon Balents (UCSB) Matthew Fisher (UCSB) Stephen Powell (Yale) Subir Sachdev (Yale) T. Senthil (MIT) Ashvin Vishwanath (Berkeley) Matthias Vojta (Karlsruhe)

More information

A theoretical study of the single-molecule transistor

A theoretical study of the single-molecule transistor A theoretical study of the single-molecule transistor B. C. Friesen Department of Physics, Oklahoma Baptist University, Shawnee, OK 74804 J. K. Ingersent Department of Physics, University of Florida, Gainesville,

More information

Quantum Lattice Models & Introduction to Exact Diagonalization

Quantum Lattice Models & Introduction to Exact Diagonalization Quantum Lattice Models & Introduction to Exact Diagonalization H! = E! Andreas Läuchli IRRMA EPF Lausanne ALPS User Workshop CSCS Manno, 28/9/2004 Outline of this lecture: Quantum Lattice Models Lattices

More information

arxiv:cond-mat/ v2 [cond-mat.dis-nn] 18 Jul 2005

arxiv:cond-mat/ v2 [cond-mat.dis-nn] 18 Jul 2005 Dynamics of weakly coupled random antiferromagnetic quantum spin chains arxiv:cond-mat/0502530v2 [cond-mat.dis-nn] 18 Jul 2005 Eddy Yusuf and Kun Yang National High Magnetic Field Laboratory and Department

More information

The Gutzwiller Density Functional Theory

The Gutzwiller Density Functional Theory The Gutzwiller Density Functional Theory Jörg Bünemann, BTU Cottbus I) Introduction 1. Model for an H 2 -molecule 2. Transition metals and their compounds II) Gutzwiller variational theory 1. Gutzwiller

More information

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden H ψ = E ψ Introduction to Exact Diagonalization Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden http://www.pks.mpg.de/~aml laeuchli@comp-phys.org Simulations of

More information

Finite-frequency Matsubara FRG for the SIAM

Finite-frequency Matsubara FRG for the SIAM Finite-frequency Matsubara FRG for the SIAM Final status report Christoph Karrasch & Volker Meden Ralf Hedden & Kurt Schönhammer Numerical RG: Robert Peters & Thomas Pruschke Experiments on superconducting

More information

Kaluza-Klein Masses and Couplings: Radiative Corrections to Tree-Level Relations

Kaluza-Klein Masses and Couplings: Radiative Corrections to Tree-Level Relations Kaluza-Klein Masses and Couplings: Radiative Corrections to Tree-Level Relations Sky Bauman Work in collaboration with Keith Dienes Phys. Rev. D 77, 125005 (2008) [arxiv:0712.3532 [hep-th]] Phys. Rev.

More information

Wang-Landau sampling for Quantum Monte Carlo. Stefan Wessel Institut für Theoretische Physik III Universität Stuttgart

Wang-Landau sampling for Quantum Monte Carlo. Stefan Wessel Institut für Theoretische Physik III Universität Stuttgart Wang-Landau sampling for Quantum Monte Carlo Stefan Wessel Institut für Theoretische Physik III Universität Stuttgart Overview Classical Monte Carlo First order phase transitions Classical Wang-Landau

More information

Magnetism and Superconductivity in Decorated Lattices

Magnetism and Superconductivity in Decorated Lattices Magnetism and Superconductivity in Decorated Lattices Mott Insulators and Antiferromagnetism- The Hubbard Hamiltonian Illustration: The Square Lattice Bipartite doesn t mean N A = N B : The Lieb Lattice

More information

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES N.M.Plakida Joint Institute for Nuclear Research, Dubna, Russia CORPES, Dresden, 26.05.2005 Publications and collaborators: N.M. Plakida,

More information

Kitaev honeycomb lattice model: from A to B and beyond

Kitaev honeycomb lattice model: from A to B and beyond Kitaev honeycomb lattice model: from A to B and beyond Jiri Vala Department of Mathematical Physics National University of Ireland at Maynooth Postdoc: PhD students: Collaborators: Graham Kells Ahmet Bolukbasi

More information

PoS(Confinement8)147. Universality in QCD and Halo Nuclei

PoS(Confinement8)147. Universality in QCD and Halo Nuclei Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, University of Bonn, Germany E-mail: hammer@itkp.uni-bonn.de Effective Field Theory (EFT) provides a powerful

More information

The phase diagram of polar condensates

The phase diagram of polar condensates The phase diagram of polar condensates Taking the square root of a vortex Austen Lamacraft [with Andrew James] arxiv:1009.0043 University of Virginia September 23, 2010 KITP, UCSB Austen Lamacraft (University

