SUPPLEMENTARY INFORMATION

Size: px
Start display at page:

Download "SUPPLEMENTARY INFORMATION"

Transcription

1 doi: /nature09910 Supplementary Online Material METHODS Single crystals were made at Kyoto University by the electrooxidation of BEDT-TTF in an 1,1,2- tetrachloroethylene solution of KCN, CuCN, and 18-crown-6 ether. The polycrystalline sample used for the muon measurements had a mass of 70 mg and was made up of a mosaic many small crystals. For the SR 12 experiments the crystal mosaic was wrapped in a thin packet of 12.5 m Ag foil and mounted on a Ag sample plate in the sample cryostat that was placed in a beam of spin-polarized positive surface muons (with energy 4 MeV and momentum 28 MeV/c). Further Ag foils were used to degrade the muon beam so that the stopping profile matched the sample. Thus the background signal from muons missing the sample was mainly from Ag, which gives insignificant relaxation compared to the sample signal. For the measurements in transverse fields up to 3 T the LTF instrument of the S S Facility at the Paul Scherrer Institut in Switzerland was used. The applied field direction was perpendicular to the plane of the mosaic. Although the crystals were not deliberately aligned, some degree of alignment is expected due to the crystal shape and the field direction is therefore expected to lie primarily in the interlayer direction. Data analysis was carried out using the WiMDA program 30. The precession signal count rate N(d,t) measured as a function of time t in each detector d from the muon decay positrons was fitted to the form N d, t N BG d = N 0 d e t τ μ 1 + A d cos [γ μ B + φ d t ) e (γ μ B rms t ) 2 /2 = N d, t where is the muon lifetime and is the muon gyromagnetic ratio, d the detector (L=left, R=right) and for each detector N BG (d) is the background count rate, N 0 (d) the signal count rate, A(d) the asymmetry, (d) the detector phase and t = t-t 0 (d) is the time corrected for the time offset of the detector channel. The global parameters for the average and width of the internal field distribution B and B rms are derived from simultaneous fitting of the two detector channels. Detector pair asymmetry for detectors d 1 and d 2 is derived from the background corrected signal N (d,t) as A d1 d 2 t = N d 1, t N d 2, t N d 1, t + N d 2, t Where is a parameter used to correct any imbalance of the detector sensitivities. Example raw data for A LR are shown in Figure S1. The Poisson counting statistics of the muon decay positron events at the detectors determines the error of the raw count signal. Errors are propagated through the analysis procedure under 1

2 the assumption of a normal distribution, which is a good approximation for the count levels that were obtained within the time region dominating the data analysis. Parameters P and corresponding errors E derived from the data fitting are expressed as P(E) in the text, where P- E to P+E represents a 68% confidence interval on the fitted parameter (standard error). All error bars on the plots reflect this standard error. Zero field and low transverse field measurements were measured at the ISIS/RIKEN-RAL facility in the UK using a range of spectrometers: ARGUS and EMU for measurements down to 300 mk and MUSR and HIFI for measurements down to 40 mk. For these measurements the pair asymmetry A FB from detectors forward and backward to the initial muon spin is studied. The zero field relaxation of A FB has contributions from both electronic and nuclear moments within the system that are comparable in size and the relaxation of the forward-backward asymmetry A FB (t) was fitted to the form A FB t A BG = A FB 0 A BG KTZ Δ, t e λt where A BG is a non-relaxing component primarily due to the Ag, KTZ is the zero-field Kubo- Toyabe function reflecting the nuclear contribution to the relaxation in the sample with characteristic field width parameter KTZ Δ, t = γ μ 2 Δ 2 t 2 exp 1 2 γ μ 2 Δ 2 t 2 The nuclear width was obtained from fitting the low temperature data and kept fixed thereafter. The relaxation contribution originating from fluctuating electronic spins in the sample is reflected by the parameter. Studies of the dependence of on longitudinal field confirm that the muon probe is in a fast fluctuation regime with respect to electronic spin fluctuations. is therefore proportional to the spin correlation time and the electronic spin fluctuation rate is inversely proportional to. 2

3 Supplementary Figure S1: Transverse field data Muon spin precession data measured at 120 mk are shown for fields both above and below the critical field 0 H c = 14 mt. The increased width of the internal field distribution at higher fields is reflected by the faster damping rate of the precession envelope (the envelope for H<H c is shown on all plots to aid comparison of the damping rates). 3

