Coupled Cluster Method for Quantum Spin Systems

Size: px
Start display at page:

Download "Coupled Cluster Method for Quantum Spin Systems"

Transcription

1 Coupled Cluster Method for Quantum Spin Systems Sven E. Krüger Department of Electrical Engineering, IESK, Cognitive Systems Universität Magdeburg, PF 4120, Magdeburg, Germany MAMBT, Manchester, 31. August 2005 collaborations: J. Richter, R. Darradi (Magdeburg) D.J.J. Farnell (Liverpool) R.F. Bishop (Manchester) Sven Krüger, CCM for quantum spins p.1/23

2 Organization of the talk Heisenberg model and CCM Coupled cluster method application to quantum spin systems spin stiffness excited state Results J J model J 1 J 2 model square lattice, triangular lattice Conclusions Sven Krüger, CCM for quantum spins p.2/23

3 Heisenberg model, spin 1/2, two dimensional H = i,j J ij s i s j ground state HAFM on square and triangular lattice: Néel ordered important mechanisms to destroy magnetic long-range order (LRO): competition of bonds: higher quantum fluctuations suppression of long-range order, formation of local singlets; e.g., CaV 4 O 9, SrCu 2 (BO 3 ) 2 frustration my yield to PT to noncollinear (spiral) states in the classical model; quantum fluctuations favor collinear order my yield (together with quantum fluctuations) to quantum paramagnetic phase Sven Krüger, CCM for quantum spins p.3/23

4 Heisenberg model and CCM with CCM it can be calculated in higher orders: ground state energy, magnetization new: stiffness, gap CCM is able to describe (for example in the J J model) frustrated incommensurate spiral phase quantum phase transition without frustration here: quantum phase transition with frustration J 1 J 2 model Sven Krüger, CCM for quantum spins p.4/23

5 Coupled cluster method CCM I. choose a model state Φ and a set of creation operators (C + I ) C I Φ = 0 I 0, C + I Φ Φ C I = 1 I II. ansatz for the ground state Ψ with the correlation operator S Ψ = e S Φ, S = I 0 S I C + I ; Ψ = Φ Se S, S = 1 + I 0 S I C I III. ket-state equations (non linear), with H = Ψ H Ψ H S I = 0 Φ C I e S He S Φ = 0, ket coefficients S I, Ψ, E = Φ e S He S Φ IV. bra-state equations (linear): H S I = 0, bra coefficients S I, Ψ, Ā = Ψ A Ψ Sven Krüger, CCM for quantum spins p.5/23

6 CCM application on spin systems I. Selection of Φ : classical spin state S = i 1 S i1 s + i 1 + i 1 i 2 S i1 i 2 s + i 1 s + i 2 + II. approximation of S LSUBn i 1 i 2 i 3 S i1 i 2 i 3 s + i 1 s + i 2 s + i 3 + approximation of S is the only approximation in the CCM LSUBn: local approximation, including correlations with up to n spins hierarchical approximation, LSUB becomes exact Sven Krüger, CCM for quantum spins p.6/23

7 CCM Fundamental configurations example for square lattice: LSUB8 with 259 types of connected fundamental configurations Sven Krüger, CCM for quantum spins p.7/23

8 Spin stiffness spin stiffness ρ s measures the rigidity of the spins with respect to a small twist θ of the direction of spin between every pair of neighboring rows: ρ s = d2 E 0 (θ) dθ 2 N ρ s > 0 LRO, systems are stiff θ=0 ρ s = 0 no LRO, systems are not stiff Sven Krüger, CCM for quantum spins p.8/23

9 CCM calculation of the spin stiffness introducing the twist θ: appropriate changing of the classical spin state of Φ, doing the CCM, ground-state energy in dependence of θ twist θ for the square lattice: a) θ 0 + θ +2 θ θ 0 + θ +2 θ b) θ/2 cos(60 ) θ =+θ/2 +3θ/2 twist θ for the triangular lattice: 60 θ 0 +θ +2θ x twist is introduced along rows in x direction. Sven Krüger, CCM for quantum spins p.9/23

10 CCM Excited-State Formalism apply linearly an excitation operator X e to the ket-state wave function: Ψ e = X e Ψ = X e e S Φ, X e = I 0 X e I C+ I using Schrödinger equation E e Ψ e = H Ψ e gives for the excitation energy ɛ e E e E g apply Φ C I set of eigenvalue equations ɛ e X e Φ = e S [H, X e ]e S Φ ɛ e X e I = Φ C I e S [H, X e ]e S Φ, I 0 Sven Krüger, CCM for quantum spins p.10/23

11 CCM Excited-State Formalism: application on spin systems I. Selection of X e : classical spin state X e = i 1 II. approximation of X: X i1 s + i 1 + i 1 i 2 X i1 i 2 s + i 1 s + i 2 + similar to the ground state i 1 i 2 i 3 X i1 i 2 i 3 s + i 1 s + i 2 s + i 3 + but: choose configurations which change s T z by ±1 use the same approximation level (e.g., LSUBn) as for ground state Sven Krüger, CCM for quantum spins p.11/23

12 Applications and Results Sven Krüger, CCM for quantum spins p.12/23

13 J J model A B J = 1, J > J: quantum competition; at J = J s phase transition LRO dimerized paramagnetic phase with local singlets: J J J, J different signs: frustration spiral state known results with CCM: phase transition to the dimerized phase can be described by magnetization, gap, and spin stiffness frustrated region: quantum fluctuations favor collinear order PRB 61, (2000); PRB 64, (2001) Sven Krüger, CCM for quantum spins p.13/23