More information

Spinons and triplons in spatially anisotropic triangular antiferromagnet

Spinons and triplons in spatially anisotropic triangular antiferromagnet Spinons and triplons in spatially anisotropic triangular antiferromagnet Oleg Starykh, University of Utah Leon Balents, UC Santa Barbara Masanori Kohno, NIMS, Tsukuba PRL 98, 077205 (2007); Nature Physics

More information

Tunneling Into a Luttinger Liquid Revisited

Tunneling Into a Luttinger Liquid Revisited Petersburg Nuclear Physics Institute Tunneling Into a Luttinger Liquid Revisited V.Yu. Kachorovskii Ioffe Physico-Technical Institute, St.Petersburg, Russia Co-authors: Alexander Dmitriev (Ioffe) Igor

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

4 Surfaces and Interfaces

4 Surfaces and Interfaces Sction 4 Surfaces and Interfaces Chapter 1 Statistical Mechanics of Surface Systems and Quantum- Correlated Systems Chapter 2 Synchrotron X-Ray Studies of Surface Disordering Chapter 3 Chemical Reaction

More information

The Mott Metal-Insulator Transition

The Mott Metal-Insulator Transition Florian Gebhard The Mott Metal-Insulator Transition Models and Methods With 38 Figures Springer 1. Metal Insulator Transitions 1 1.1 Classification of Metals and Insulators 2 1.1.1 Definition of Metal

More information

shows the difference between observed (black) and calculated patterns (red). Vertical ticks indicate

shows the difference between observed (black) and calculated patterns (red). Vertical ticks indicate Intensity (arb. unit) a 5 K No disorder Mn-Pt disorder 5 K Mn-Ga disorder 5 K b 5 K Observed Calculated Difference Bragg positions 24 28 32 2 4 6 8 2 4 2θ (degree) 2θ (degree) Supplementary Figure. Powder

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Simulations of Quantum Dimer Models

Simulations of Quantum Dimer Models Simulations of Quantum Dimer Models Didier Poilblanc Laboratoire de Physique Théorique CNRS & Université de Toulouse 1 A wide range of applications Disordered frustrated quantum magnets Correlated fermions

More information

J. Phys.: Condens. Matter 10 (1998) L159 L165. Printed in the UK PII: S (98)90604-X

J. Phys.: Condens. Matter 10 (1998) L159 L165. Printed in the UK PII: S (98)90604-X J. Phys.: Condens. Matter 10 (1998) L159 L165. Printed in the UK PII: S0953-8984(98)90604-X LETTER TO THE EDITOR Calculation of the susceptibility of the S = 1 antiferromagnetic Heisenberg chain with single-ion

More information

SU(N) magnets: from a theoretical abstraction to reality

SU(N) magnets: from a theoretical abstraction to reality 1 SU(N) magnets: from a theoretical abstraction to reality Victor Gurarie University of Colorado, Boulder collaboration with M. Hermele, A.M. Rey Aspen, May 2009 In this talk 2 SU(N) spin models are more

More information

Landau s Fermi Liquid Theory

Landau s Fermi Liquid Theory Thors Hans Hansson Stockholm University Outline 1 Fermi Liquids Why, What, and How? Why Fermi liquids? What is a Fermi liquids? Fermi Liquids How? 2 Landau s Phenomenological Approach The free Fermi gas

More information

A guide to. Feynman diagrams in the many-body problem

A guide to. Feynman diagrams in the many-body problem A guide to. Feynman diagrams in the many-body problem Richard D. Mattuck SECOND EDITION PAGE Preface to second edition v Preface to first edition. vi i 0. The Many-Body Problem for Everybody 1 0.0 What

More information

MOTTNESS AND STRONG COUPLING

MOTTNESS AND STRONG COUPLING MOTTNESS AND STRONG COUPLING ROB LEIGH UNIVERSITY OF ILLINOIS Rutgers University April 2008 based on various papers with Philip Phillips and Ting-Pong Choy PRL 99 (2007) 046404 PRB 77 (2008) 014512 PRB

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 7: Magnetic excitations - Phase transitions and the Landau mean-field theory. - Heisenberg and Ising models. - Magnetic excitations. External parameter, as for

More information

Engineering of quantum Hamiltonians by high-frequency laser fields Mikhail Katsnelson

Engineering of quantum Hamiltonians by high-frequency laser fields Mikhail Katsnelson Engineering of quantum Hamiltonians by high-frequency laser fields Mikhail Katsnelson Main collaborators: Sasha Itin Clément Dutreix Zhenya Stepanov Theory of Condensed Matter group http://www.ru.nl/tcm