4 BACKGROUND Supplementary Figure S2: Lattice structure and suggested spin excitations (a) 2D lattice structure of the dimer layers in -(BEDT-TTF) 2 Cu 2 (CN) 3. The molecule abbreviated by BEDT- TTF is bis(ethylenedithio)- tetrathiafulvalene. The ratio of exchange couplings J /J is estimated 5 to be close to 0.9. (b) The Brillouin zone for spin excitations in the ideal triangular lattice. The calculated 3 spin excitation energy goes linearly to zero at the points K i (solid circles). An underlying spinon dispersion with Dirac minima at (K i -K j )/2 (open circles) has been suggested to explain roton-like deviations of the numerically calculated dispersion from that of linear spin wave theory 3. The primitive unit cell of the Brillouin zone (dashed line) contains four such points. 4

5 Supplementary Figure S3: Xu and Sachdev global phase diagram (a) The global phase diagram for the S=1/2 frustrated triangular lattice quantum antiferromagnet model of Xu and Sachdev 18, expressed in terms of coupling parameters s and v associated with bosonic spinon and vison excitations. Negative s leads to weakly antiferromagnetic (WAF) states, positive s leads to weakly gapped spinon (GS) states: a Z 2 spin-liquid (Z 2 -SL) for positive v (with vison gap v ) and valence bond solid (VBS) for negative v (with VBS transition at T v ). The blue dot illustrates the most likely location for -(BEDT-TTF) 2 Cu 2 (CN) 3 within this model on the basis of our data, the circle illustrates the less likely scenario of a VBS ground state. The predicted orders of the non-magnetic to magnetic transitions are indicated 18 : O(4) for Z 2 -SL to WAF and CP 1 for VBS to WAF (b) The s dependence of characteristic energy scales for H=0; the spinon gap on the GS side and the spin stiffness on the WAF side (dashed lines). The small estimated spinon gap s for -(BEDT-TTF) 2 Cu 2 (CN) 3 (~ 4 mk) reflects its closeness to the QCP at s=0. In the fan-shaped higher T region purely quantum critical (QC) behaviour is expected. (c) For T=0 an applied magnetic field H induces BEC of the spinons with the small critical field H 0 ( 0 H 0 ~ 5 mt). 5

6 MODELS AND CRITICAL EXPONENTS The reported critical exponents computed for various models using field-theory or Monte Carlo simulation are listed in Table 1 alongside our measured exponents. The exponent is linked to and by the scaling relation 2 = (1+ ). The exponents for the the CP 1 class that is predicted to govern the VBS-WAF transition 18 are not yet accurately established and an average of several studies has been taken For the model of Kaul and Sachdev (KS) the following 1/N expansion formulae were given for the critical exponents 17 ν N b, N f = π 2 N b + 4 π 2 7N f 9N b N b + N f π 2 N b + N f η N b, N f = π 2 N b 3π 2 N b + N f A more detailed exploration of the exponents of the KS model in relation to the experimentally measured values is given in Figure S4, along with a possible interpretation in terms of spinon Fermi surface pockets (see Figure S2b). Supplementary Table 1 Model Notes 0.39(2) L from experiment 0.83(4) H from experiment KS(4,2) Ref. [17] O(2) Ref. [22] O(3) Ref. [22] CP Average of Refs. [31-34] O(4) Regular (vector order parameter) Ref. [22] Complex (tensor order parameter) Refs. [22,23] KS(4,8) Ref. [17] 6

7 Supplementary Figure S4: Critical exponents in the Kaul Sachdev model (a,b) Map of the computed values of the critical exponent for the KS(N b,n f ) model 17, in which the quantum critical fluctuations reflect N b species of bosons and N f species of fermions. Experimental values of H and L and corresponding error bounds are shown by the contour lines. Circles indicate some possible values that lie within the error bounds and the red circles indicate the closest value in each case, N f is assumed to be even to reflect two-fold spin degeneracy. (c) A possible interpretation of the optimum N f value that gives the H observed in the WAF H ( deconfined ) phase: four spinon pockets with two-fold spin degeneracy give N f =8. (d) In the WAF L ( confined ) phase the reduced value of L is reflected in this model by a single pocket with N f =2. 7

8 SUPPLEMENTARY REFERENCES 31. Motrunich, O.I. and Vishwanath, A. Comparative study of Higgs transition in onecomponent and two-component lattice superconductor models, arxiv: v1 (2008). 32. Motrunich, O.I. and Viswanath, A., Emergent photons and transitions in the O(3) sigma model with hedgehog suppression, Phys. Rev. B 70, (2004). 33. Sandvik, A.W., Evidence for deconfined quantum criticality in a two-dimensional Heisenberg model with four-spin Interactions, Phys. Rev. Lett. 98, (2007). 34. Melko, R.G. and Kaul, R.K., Scaling in the fan of an unconventional quantum critical point, Phys. Rev. Lett. 100, (2008). 8