14 J J model: new results with CMM J = 1, J > J, transition to the dimerized paramagnetic phase influence of the Ising anisotropy s i s j s x i s x j + s y i sy j + sz i s z j on the position of the quantum critical point J s: linear relation J s( ) α with α R. Darradi, J. Richter and S.E. Krüger, J. Phys. Condens. Matter 16, (2004)) influence of the spin quantum number s on the position of the quantum critical point J s: J s s(s + 1) increase of J s with s diminishing of quantum effects R. Darradi, J. Richter and D.J.J. Farnell, J. Phys. Condens. Matter 17, (2005) Sven Krüger, CCM for quantum spins p.14/23

15 J 1 J 2 model A B J 2 1 J J = 1 antiferromagnetic J 2 > 0 parameter, frustration at J 2 = J2 c frustration (together with quantum fluctuations) destroys LRO quantum paramagnet (magnetically disordered phase) Sven Krüger, CCM for quantum spins p.15/23

16 J 1 J 2 model: magnetization sublattice magnetization M versus J 2 obtained by CCM-LSUBn Néel LRO disappears at J c with extr1, and at J c with extr2 new: up to LSUB10 with configuration (using the code of Damian M Farnell) LSUB4 LSUB6 LSUB8 LSUB10 ext1.lsub4-10 ext2.lsub J2 extr1 a 0 + a 1 (1/n) + a 2 (1/n) 2 extr2 a 0 + b 1 (1/n) b 2 at J 2 = 1 extr1 is better approximation at the critical point J c 2 extr2 seems to yield better results reason: scaling rules often change at a phase transition use an approximation (extr2) with variable exponents Sven Krüger, CCM for quantum spins p.16/23

17 J 1 J 2 model: spin stiffness spin stiffness ρ s versus J 2 obtained by CCM-LSUBn Néel LRO disappears at J c with extr1. and J c with extr2. ρ s LSUB2 LSUB4 LSUB6 LSUB8 extr1.lsub4-8 extr2.lsub4-8 extr1 a 0 + a 1 (1/n) + a 2 (1/n) extr2 a 0 + b 1 (1/n) b J2 again: extr1 better at J 2 = 1, extr2 better at J 2 = J2 c Sven Krüger, CCM for quantum spins p.17/23

18 J 1 J 2 model: gap Néel ordered state no gap quantum paramagnet gap J1-J2 Model gap LSUB4 LSUB6 LSUB8 extrapolated:4,6,8 number of configurations: LSUBn gs ex J2 Néel LRO disappears at J c Sven Krüger, CCM for quantum spins p.18/23

19 Conclusions: J 1 J 2 model already known: ground state (energy, magnetization) Bishop, Farnell, Parkinson PRB 58, 6394 new results: magnetization: CCM-LSUB10 extrapolation for calculating J c 2 spin stiffness gap with all three measures: transition from Néel LRO to quantum paramagnet (magnetically disordered phase) can be described approximation of J c 2 Sven Krüger, CCM for quantum spins p.19/23

20 Square lattice: magnetization CCM LSUBn approximation with n = {2, 4, 6, 8, 10} and extrapolated results N F number of fundamental configurations E g /N GS energy per spin M sublattice magnetisation N F E g /N M/M clas LSUB LSUB LSUB LSUB LSUB Extrapolated CCM rd order SWT QMC (5) (6) Hamer et al. PRB 46, 6276 (1992); Sandvik PRB 56, (1997) Sven Krüger, CCM for quantum spins p.20/23

21 Square lattice: spin stiffness CCM: comparison with other methods: LSUBn number eqs. stiffness ρ s extr method ρ s LSWT nd SWT rd SWT series exp exact diagon quantum Mone Carlo CCM in excellent agreement with the best results obtained by other means Sven Krüger, CCM for quantum spins p.21/23

22 Triangular lattice: spin stiffness parallel stiffness, i.e., the spins are rotated by the twist θ within the plane of the system CCM: comparison with other methods:: LSUBn number eqs. stiffness ρ s approx ρ s method exact diagonalization 0.05 LSWT Schwinger-boson approach CCM improved results by CCM (LSWT is to large) Sven Krüger, CCM for quantum spins p.22/23

23 Conclusions CCM leads to quite accurate results for quantum spin systems (ground state and first excitation) qualitativly correct description of GS order-disorder transitions no problems with frustration and incommensurate spiral phases higher spin s > 1/2 also possible some further things to do in high-order CCM: calculation of correlation function dimerized state as CCM ground state Sven Krüger, CCM for quantum spins p.23/23

MICROSCOPIC CALCULATIONS OF QUANTUM PHASE TRANSITIONS IN FRUSTRATED MAGNETIC LATTICES

MICROSCOPIC CALCULATIONS OF QUANTUM PHASE TRANSITIONS IN FRUSTRATED MAGNETIC LATTICES International Journal of Modern Physics B %V*h i«# u o - Vol. 20, No. 19 (2006) 2612-2623 V World Scientific mlb www.worldscientific.com World Scientific Publishing Company MICROSCOPIC CALCULATIONS OF

More information

Coupled Cluster Theories of Quantum Magnetism

Coupled Cluster Theories of Quantum Magnetism Coupled Cluster Theories of Quantum Damian Farnell Dfarnell@glam.ac.uk 1 Outline of Talk A very brief overview of the high order CCM Comparison to results of other methods for various Archimedean lattices

More information

Abstract. By using the coupled cluster method, the numerical exact diagonalization method,

Abstract. By using the coupled cluster method, the numerical exact diagonalization method, Frustration induced noncollinear magnetic order phase in one-dimensional Heisenberg chain with alternating antiferromagnetic and ferromagnetic next nearest neighbor interactions Jian-Jun Jiang,a, Fei Tang,