More information

Meron-Cluster and Nested Cluster Algorithms: Addressing the Sign Problem in Quantum Monte Carlo Simulations

Meron-Cluster and Nested Cluster Algorithms: Addressing the Sign Problem in Quantum Monte Carlo Simulations Meron-Cluster and Nested Cluster Algorithms: Addressing the Sign Problem in Quantum Monte Carlo Simulations Uwe-Jens Wiese Bern University IPAM Workshop QS2009, January 26, 2009 Collaborators: B. B. Beard

More information

Metallic phase in the two-dimensional ionic Hubbard model

Metallic phase in the two-dimensional ionic Hubbard model PHYSICAL REVIEW B 76, 85 7 Metallic phase in the two-dimensional ionic Hubbard model K. Bouadim, N. Paris, F. Hébert, G. G. Batrouni, and R. T. Scalettar INLN, Université de Nice Sophia-Antipolis, CNRS,

More information

Z2 topological phase in quantum antiferromagnets. Masaki Oshikawa. ISSP, University of Tokyo

Z2 topological phase in quantum antiferromagnets. Masaki Oshikawa. ISSP, University of Tokyo Z2 topological phase in quantum antiferromagnets Masaki Oshikawa ISSP, University of Tokyo RVB spin liquid 4 spins on a square: Groundstate is exactly + ) singlet pair a.k.a. valence bond So, the groundstate

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University September 18, 2014 2 Chapter 5 Atoms in optical lattices Optical lattices

More information

DT I JAN S S"= = 11111'11 I HtI IBlIIIt g ~II. Report: ONR Grant N J Unclassified: For General Distribution LECTF

DT I JAN S S= = 11111'11 I HtI IBlIIIt g ~II. Report: ONR Grant N J Unclassified: For General Distribution LECTF ' DT I,, Final Report: ONR Grant N00014-91-J-1143 Unclassified: For General Distribution LECTF JAN 2 8 1993 Steven R. White, UC Irvine c Summary Over the last two years, we have used several different

More information

Role of Hund Coupling in Two-Orbital Systems

Role of Hund Coupling in Two-Orbital Systems Role of Hund Coupling in Two-Orbital Systems Gun Sang Jeon Ewha Womans University 2013-08-30 NCTS Workshop on Quantum Condensation (QC13) collaboration with A. J. Kim, M.Y. Choi (SNU) Mott-Hubbard Transition

More information

Diagrammatic Green s Functions Approach to the Bose-Hubbard Model

Diagrammatic Green s Functions Approach to the Bose-Hubbard Model Diagrammatic Green s Functions Approach to the Bose-Hubbard Model Matthias Ohliger Institut für Theoretische Physik Freie Universität Berlin 22nd of January 2008 Content OVERVIEW CONSIDERED SYSTEM BASIC

More information

Bogoliubov theory of disordered Bose-Einstein condensates

Bogoliubov theory of disordered Bose-Einstein condensates Bogoliubov theory of disordered Bose-Einstein condensates Christopher Gaul Universidad Complutense de Madrid BENASQUE 2012 DISORDER Bogoliubov theory of disordered Bose-Einstein condensates Abstract The

More information

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE ANDREAS W.W. LUDWIG (UC-Santa Barbara) work done in collaboration with: Bela Bauer (Microsoft Station-Q, Santa

More information

Quantum magnetism and the theory of strongly correlated electrons

Quantum magnetism and the theory of strongly correlated electrons Quantum magnetism and the theory of strongly correlated electrons Johannes Reuther Freie Universität Berlin Helmholtz Zentrum Berlin? Berlin, April 16, 2015 Johannes Reuther Quantum magnetism () Berlin,

More information

Small and large Fermi surfaces in metals with local moments

Small and large Fermi surfaces in metals with local moments Small and large Fermi surfaces in metals with local moments T. Senthil (MIT) Subir Sachdev Matthias Vojta (Augsburg) cond-mat/0209144 Transparencies online at http://pantheon.yale.edu/~subir Luttinger

More information

Renormalization Group Methods for the Nuclear Many-Body Problem

Renormalization Group Methods for the Nuclear Many-Body Problem Renormalization Group Methods for the Nuclear Many-Body Problem A. Schwenk a,b.friman b and G.E. Brown c a Department of Physics, The Ohio State University, Columbus, OH 41 b Gesellschaft für Schwerionenforschung,

More information