2. Spin liquids and valence bond solids

2. Spin liquids and valence bond solids Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence bond solids (a) Schwinger-boson mean-field theory - square lattice (b) Gauge theories of perturbative

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu arxiv:0809.0694 Yang Qi Harvard Cenke Xu Harvard Max Metlitski Harvard Ribhu Kaul Microsoft Roger Melko

More information

Spin liquids on the triangular lattice

Spin liquids on the triangular lattice Spin liquids on the triangular lattice ICFCM, Sendai, Japan, Jan 11-14, 2011 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Classification of spin liquids Quantum-disordering magnetic order

More information

Quantum disordering magnetic order in insulators, metals, and superconductors

Quantum disordering magnetic order in insulators, metals, and superconductors Quantum disordering magnetic order in insulators, metals, and superconductors Perimeter Institute, Waterloo, May 29, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Cenke Xu, Harvard arxiv:1004.5431

More information

Quantum Monte Carlo Simulations in the Valence Bond Basis

Quantum Monte Carlo Simulations in the Valence Bond Basis NUMERICAL APPROACHES TO QUANTUM MANY-BODY SYSTEMS, IPAM, January 29, 2009 Quantum Monte Carlo Simulations in the Valence Bond Basis Anders W. Sandvik, Boston University Collaborators Kevin Beach (U. of

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Outline: with T. Senthil, Bangalore A. Vishwanath, UCB S. Sachdev, Yale L. Balents, UCSB conventional quantum critical points Landau paradigm Seeking a new paradigm -

More information

Lecture 2: Deconfined quantum criticality

Lecture 2: Deconfined quantum criticality Lecture 2: Deconfined quantum criticality T. Senthil (MIT) General theoretical questions Fate of Landau-Ginzburg-Wilson ideas at quantum phase transitions? (More precise) Could Landau order parameters

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Leon Balents T. Senthil, MIT A. Vishwanath, UCB S. Sachdev, Yale M.P.A. Fisher, UCSB Outline Introduction: what is a DQCP Disordered and VBS ground states and gauge theory

More information

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu Quantum phases of antiferromagnets and the underdoped cuprates Talk online: sachdev.physics.harvard.edu Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION A Dirac point insulator with topologically non-trivial surface states D. Hsieh, D. Qian, L. Wray, Y. Xia, Y.S. Hor, R.J. Cava, and M.Z. Hasan Topics: 1. Confirming the bulk nature of electronic bands by

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

Gapless Spin Liquids in Two Dimensions

Gapless Spin Liquids in Two Dimensions Gapless Spin Liquids in Two Dimensions MPA Fisher (with O. Motrunich, Donna Sheng, Matt Block) Boulder Summerschool 7/20/10 Interest Quantum Phases of 2d electrons (spins) with emergent rather than broken

More information

The underdoped cuprates as fractionalized Fermi liquids (FL*)

The underdoped cuprates as fractionalized Fermi liquids (FL*) The underdoped cuprates as fractionalized Fermi liquids (FL*) R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, Physical Review B 75, 235122 (2007) R. K. Kaul, Y. B. Kim, S. Sachdev, and T.

More information

The bosonic Kondo effect:

The bosonic Kondo effect: The bosonic Kondo effect: probing spin liquids and multicomponent cold gases Serge Florens Institut für Theorie der Kondensierten Materie (Karlsruhe) with: Lars Fritz, ITKM (Karlsruhe) Matthias Vojta,

More information

D.H. Ryan. Centre for the Physics of Materials and Physics Department, McGill University, Montreal, Quebec CANADA

D.H. Ryan. Centre for the Physics of Materials and Physics Department, McGill University, Montreal, Quebec CANADA μsr D.H. Ryan Centre for the Physics of Materials and Physics Department, McGill University, Montreal, Quebec CANADA ISU Physics-590B 01 March 2019 1 What is μsr? μsr is one of a group of nuclear precession

More information

Quantum spin systems - models and computational methods

Quantum spin systems - models and computational methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Quantum spin systems - models and computational methods Anders W. Sandvik, Boston University Lecture outline Introduction

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Talks online at http://sachdev.physics.harvard.edu What is a phase transition? A change in the collective properties of a macroscopic number of atoms What is a quantum

More information

SPIN LIQUIDS AND FRUSTRATED MAGNETISM

SPIN LIQUIDS AND FRUSTRATED MAGNETISM SPIN LIQUIDS AND FRUSTRATED MAGNETISM Classical correlations, emergent gauge fields and fractionalised excitations John Chalker Physics Department, Oxford University For written notes see: http://topo-houches.pks.mpg.de/