More information

arxiv:cond-mat/ v1 30 Jun 1997

arxiv:cond-mat/ v1 30 Jun 1997 Coupled Cluster Treatment of the XY model D.J.J. Farnell, S.E. Krüger and J.B. Parkinson arxiv:cond-mat/9706299v1 30 Jun 1997 Department of Physics, UMIST, P.O.Box 88, Manchester M60 1QD. Abstract We study

More information

Analytical and numerical studies of the one-dimensional sawtooth chain

Analytical and numerical studies of the one-dimensional sawtooth chain Analytical and numerical studies of the one-dimensional sawtooth chain Jian-Jun Jiang a,*, Yong-Jun Liu b, Fei Tang c, Cui-Hong Yang d, Yu-Bo Sheng e a Department of Physics, Sanjiang College, Nanjing

More information

CONDENSED MATTER THEORIES VOLUME 17 M. P. DAS AND F. GREEN (EDITORS) Nova Science Publishers, Inc. New York

CONDENSED MATTER THEORIES VOLUME 17 M. P. DAS AND F. GREEN (EDITORS) Nova Science Publishers, Inc. New York CONDENSED MATTER THEORIES VOLUME 17 M. P. DAS AND F. GREEN (EDITORS) Nova Science Publishers, Inc. New York Senior Editors: Susan Boriotti and Donna Dermis Editorial Coordinator: Tatiana Shohov Office

More information

Quantum spin systems - models and computational methods

Quantum spin systems - models and computational methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Quantum spin systems - models and computational methods Anders W. Sandvik, Boston University Lecture outline Introduction

More information

Analytical and Numerical Studies of Quantum Plateau State in One Alternating Heisenberg Chain

Analytical and Numerical Studies of Quantum Plateau State in One Alternating Heisenberg Chain Commun. Theor. Phys. 6 (204) 263 269 Vol. 6, No. 2, February, 204 Analytical and Numerical Studies of Quantum Plateau State in One Alternating Heisenberg Chain JIANG Jian-Jun ( ),, LIU Yong-Jun ( È ),

More information

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates)

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates) Non-magnetic states Two spins, i and j, in isolation, H ij = J ijsi S j = J ij [Si z Sj z + 1 2 (S+ i S j + S i S+ j )] For Jij>0 the ground state is the singlet; φ s ij = i j i j, E ij = 3J ij /4 2 The

More information

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University Quantum Monte Carlo Simulations in the Valence Bond Basis Anders Sandvik, Boston University Outline The valence bond basis for S=1/2 spins Projector QMC in the valence bond basis Heisenberg model with

More information

Solving the sign problem for a class of frustrated antiferromagnets

Solving the sign problem for a class of frustrated antiferromagnets Solving the sign problem for a class of frustrated antiferromagnets Fabien Alet Laboratoire de Physique Théorique Toulouse with : Kedar Damle (TIFR Mumbai), Sumiran Pujari (Toulouse Kentucky TIFR Mumbai)

More information

Stochastic series expansion (SSE) and ground-state projection

Stochastic series expansion (SSE) and ground-state projection Institute of Physics, Chinese Academy of Sciences, Beijing, October 31, 2014 Stochastic series expansion (SSE) and ground-state projection Anders W Sandvik, Boston University Review article on quantum

More information

Spin liquid phases in strongly correlated lattice models

Spin liquid phases in strongly correlated lattice models Spin liquid phases in strongly correlated lattice models Sandro Sorella Wenjun Hu, F. Becca SISSA, IOM DEMOCRITOS, Trieste Seiji Yunoki, Y. Otsuka Riken, Kobe, Japan (K-computer) Williamsburg, 14 June

More information

Longitudinal Excitations in Triangular Lattice Antiferromagnets

Longitudinal Excitations in Triangular Lattice Antiferromagnets DOI 10.1007/s10909-012-0778-1 Longitudinal Excitations in Triangular Lattice Antiferromagnets M. Merdan Y. Xian Received: 16 July 2012 / Accepted: 28 September 2012 Springer Science+Business Media New

More information

2. Spin liquids and valence bond solids

2. Spin liquids and valence bond solids Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence bond solids (a) Schwinger-boson mean-field theory - square lattice (b) Gauge theories of perturbative

More information

The Ground-State of the Quantum Spin- 1 Heisenberg Antiferromagnet on Square-Kagomé Lattice: Resonating Valence Bond Description

The Ground-State of the Quantum Spin- 1 Heisenberg Antiferromagnet on Square-Kagomé Lattice: Resonating Valence Bond Description Vol. 109 (2006) ACTA PHYSICA POLONICA A No. 6 The Ground-State of the Quantum Spin- 1 Heisenberg Antiferromagnet 2 on Square-Kagomé Lattice: Resonating Valence Bond Description P. Tomczak, A. Molińska

More information

Quantum Monte Carlo Simulations in the Valence Bond Basis

Quantum Monte Carlo Simulations in the Valence Bond Basis NUMERICAL APPROACHES TO QUANTUM MANY-BODY SYSTEMS, IPAM, January 29, 2009 Quantum Monte Carlo Simulations in the Valence Bond Basis Anders W. Sandvik, Boston University Collaborators Kevin Beach (U. of

More information

Frustration without competition: the SU(N) model of quantum permutations on a lattice

Frustration without competition: the SU(N) model of quantum permutations on a lattice Frustration without competition: the SU(N) model of quantum permutations on a lattice F. Mila Ecole Polytechnique Fédérale de Lausanne Switzerland Collaborators P. Corboz (Zürich), A. Läuchli (Innsbruck),