More information

Referee for professional journals (Physical Review Letters, Physical Review B, Science, Nature). Referee for National Science Foundation

Referee for professional journals (Physical Review Letters, Physical Review B, Science, Nature). Referee for National Science Foundation Date of Birth: June 5, 1976 Nationality: Ukrainian Olexei I. Motrunich West Bridge 149-33, Condensed Matter Physics California Institute of Technology Pasadena, CA 91125 Phone: (626)-395-8894 Email: motrunch@caltech.edu

More information

Dimerized & frustrated spin chains. Application to copper-germanate

Dimerized & frustrated spin chains. Application to copper-germanate Dimerized & frustrated spin chains Application to copper-germanate Outline CuGeO & basic microscopic models Excitation spectrum Confront theory to experiments Doping Spin-Peierls chains A typical S=1/2

More information

Topological order in the pseudogap metal

Topological order in the pseudogap metal HARVARD Topological order in the pseudogap metal High Temperature Superconductivity Unifying Themes in Diverse Materials 2018 Aspen Winter Conference Aspen Center for Physics Subir Sachdev January 16,

More information

Spin Superfluidity and Graphene in a Strong Magnetic Field

Spin Superfluidity and Graphene in a Strong Magnetic Field Spin Superfluidity and Graphene in a Strong Magnetic Field by B. I. Halperin Nano-QT 2016 Kyiv October 11, 2016 Based on work with So Takei (CUNY), Yaroslav Tserkovnyak (UCLA), and Amir Yacoby (Harvard)

More information

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University Quantum Monte Carlo Simulations in the Valence Bond Basis Anders Sandvik, Boston University Outline The valence bond basis for S=1/2 spins Projector QMC in the valence bond basis Heisenberg model with

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16 Paramagnetic phases of Kagome lattice quantum Ising models Predrag Nikolić In collaboration with T. Senthil Massachusetts Institute of Technology Paramagnetic phases of Kagome lattice quantum Ising models

More information

Quantum Criticality and Black Holes

Quantum Criticality and Black Holes Quantum Criticality and Black Holes ubir Sachde Talk online at http://sachdev.physics.harvard.edu Quantum Entanglement Hydrogen atom: Hydrogen molecule: = _ = 1 2 ( ) Superposition of two electron states

More information

Emergent gauge fields and the high temperature superconductors

Emergent gauge fields and the high temperature superconductors HARVARD Emergent gauge fields and the high temperature superconductors Unifying physics and technology in light of Maxwell s equations The Royal Society, London November 16, 2015 Subir Sachdev Talk online:

More information

Spin liquids on ladders and in 2d

Spin liquids on ladders and in 2d Spin liquids on ladders and in 2d MPA Fisher (with O. Motrunich) Minnesota, FTPI, 5/3/08 Interest: Quantum Spin liquid phases of 2d Mott insulators Background: Three classes of 2d Spin liquids a) Topological

More information

Quantum Spin-Metals in Weak Mott Insulators

Quantum Spin-Metals in Weak Mott Insulators Quantum Spin-Metals in Weak Mott Insulators MPA Fisher (with O. Motrunich, Donna Sheng, Simon Trebst) Quantum Critical Phenomena conference Toronto 9/27/08 Quantum Spin-metals - spin liquids with Bose

More information

Small and large Fermi surfaces in metals with local moments

Small and large Fermi surfaces in metals with local moments Small and large Fermi surfaces in metals with local moments T. Senthil (MIT) Subir Sachdev Matthias Vojta (Augsburg) cond-mat/0209144 Transparencies online at http://pantheon.yale.edu/~subir Luttinger

More information

Neutron scattering from quantum materials

Neutron scattering from quantum materials Neutron scattering from quantum materials Bernhard Keimer Max Planck Institute for Solid State Research Max Planck UBC UTokyo Center for Quantum Materials Detection of bosonic elementary excitations in

More information

Combined Higgs Results

Combined Higgs Results Chapter 2 Combined Higgs Results This chapter presents the combined ATLAS search for the Standard Model Higgs boson. The analysis has been performed using 4.7 fb of s = 7 TeV data collected in 2, and 5.8

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NMAT3449 Topological crystalline insulator states in Pb 1 x Sn x Se Content S1 Crystal growth, structural and chemical characterization. S2 Angle-resolved photoemission measurements at various

More information

Valence Bonds in Random Quantum Magnets

Valence Bonds in Random Quantum Magnets Valence Bonds in Random Quantum Magnets theory and application to YbMgGaO 4 Yukawa Institute, Kyoto, November 2017 Itamar Kimchi I.K., Adam Nahum, T. Senthil, arxiv:1710.06860 Valence Bonds in Random Quantum

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS2271 Two Ising-like magnetic excitations in a single-layer cuprate superconductor Yuan Li, G. Yu, M.K. Chan, V. Balédent, Yangmu Li, N. Barišić, X. Zhao, K.

More information

G-APD + plastic scintillator: fast timing in high magnetic fields

G-APD + plastic scintillator: fast timing in high magnetic fields NDIP 2011 Wir schaffen Wissen heute für morgen Paul Scherrer Institut Alexey Stoykov, Robert Scheuermann, Kamil Sedlak G-APD + plastic scintillator: fast timing in high magnetic fields Outline Scintillation

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies on-line at http://pantheon.yale.edu/~subir

More information

Spin liquids in frustrated magnets

Spin liquids in frustrated magnets May 20, 2010 Contents 1 Frustration 2 3 4 Exotic excitations 5 Frustration The presence of competing forces that cannot be simultaneously satisfied. Heisenberg-Hamiltonian H = 1 J ij S i S j 2 ij The ground

More information

Quantum phase transitions and the Luttinger theorem.

Quantum phase transitions and the Luttinger theorem. Quantum phase transitions and the Luttinger theorem. Leon Balents (UCSB) Matthew Fisher (UCSB) Stephen Powell (Yale) Subir Sachdev (Yale) T. Senthil (MIT) Ashvin Vishwanath (Berkeley) Matthias Vojta (Karlsruhe)

More information

Talk online at

Talk online at Talk online at http://sachdev.physics.harvard.edu Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic

More information

A quantum dimer model for the pseudogap metal

A quantum dimer model for the pseudogap metal A quantum dimer model for the pseudogap metal College de France, Paris March 27, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Andrea Allais Matthias Punk Debanjan Chowdhury (Innsbruck)

More information

μsr Studies on Magnetism and Superconductivity

μsr Studies on Magnetism and Superconductivity The 14 th International Conference on Muon Spin Rotation, Relaxation and Resonance (μsr217) School (June 25-3, 217, Sapporo) μsr Studies on Magnetism and Superconductivity Y. Koike Dept. of Applied Physics,

More information

Muons in Chemistry Training School Dr N J Clayden School of Chemistry University of East Anglia Norwich

Muons in Chemistry Training School Dr N J Clayden School of Chemistry University of East Anglia Norwich Muons in Chemistry Training School 2014 Dr N J Clayden School of Chemistry University of East Anglia Norwich Why use muons? Extrinsic probe (Mu +, Mu, muoniated radical) Intrinsic interest Framing of the

More information

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Quasi-1d Frustrated Antiferromagnets Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Outline Frustration in quasi-1d systems Excitations: magnons versus spinons Neutron scattering

More information

Orbital magnetic field effects in spin liquid with spinon Fermi sea: Possible application to (ET)2Cu2(CN)3

Orbital magnetic field effects in spin liquid with spinon Fermi sea: Possible application to (ET)2Cu2(CN)3 Orbital magnetic field effects in spin liquid with spinon Fermi sea: Possible application to (ET)2Cu2(CN)3 Olexei Motrunich (KITP) PRB 72, 045105 (2005); PRB 73, 155115 (2006) with many thanks to T.Senthil

More information

Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality

Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality HARVARD Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality Indian Institute of Science Education and Research, Pune Subir Sachdev November 15, 2017 Talk online: sachdev.physics.harvard.edu

More information

SU(N) magnets: from a theoretical abstraction to reality

SU(N) magnets: from a theoretical abstraction to reality 1 SU(N) magnets: from a theoretical abstraction to reality Victor Gurarie University of Colorado, Boulder collaboration with M. Hermele, A.M. Rey Aspen, May 2009 In this talk 2 SU(N) spin models are more

More information

arxiv: v1 [hep-ex] 14 Sep 2015

arxiv: v1 [hep-ex] 14 Sep 2015 WSU HEP XXYY September 5, 5 arxiv:59.3v [hep-ex] Sep 5 Search for CP violation in D K + K, π + π and D π π Tara Nanut Department for Experimental Particle Physics Jozef Stefan Institute, Jamova 39, Ljubljana,

More information

Spinon magnetic resonance. Oleg Starykh, University of Utah

Spinon magnetic resonance. Oleg Starykh, University of Utah Spinon magnetic resonance Oleg Starykh, University of Utah May 17-19, 2018 Examples of current literature 200 cm -1 = 6 THz Spinons? 4 mev = 1 THz The big question(s) What is quantum spin liquid? No broken