More information

Ground State Projector QMC in the valence-bond basis

Ground State Projector QMC in the valence-bond basis Quantum Monte Carlo Methods at Work for Novel Phases of Matter Trieste, Italy, Jan 23 - Feb 3, 2012 Ground State Projector QMC in the valence-bond basis Anders. Sandvik, Boston University Outline: The

More information

arxiv: v2 [cond-mat.str-el] 12 Oct 2012

arxiv: v2 [cond-mat.str-el] 12 Oct 2012 arxiv:105.0977v [cond-mat.str-el] 1 Oct 01 Longitudinal excitations in triangular lattice antiferromagnets Mohammad Merdan and Y Xian School of Physics and Astronomy, The University of Manchester, Manchester

More information

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16 Paramagnetic phases of Kagome lattice quantum Ising models Predrag Nikolić In collaboration with T. Senthil Massachusetts Institute of Technology Paramagnetic phases of Kagome lattice quantum Ising models

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information

arxiv:quant-ph/ v2 24 Dec 2003

arxiv:quant-ph/ v2 24 Dec 2003 Quantum Entanglement in Heisenberg Antiferromagnets V. Subrahmanyam Department of Physics, Indian Institute of Technology, Kanpur, India. arxiv:quant-ph/0309004 v2 24 Dec 2003 Entanglement sharing among

More information

Numerical diagonalization studies of quantum spin chains

Numerical diagonalization studies of quantum spin chains PY 502, Computational Physics, Fall 2016 Anders W. Sandvik, Boston University Numerical diagonalization studies of quantum spin chains Introduction to computational studies of spin chains Using basis states

More information

arxiv: v2 [cond-mat.str-el] 11 Sep 2009

arxiv: v2 [cond-mat.str-el] 11 Sep 2009 High-Order Coupled Cluster Method (CCM) Formalism 1: Ground- and Excited-State Properties of Lattice Quantum Spin Systems with s 1 2 arxiv:0909.1226v2 [cond-mat.str-el] 11 Sep 2009 D. J. J. Farnell Health

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 7: Magnetic excitations - Phase transitions and the Landau mean-field theory. - Heisenberg and Ising models. - Magnetic excitations. External parameter, as for

More information

Cluster Density Matrix Embedding Theory for Quantum Spin Systems

Cluster Density Matrix Embedding Theory for Quantum Spin Systems Cluster Density Matrix Embedding Theory for Quantum Spin Systems Zhuo Fan 1, and Quan-lin Jie *, 1 1 Department of Physics, Wuhan University, Wuhan 43007, People s Republic of China School of Biomedical

More information

Spinons and triplons in spatially anisotropic triangular antiferromagnet

Spinons and triplons in spatially anisotropic triangular antiferromagnet Spinons and triplons in spatially anisotropic triangular antiferromagnet Oleg Starykh, University of Utah Leon Balents, UC Santa Barbara Masanori Kohno, NIMS, Tsukuba PRL 98, 077205 (2007); Nature Physics

More information

Quasi-1d Antiferromagnets

Quasi-1d Antiferromagnets Quasi-1d Antiferromagnets Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Quantum Fluids, Nordita 2007 Outline Motivation: Quantum magnetism and the search for spin liquids Neutron

More information

Quantum Monte Carlo simulations of deconfined quantum criticality at. the 2D Néel-VBS transition. Anders W. Sandvik, Boston University

Quantum Monte Carlo simulations of deconfined quantum criticality at. the 2D Néel-VBS transition. Anders W. Sandvik, Boston University Quantum Monte Carlo Methods at Work for Novel Phases of Matter Trieste, Italy, Jan 23 - Feb 3, 2012 Quantum Monte Carlo simulations of deconfined quantum criticality at the 2D Néel-VBS transition Anders

More information

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu Quantum phases of antiferromagnets and the underdoped cuprates Talk online: sachdev.physics.harvard.edu Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

LPTM. Quantum-Monte-Carlo Approach to the Thermodynamics of Highly Frustrated Spin-½ Antiferromagnets. Andreas Honecker 1

LPTM. Quantum-Monte-Carlo Approach to the Thermodynamics of Highly Frustrated Spin-½ Antiferromagnets. Andreas Honecker 1 Quantum-Monte-Carlo Approach to the Thermodynamics of Highly Frustrated Spin-½ Antiferromagnets LPTM Laboratoire de Physique Théorique et Modélisation Andreas Honecker 1 Laboratoire de Physique Théorique

More information

Quantum Phase Transitions

Quantum Phase Transitions 1 Davis, September 19, 2011 Quantum Phase Transitions A VIGRE 1 Research Focus Group, Fall 2011 Spring 2012 Bruno Nachtergaele See the RFG webpage for more information: http://wwwmathucdavisedu/~bxn/rfg_quantum_

More information

High-Temperature Criticality in Strongly Constrained Quantum Systems

High-Temperature Criticality in Strongly Constrained Quantum Systems High-Temperature Criticality in Strongly Constrained Quantum Systems Claudio Chamon Collaborators: Claudio Castelnovo - BU Christopher Mudry - PSI, Switzerland Pierre Pujol - ENS Lyon, France PRB 2006

More information

Quantum s=1/2 antiferromagnet on the Bethe lattice at percolation I. Low-energy states, DMRG, and diagnostics

Quantum s=1/2 antiferromagnet on the Bethe lattice at percolation I. Low-energy states, DMRG, and diagnostics Quantum s=1/2 antiferromagnet on the Bethe lattice at percolation I. Low-energy states, DMRG, and diagnostics Hitesh J. Changlani, Shivam Ghosh, Sumiran Pujari, Christopher L. Henley Laboratory of Atomic

More information

Optimized statistical ensembles for slowly equilibrating classical and quantum systems

Optimized statistical ensembles for slowly equilibrating classical and quantum systems Optimized statistical ensembles for slowly equilibrating classical and quantum systems IPAM, January 2009 Simon Trebst Microsoft Station Q University of California, Santa Barbara Collaborators: David Huse,

More information

arxiv: v1 [cond-mat.str-el] 28 Oct 2015

arxiv: v1 [cond-mat.str-el] 28 Oct 2015 Spin- J J J ferromagnetic Heisenberg model with an easy-plane crystal field on the cubic lattice: A bosonic approach D. C. Carvalho, A. S. T. Pires, L. A. S. Mól Departamento de ísica, Instituto de Ciências

More information

Dimerized & frustrated spin chains. Application to copper-germanate

Dimerized & frustrated spin chains. Application to copper-germanate Dimerized & frustrated spin chains Application to copper-germanate Outline CuGeO & basic microscopic models Excitation spectrum Confront theory to experiments Doping Spin-Peierls chains A typical S=1/2

More information

WORLD SCIENTIFIC (2014)

WORLD SCIENTIFIC (2014) WORLD SCIENTIFIC (2014) LIST OF PROBLEMS Chapter 1: Magnetism of Free Electrons and Atoms 1. Orbital and spin moments of an electron: Using the theory of angular momentum, calculate the orbital

More information

Renormalization of Tensor Network States

Renormalization of Tensor Network States Renormalization of Tensor Network States I. Coarse Graining Tensor Renormalization Tao Xiang Institute of Physics Chinese Academy of Sciences txiang@iphy.ac.cn Numerical Renormalization Group brief introduction

More information

GEOMETRICALLY FRUSTRATED MAGNETS. John Chalker Physics Department, Oxford University

GEOMETRICALLY FRUSTRATED MAGNETS. John Chalker Physics Department, Oxford University GEOMETRICLLY FRUSTRTED MGNETS John Chalker Physics Department, Oxford University Outline How are geometrically frustrated magnets special? What they are not Evading long range order Degeneracy and fluctuations

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Réunion du GDR MICO Dinard 6-9 décembre Frustration and competition of interactions in the Kondo lattice: beyond the Doniach s diagram

Réunion du GDR MICO Dinard 6-9 décembre Frustration and competition of interactions in the Kondo lattice: beyond the Doniach s diagram Réunion du GDR MICO Dinard 6-9 décembre 2010 1 Frustration and competition of interactions in the Kondo lattice: beyond the Doniach s diagram Claudine Lacroix, institut Néel, CNRS-UJF, Grenoble 1- The

More information

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu arxiv:0809.0694 Yang Qi Harvard Cenke Xu Harvard Max Metlitski Harvard Ribhu Kaul Microsoft Roger Melko

More information

Z2 topological phase in quantum antiferromagnets. Masaki Oshikawa. ISSP, University of Tokyo

Z2 topological phase in quantum antiferromagnets. Masaki Oshikawa. ISSP, University of Tokyo Z2 topological phase in quantum antiferromagnets Masaki Oshikawa ISSP, University of Tokyo RVB spin liquid 4 spins on a square: Groundstate is exactly + ) singlet pair a.k.a. valence bond So, the groundstate

More information

Winter School for Quantum Magnetism EPFL and MPI Stuttgart Magnetism in Strongly Correlated Systems Vladimir Hinkov

Winter School for Quantum Magnetism EPFL and MPI Stuttgart Magnetism in Strongly Correlated Systems Vladimir Hinkov Winter School for Quantum Magnetism EPFL and MPI Stuttgart Magnetism in Strongly Correlated Systems Vladimir Hinkov 1. Introduction Excitations and broken symmetry 2. Spin waves in the Heisenberg model

More information

arxiv: v1 [cond-mat.str-el] 17 Jan 2011

arxiv: v1 [cond-mat.str-el] 17 Jan 2011 Computational Studies of Quantum Spin Systems arxiv:1101.3281v1 [cond-mat.str-el] 17 Jan 2011 Anders W. Sandvik Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts

More information

Typical quantum states at finite temperature

Typical quantum states at finite temperature Typical quantum states at finite temperature How should one think about typical quantum states at finite temperature? Density Matrices versus pure states Why eigenstates are not typical Measuring the heat

More information

The Overhauser Instability

The Overhauser Instability The Overhauser Instability Zoltán Radnai and Richard Needs TCM Group ESDG Talk 14th February 2007 Typeset by FoilTEX Introduction Hartree-Fock theory and Homogeneous Electron Gas Noncollinear spins and

More information

Spatially anisotropic triangular antiferromagnet in magnetic field

Spatially anisotropic triangular antiferromagnet in magnetic field Spatially anisotropic triangular antiferromagnet in magnetic field Oleg Starykh, University of Utah Leon Balents, KITP Hosho Katsura, KITP Jason Alicea, Caltech Andrey Chubukov, U Wisconsin Christian Griset

More information

Quantum disordering magnetic order in insulators, metals, and superconductors

Quantum disordering magnetic order in insulators, metals, and superconductors Quantum disordering magnetic order in insulators, metals, and superconductors Perimeter Institute, Waterloo, May 29, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Cenke Xu, Harvard arxiv:1004.5431

More information

Geometry, topology and frustration: the physics of spin ice

Geometry, topology and frustration: the physics of spin ice Geometry, topology and frustration: the physics of spin ice Roderich Moessner CNRS and LPT-ENS 9 March 25, Magdeburg Overview Spin ice: experimental discovery and basic model Spin ice in a field dimensional

More information

Metropolis Monte Carlo simulation of the Ising Model

Metropolis Monte Carlo simulation of the Ising Model Metropolis Monte Carlo simulation of the Ising Model Krishna Shrinivas (CH10B026) Swaroop Ramaswamy (CH10B068) May 10, 2013 Modelling and Simulation of Particulate Processes (CH5012) Introduction The Ising