More information

with four spin interaction Author(s) Tsukamoto, M.; Harada, K.; Kawashim (2009). doi: / /150/

with four spin interaction Author(s) Tsukamoto, M.; Harada, K.; Kawashim   (2009). doi: / /150/ Title Quantum Monte Carlo simulation of S with four spin interaction Author(s) Tsukamoto, M.; Harada, K.; Kawashim Citation Journal of Physics: Conference Seri Issue Date 2009 URL http://hdl.handle.net/2433/200787

More information

TESTING THE STANDARD MODEL IN THE FORWARD REGION AT THE LHC

TESTING THE STANDARD MODEL IN THE FORWARD REGION AT THE LHC TESTING THE STANDARD MODEL IN THE FORWARD REGION AT THE LHC Ronan McNulty (UCD Dublin) Irish Quantum Foundations, Castletown House, 3,4 th May 2013 Ronan McNulty, Irish Quantum Foundations 2 Outline Theory:

More information

Spin Ice and Quantum Spin Liquid in Geometrically Frustrated Magnets

Spin Ice and Quantum Spin Liquid in Geometrically Frustrated Magnets Spin Ice and Quantum Spin Liquid in Geometrically Frustrated Magnets Haidong Zhou National High Magnetic Field Laboratory Tallahassee, FL Outline: 1. Introduction of Geometrically Frustrated Magnets (GFM)

More information

Supplementary Information for Observation of dynamic atom-atom correlation in liquid helium in real space

Supplementary Information for Observation of dynamic atom-atom correlation in liquid helium in real space 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 0 Supplementary Information for Observation of dynamic atom-atom correlation in liquid helium in real space Supplementary Note : Total PDF The total (snap-shot) PDF is obtained

More information

Supplemental materials for: Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs

Supplemental materials for: Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs Supplemental materials for: Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs Rustem Khasanov 1,*, Zurab Guguchia 1, Ilya Eremin 2,3, Hubertus Luetkens 1, Alex Amato

More information

Photoemission Studies of Strongly Correlated Systems

Photoemission Studies of Strongly Correlated Systems Photoemission Studies of Strongly Correlated Systems Peter D. Johnson Physics Dept., Brookhaven National Laboratory JLab March 2005 MgB2 High T c Superconductor - Phase Diagram Fermi Liquid:-Excitations

More information

Quantum criticality of Fermi surfaces

Quantum criticality of Fermi surfaces Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface

More information

Specific heat of the S= 1 2 expansion analysis

Specific heat of the S= 1 2 expansion analysis PHYSICAL REVIEW B 71, 014417 2005 Specific heat of the S= 1 2 Heisenberg model on the kagome lattice: expansion analysis High-temperature series G. Misguich* Service de Physique Théorique, URA 2306 of

More information

Splitting of a Cooper pair by a pair of Majorana bound states

Splitting of a Cooper pair by a pair of Majorana bound states Chapter 7 Splitting of a Cooper pair by a pair of Majorana bound states 7.1 Introduction Majorana bound states are coherent superpositions of electron and hole excitations of zero energy, trapped in the

More information

Ground State Projector QMC in the valence-bond basis

Ground State Projector QMC in the valence-bond basis Quantum Monte Carlo Methods at Work for Novel Phases of Matter Trieste, Italy, Jan 23 - Feb 3, 2012 Ground State Projector QMC in the valence-bond basis Anders. Sandvik, Boston University Outline: The

More information

Quasi-1d Antiferromagnets

Quasi-1d Antiferromagnets Quasi-1d Antiferromagnets Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Quantum Fluids, Nordita 2007 Outline Motivation: Quantum magnetism and the search for spin liquids Neutron

More information

Magnetic control of valley pseudospin in monolayer WSe 2

Magnetic control of valley pseudospin in monolayer WSe 2 Magnetic control of valley pseudospin in monolayer WSe 2 Grant Aivazian, Zhirui Gong, Aaron M. Jones, Rui-Lin Chu, Jiaqiang Yan, David G. Mandrus, Chuanwei Zhang, David Cobden, Wang Yao, and Xiaodong Xu

More information

NMR, the vector model and the relaxation

NMR, the vector model and the relaxation NMR, the vector model and the relaxation Reading/Books: One and two dimensional NMR spectroscopy, VCH, Friebolin Spin Dynamics, Basics of NMR, Wiley, Levitt Molecular Quantum Mechanics, Oxford Univ. Press,

More information

Triangular lattice antiferromagnet in magnetic field: ground states and excitations

Triangular lattice antiferromagnet in magnetic field: ground states and excitations Triangular lattice antiferromagnet in magnetic field: ground states and excitations Oleg Starykh, University of Utah Jason Alicea, Caltech Leon Balents, KITP Andrey Chubukov, U Wisconsin Outline motivation:

More information

Geometrical frustration, phase transitions and dynamical order

Geometrical frustration, phase transitions and dynamical order Geometrical frustration, phase transitions and dynamical order The Tb 2 M 2 O 7 compounds (M = Ti, Sn) Yann Chapuis PhD supervisor: Alain Yaouanc September 2009 ann Chapuis (CEA/Grenoble - Inac/SPSMS)

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Electrical control of single hole spins in nanowire quantum dots V. S. Pribiag, S. Nadj-Perge, S. M. Frolov, J. W. G. van den Berg, I. van Weperen., S. R. Plissard, E. P. A. M. Bakkers and L. P. Kouwenhoven

More information

NMR: Formalism & Techniques

NMR: Formalism & Techniques NMR: Formalism & Techniques Vesna Mitrović, Brown University Boulder Summer School, 2008 Why NMR? - Local microscopic & bulk probe - Can be performed on relatively small samples (~1 mg +) & no contacts

More information

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta C. Buragohain K. Damle M. Vojta Subir Sachdev Phys. Rev. Lett. 78, 943 (1997). Phys. Rev. B 57, 8307 (1998). Science 286, 2479 (1999). cond-mat/9912020 Quantum Phase Transitions, Cambridge University Press

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS A11046W1 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2015 Wednesday, 17 June, 2.30

More information

arxiv:hep-ph/ v1 19 Feb 1999

arxiv:hep-ph/ v1 19 Feb 1999 ELECTRICAL CONDUCTION IN THE EARLY UNIVERSE arxiv:hep-ph/9902398v1 19 Feb 1999 H. HEISELBERG Nordita, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark E-mail: hh@nordita.dk The electrical conductivity has been

More information

Measuring the pinning strength of SRF materials with muon spin rotation. Tobias Junginger

Measuring the pinning strength of SRF materials with muon spin rotation. Tobias Junginger Measuring the pinning strength of SRF materials with muon spin rotation Tobias Junginger Muon production and decay ~500 MeV Positive muons are produced with 100% spin polarization Muons are deposited ~100micron

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

The Superfluid-Insulator transition

The Superfluid-Insulator transition The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989). Superfluid-insulator transition Ultracold 87 Rb atoms

More information

Simulations of Quantum Dimer Models

Simulations of Quantum Dimer Models Simulations of Quantum Dimer Models Didier Poilblanc Laboratoire de Physique Théorique CNRS & Université de Toulouse 1 A wide range of applications Disordered frustrated quantum magnets Correlated fermions

More information

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates)

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates) Non-magnetic states Two spins, i and j, in isolation, H ij = J ijsi S j = J ij [Si z Sj z + 1 2 (S+ i S j + S i S+ j )] For Jij>0 the ground state is the singlet; φ s ij = i j i j, E ij = 3J ij /4 2 The

More information

YBCO. CuO 2. the CuO 2. planes is controlled. from deviation from. neutron. , blue star for. Hg12011 (this work) for T c = 72

YBCO. CuO 2. the CuO 2. planes is controlled. from deviation from. neutron. , blue star for. Hg12011 (this work) for T c = 72 Supplementary Figure 1 Crystal structures and joint phase diagram of Hg1201 and YBCO. (a) Hg1201 features tetragonal symmetry and one CuO 2 plane per primitive cell. In the superconducting (SC) doping

More information

Supplementary figures

Supplementary figures Supplementary figures Supplementary Figure 1. A, Schematic of a Au/SRO113/SRO214 junction. A 15-nm thick SRO113 layer was etched along with 30-nm thick SRO214 substrate layer. To isolate the top Au electrodes

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 10.1038/nature06219 SUPPLEMENTARY INFORMATION Abrupt Onset of Second Energy Gap at Superconducting Transition of Underdoped Bi2212 Wei-Sheng Lee 1, I. M. Vishik 1, K. Tanaka 1,2, D. H. Lu 1, T. Sasagawa

More information

Coupled Cluster Method for Quantum Spin Systems

Coupled Cluster Method for Quantum Spin Systems Coupled Cluster Method for Quantum Spin Systems Sven E. Krüger Department of Electrical Engineering, IESK, Cognitive Systems Universität Magdeburg, PF 4120, 39016 Magdeburg, Germany sven.krueger@e-technik.uni-magdeburg.de

More information

arxiv: v1 [hep-ex] 15 May 2017

arxiv: v1 [hep-ex] 15 May 2017 B D ( ) τ ν τ and Related Tauonic Topics at Belle arxiv:75.5v [hep-ex] 5 May 7 S. Hirose, For the Belle Collaboration KMI, Nagoya University, Furo, Chikusa, Nagoya, Japan The decays B D ( ) τ ν τ are good