More information

Magnetism and Superconductivity on Depleted Lattices

Magnetism and Superconductivity on Depleted Lattices Magnetism and Superconductivity on Depleted Lattices 1. Square Lattice Hubbard Hamiltonian: AF and Mott Transition 2. Quantum Monte Carlo 3. The 1/4 depleted (Lieb) lattice and Flat Bands 4. The 1/5 depleted

More information

Valence Bonds in Random Quantum Magnets

Valence Bonds in Random Quantum Magnets Valence Bonds in Random Quantum Magnets theory and application to YbMgGaO 4 Yukawa Institute, Kyoto, November 2017 Itamar Kimchi I.K., Adam Nahum, T. Senthil, arxiv:1710.06860 Valence Bonds in Random Quantum

More information

Specific heat of the S= 1 2 expansion analysis

Specific heat of the S= 1 2 expansion analysis PHYSICAL REVIEW B 71, 014417 2005 Specific heat of the S= 1 2 Heisenberg model on the kagome lattice: expansion analysis High-temperature series G. Misguich* Service de Physique Théorique, URA 2306 of

More information

Degeneracy Breaking in Some Frustrated Magnets

Degeneracy Breaking in Some Frustrated Magnets Degeneracy Breaking in Some Frustrated Magnets Doron Bergman Greg Fiete Ryuichi Shindou Simon Trebst UCSB Physics KITP UCSB Physics Q Station cond-mat: 0510202 (prl) 0511176 (prb) 0605467 0607210 0608131

More information

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University NATIONAL TAIWAN UNIVERSITY, COLLOQUIUM, MARCH 10, 2015 Quantum and classical annealing in spin glasses and quantum computing Anders W Sandvik, Boston University Cheng-Wei Liu (BU) Anatoli Polkovnikov (BU)

More information

Magnetism at finite temperature: molecular field, phase transitions

Magnetism at finite temperature: molecular field, phase transitions Magnetism at finite temperature: molecular field, phase transitions -The Heisenberg model in molecular field approximation: ferro, antiferromagnetism. Ordering temperature; thermodynamics - Mean field

More information

Noncollinear spins in QMC: spiral Spin Density Waves in the HEG

Noncollinear spins in QMC: spiral Spin Density Waves in the HEG Noncollinear spins in QMC: spiral Spin Density Waves in the HEG Zoltán Radnai and Richard J. Needs Workshop at The Towler Institute July 2006 Overview What are noncollinear spin systems and why are they

More information

Nematicity and quantum paramagnetism in FeSe

Nematicity and quantum paramagnetism in FeSe Nematicity and quantum paramagnetism in FeSe Fa Wang 1,, Steven A. Kivelson 3 & Dung-Hai Lee 4,5, 1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Leon Balents T. Senthil, MIT A. Vishwanath, UCB S. Sachdev, Yale M.P.A. Fisher, UCSB Outline Introduction: what is a DQCP Disordered and VBS ground states and gauge theory

More information

Notes on Spin Operators and the Heisenberg Model. Physics : Winter, David G. Stroud

Notes on Spin Operators and the Heisenberg Model. Physics : Winter, David G. Stroud Notes on Spin Operators and the Heisenberg Model Physics 880.06: Winter, 003-4 David G. Stroud In these notes I give a brief discussion of spin-1/ operators and their use in the Heisenberg model. 1. Spin

More information

Topological Phases of the Spin-1/2 Ferromagnetic-Antiferromagnetic Alternating Heisenberg Chain with Frustrated Next-Nearest-Neighbour Interaction

Topological Phases of the Spin-1/2 Ferromagnetic-Antiferromagnetic Alternating Heisenberg Chain with Frustrated Next-Nearest-Neighbour Interaction Topological Phases of the Spin-1/2 Ferromagnetic-Antiferromagnetic Alternating Heisenberg Chain with Frustrated Next-Nearest-Neighbour Interaction Kazuo Hida (Saitama University) Ken ichi Takano (Toyota

More information

Magnetism and Superconductivity in Decorated Lattices

Magnetism and Superconductivity in Decorated Lattices Magnetism and Superconductivity in Decorated Lattices Mott Insulators and Antiferromagnetism- The Hubbard Hamiltonian Illustration: The Square Lattice Bipartite doesn t mean N A = N B : The Lieb Lattice

More information

Tensor network methods in condensed matter physics. ISSP, University of Tokyo, Tsuyoshi Okubo

Tensor network methods in condensed matter physics. ISSP, University of Tokyo, Tsuyoshi Okubo Tensor network methods in condensed matter physics ISSP, University of Tokyo, Tsuyoshi Okubo Contents Possible target of tensor network methods! Tensor network methods! Tensor network states as ground

More information

Chapter 6 Antiferromagnetism and Other Magnetic Ordeer

Chapter 6 Antiferromagnetism and Other Magnetic Ordeer Chapter 6 Antiferromagnetism and Other Magnetic Ordeer 6.1 Mean Field Theory of Antiferromagnetism 6.2 Ferrimagnets 6.3 Frustration 6.4 Amorphous Magnets 6.5 Spin Glasses 6.6 Magnetic Model Compounds TCD

More information

shows the difference between observed (black) and calculated patterns (red). Vertical ticks indicate

shows the difference between observed (black) and calculated patterns (red). Vertical ticks indicate Intensity (arb. unit) a 5 K No disorder Mn-Pt disorder 5 K Mn-Ga disorder 5 K b 5 K Observed Calculated Difference Bragg positions 24 28 32 2 4 6 8 2 4 2θ (degree) 2θ (degree) Supplementary Figure. Powder

More information

STUDY OF THE EXCITED STATES OF THE QUANTUM ANTIFERROMAGNETS

STUDY OF THE EXCITED STATES OF THE QUANTUM ANTIFERROMAGNETS STUDY OF THE EXCITED STATES OF THE QUANTUM ANTIFERROMAGNETS A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

More information

Degeneracy Breaking in Some Frustrated Magnets. Bangalore Mott Conference, July 2006

Degeneracy Breaking in Some Frustrated Magnets. Bangalore Mott Conference, July 2006 Degeneracy Breaking in Some Frustrated Magnets Doron Bergman Greg Fiete Ryuichi Shindou Simon Trebst UCSB Physics KITP UCSB Physics Q Station Bangalore Mott Conference, July 2006 Outline Motivation: Why

More information

arxiv:cond-mat/ v1 12 Dec 2006

arxiv:cond-mat/ v1 12 Dec 2006 Universal properties of highly frustrated quantum magnets in strong magnetic fields Oleg Derzhko 1,2,3, Johannes Richter 3,2, Andreas Honecker 4, and Heinz-Jürgen Schmidt 5 1 Institute for Condensed Matter

More information

Level crossing, spin structure factor and quantum phases of the frustrated spin-1/2 chain with first and second neighbor exchange

Level crossing, spin structure factor and quantum phases of the frustrated spin-1/2 chain with first and second neighbor exchange Level crossing, spin structure factor and quantum phases of the frustrated spin-1/2 chain with first and second neighbor exchange Manoranjan Kumar, 1 Aslam Parvej 1 and Zoltán G. Soos 2 1 S.N. Bose National

More information

Flat band and localized excitations in the magnetic spectrum of the fully frustrated dimerized magnet Ba 2 CoSi 2 O 6 Cl 2

Flat band and localized excitations in the magnetic spectrum of the fully frustrated dimerized magnet Ba 2 CoSi 2 O 6 Cl 2 Flat band and localized excitations in the magnetic spectrum of the fully frustrated dimerized magnet Ba 2 CoSi 2 O 6 Cl 2 γ 1 tr φ θ φ θ i Nobuo Furukawa Dept. of Physics, Aoyama Gakuin Univ. Collaborators

More information

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Quasi-1d Frustrated Antiferromagnets Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Outline Frustration in quasi-1d systems Excitations: magnons versus spinons Neutron scattering

More information

SPIN LIQUIDS AND FRUSTRATED MAGNETISM

SPIN LIQUIDS AND FRUSTRATED MAGNETISM SPIN LIQUIDS AND FRUSTRATED MAGNETISM Classical correlations, emergent gauge fields and fractionalised excitations John Chalker Physics Department, Oxford University For written notes see: http://topo-houches.pks.mpg.de/

More information

Linked-Cluster Expansions for Quantum Many-Body Systems

Linked-Cluster Expansions for Quantum Many-Body Systems Linked-Cluster Expansions for Quantum Many-Body Systems Boulder Summer School 2010 Simon Trebst Lecture overview Why series expansions? Linked-cluster expansions From Taylor expansions to linked-cluster

More information

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy Computational strongly correlated materials R. Torsten Clay Physics & Astronomy Current/recent students Saurabh Dayal (current PhD student) Wasanthi De Silva (new grad student 212) Jeong-Pil Song (finished

More information

Triangular lattice antiferromagnet in magnetic field: ground states and excitations

Triangular lattice antiferromagnet in magnetic field: ground states and excitations Triangular lattice antiferromagnet in magnetic field: ground states and excitations Oleg Starykh, University of Utah Jason Alicea, Caltech Leon Balents, KITP Andrey Chubukov, U Wisconsin Outline motivation:

More information

Thermodynamics of quantum Heisenberg spin chains

Thermodynamics of quantum Heisenberg spin chains PHYSICAL REVIEW B VOLUME 58, NUMBER 14 Thermodynamics of quantum Heisenberg spin chains 1 OCTOBER 1998-II Tao Xiang Research Centre in Superconductivity, University of Cambridge, Madingley Road, Cambridge

More information

Cluster Functional Renormalization Group

Cluster Functional Renormalization Group Cluster Functional Renormalization Group Johannes Reuther Free University Berlin Helmholtz-Center Berlin California Institute of Technology (Pasadena) Lefkada, September 26, 2014 Johannes Reuther Cluster

More information

NON-EQUILIBRIUM DYNAMICS IN

NON-EQUILIBRIUM DYNAMICS IN NON-EQUILIBRIUM DYNAMICS IN ISOLATED QUANTUM SYSTEMS Masud Haque Maynooth University Dept. Mathematical Physics Maynooth, Ireland Max-Planck Institute for Physics of Complex Systems (MPI-PKS) Dresden,

More information

Hidden Symmetry and Quantum Phases in Spin 3/2 Cold Atomic Systems

Hidden Symmetry and Quantum Phases in Spin 3/2 Cold Atomic Systems Hidden Symmetry and Quantum Phases in Spin / Cold Atomic Systems Congjun Wu Kavli Institute for Theoretical Physics, UCSB Ref: C. Wu, Mod. Phys. Lett. B 0, 707, (006); C. Wu, J. P. Hu, and S. C. Zhang,

More information

Skyrmion à la carte. Bertrand Dupé. Skyrmion à la carte Bertrand Dupé. Institute of Physics, Johannes Gutenberg University of Mainz, Germany

Skyrmion à la carte. Bertrand Dupé. Skyrmion à la carte Bertrand Dupé. Institute of Physics, Johannes Gutenberg University of Mainz, Germany Skyrmion à la carte Bertrand Dupé Institute of Physics, Johannes Gutenberg University of Mainz, Germany 1 Acknowledgement Charles Paillard Markus Hoffmann Stephan von Malottki Stefan Heinze Sebastian Meyer

More information

Yusuke Tomita (Shibaura Inst. of Tech.) Yukitoshi Motome (Univ. Tokyo) PRL 107, (2011) arxiv: (proceedings of LT26)

Yusuke Tomita (Shibaura Inst. of Tech.) Yukitoshi Motome (Univ. Tokyo) PRL 107, (2011) arxiv: (proceedings of LT26) Yusuke Tomita (Shibaura Inst. of Tech.) Yukitoshi Motome (Univ. Tokyo) PRL 107, 047204 (2011) arxiv:1107.4144 (proceedings of LT26) Spin glass (SG) in frustrated magnets SG is widely observed in geometrically

More information

Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets

Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets Talk at Rutherford Appleton Lab, March 13, 2007 Peter Kopietz, Universität Frankfurt collaborators: Nils Hasselmann,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature09910 Supplementary Online Material METHODS Single crystals were made at Kyoto University by the electrooxidation of BEDT-TTF in an 1,1,2- tetrachloroethylene solution of KCN, CuCN, and

More information

Quantum Lattice Models & Introduction to Exact Diagonalization

Quantum Lattice Models & Introduction to Exact Diagonalization Quantum Lattice Models & Introduction to Exact Diagonalization H! = E! Andreas Läuchli IRRMA EPF Lausanne ALPS User Workshop CSCS Manno, 28/9/2004 Outline of this lecture: Quantum Lattice Models Lattices

More information

Valence Bond Crystal Order in Kagome Lattice Antiferromagnets

Valence Bond Crystal Order in Kagome Lattice Antiferromagnets Valence Bond Crystal Order in Kagome Lattice Antiferromagnets RRP Singh UC DAVIS D.A. Huse Princeton RRPS, D. A. Huse PRB RC (2007) + PRB (2008) OUTLINE Motivation and Perspective Dimer Expansions: General

More information

arxiv: v2 [cond-mat.str-el] 10 Jul 2017

arxiv: v2 [cond-mat.str-el] 10 Jul 2017 EP manuscript No. will be inserted by the editor Quantum to classical transition in the ground state of a spin-s quantum antiferromagnet B. Danu 1 and B. Kumar 1 The Institute of Mathematical Sciences,

More information

SU(N) magnets: from a theoretical abstraction to reality

SU(N) magnets: from a theoretical abstraction to reality 1 SU(N) magnets: from a theoretical abstraction to reality Victor Gurarie University of Colorado, Boulder collaboration with M. Hermele, A.M. Rey Aspen, May 2009 In this talk 2 SU(N) spin models are more

More information

Exact results concerning the phase diagram of the Hubbard Model

Exact results concerning the phase diagram of the Hubbard Model Steve Kivelson Apr 15, 2011 Freedman Symposium Exact results concerning the phase diagram of the Hubbard Model S.Raghu, D.J. Scalapino, Li Liu, E. Berg H. Yao, W-F. Tsai, A. Lauchli G. Karakonstantakis,

More information

Spin-charge separation in doped 2D frustrated quantum magnets p.

Spin-charge separation in doped 2D frustrated quantum magnets p. 0.5 setgray0 0.5 setgray1 Spin-charge separation in doped 2D frustrated quantum magnets Didier Poilblanc Laboratoire de Physique Théorique, UMR5152-CNRS, Toulouse, France Spin-charge separation in doped

More information

The Quantum Heisenberg Ferromagnet

The Quantum Heisenberg Ferromagnet The Quantum Heisenberg Ferromagnet Soon after Schrödinger discovered the wave equation of quantum mechanics, Heisenberg and Dirac developed the first successful quantum theory of ferromagnetism W. Heisenberg,

More information

'etion 4. Surfaces and -interface. Chapter 1 Statistical Mechanics of SurfcSytman Quantum -Correlated Systems. Chapter 2 Synchrotron X-Ray Studies o

'etion 4. Surfaces and -interface. Chapter 1 Statistical Mechanics of SurfcSytman Quantum -Correlated Systems. Chapter 2 Synchrotron X-Ray Studies o 'etion 4 Surfaces and -interface Chapter 1 Statistical Mechanics of SurfcSytman Quantum -Correlated Systems Chapter 2 Synchrotron X-Ray Studies o ufc iodrn Chapter 3 Chemical Reaction Dynamics tsrae Chapter

More information

Classical Monte Carlo Simulations

Classical Monte Carlo Simulations Classical Monte Carlo Simulations Hyejin Ju April 17, 2012 1 Introduction Why do we need numerics? One of the main goals of condensed matter is to compute expectation values O = 1 Z Tr{O e βĥ} (1) and

More information

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors?

More information

Skyrmions à la carte

Skyrmions à la carte This project has received funding from the European Union's Horizon 2020 research and innovation programme FET under grant agreement No 665095 Bertrand Dupé Institute of Theoretical Physics and Astrophysics,

More information

Multiple spin exchange model on the triangular lattice

Multiple spin exchange model on the triangular lattice Multiple spin exchange model on the triangular lattice Philippe Sindzingre, Condensed matter theory laboratory Univ. Pierre & Marie Curie Kenn Kubo Aoyama Gakuin Univ Tsutomu Momoi RIKEN T. Momoi, P. Sindzingre,

More information

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination ICSM212, Istanbul, May 3, 212, Theoretical Magnetism I, 17:2 p. 1 EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination Václav Drchal Institute of Physics ASCR, Praha, Czech Republic in collaboration

More information