More information

Spinons and triplons in spatially anisotropic triangular antiferromagnet

Spinons and triplons in spatially anisotropic triangular antiferromagnet Spinons and triplons in spatially anisotropic triangular antiferromagnet Oleg Starykh, University of Utah Leon Balents, UC Santa Barbara Masanori Kohno, NIMS, Tsukuba PRL 98, 077205 (2007); Nature Physics

More information

Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr 2 CuO 3 Splitting the electron

Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr 2 CuO 3 Splitting the electron Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr 2 CuO 3 Splitting the electron James Gloudemans, Suraj Hegde, Ian Gilbert, and Gregory Hart December 7, 2012 The paper We describe

More information

Tutorial on frustrated magnetism

Tutorial on frustrated magnetism Tutorial on frustrated magnetism Roderich Moessner CNRS and ENS Paris Lorentz Center Leiden 9 August 2006 Overview Frustrated magnets What are they? Why study them? Classical frustration degeneracy and

More information

Which Spin Liquid Is It?

Which Spin Liquid Is It? Which Spin Liquid Is It? Some results concerning the character and stability of various spin liquid phases, and Some speculations concerning candidate spin-liquid phases as the explanation of the peculiar

More information

Supplementary Information

Supplementary Information Supplementary Information I. Sample details In the set of experiments described in the main body, we study an InAs/GaAs QDM in which the QDs are separated by 3 nm of GaAs, 3 nm of Al 0.3 Ga 0.7 As, and

More information

Origin of the anomalous low temperature upturn in resistivity in the electron-doped cuprates.

Origin of the anomalous low temperature upturn in resistivity in the electron-doped cuprates. Origin of the anomalous low temperature upturn in resistivity in the electron-doped cuprates. Y. Dagan 1, A. Biswas 2, M. C. Barr 1, W. M. Fisher 1, and R. L. Greene 1. 1 Center for Superconductivity Research,

More information

Schematic for resistivity measurement

Schematic for resistivity measurement Module 9 : Experimental probes of Superconductivity Lecture 1 : Experimental probes of Superconductivity - I Among the various experimental methods used to probe the properties of superconductors, there

More information

THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS & SCIENCES W BOSON PRODUCTION CHARGE ASYMMETRY IN THE ELECTRON CHANNEL ASHLEY S HUFF

THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS & SCIENCES W BOSON PRODUCTION CHARGE ASYMMETRY IN THE ELECTRON CHANNEL ASHLEY S HUFF THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS & SCIENCES W BOSON PRODUCTION CHARGE ASYMMETRY IN THE ELECTRON CHANNEL By ASHLEY S HUFF A Thesis submitted to the Department of Physics In partial fulfillment

More information

Weak interactions, parity, helicity

Weak interactions, parity, helicity Lecture 10 Weak interactions, parity, helicity SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 Weak decay of particles The weak interaction is also responsible for the β + -decay of atomic

More information

From an Antiferromagnet to a Valence Bond Solid: Evidence for a First Order Phase Transition

From an Antiferromagnet to a Valence Bond Solid: Evidence for a First Order Phase Transition From an Antiferromagnet to a Valence Bond Solid: Evidence for a First Order Phase Transition arxiv:0710.396v1 [cond-mat.str-el] 1 Oct 007 F.-J. Jiang a, M. Nyfeler a, S. Chandrasekharan b, and U.-J. Wiese

More information

Electrical transport near a pair-breaking superconductor-metal quantum phase transition

Electrical transport near a pair-breaking superconductor-metal quantum phase transition Electrical transport near a pair-breaking superconductor-metal quantum phase transition Emily Dunkel (Harvard) Joel Moore (Berkeley) Daniel Podolsky (Berkeley) Subir Sachdev (Harvard) Ashvin Vishwanath

More information

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots O. Krebs, B. Eble (PhD), S. Laurent (PhD), K. Kowalik (PhD) A. Kudelski, A. Lemaître, and P. Voisin Laboratoire

More information

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 )

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 ) Revealing fermionic quantum criticality from new Monte Carlo techniques Zi Yang Meng ( 孟子杨 ) http://ziyangmeng.iphy.ac.cn Collaborators and References Xiao Yan Xu Zi Hong Liu Chuang Chen Gao Pei Pan Yang

More information

Quantum Monte Carlo simulations of deconfined quantum criticality at. the 2D Néel-VBS transition. Anders W. Sandvik, Boston University

Quantum Monte Carlo simulations of deconfined quantum criticality at. the 2D Néel-VBS transition. Anders W. Sandvik, Boston University Quantum Monte Carlo Methods at Work for Novel Phases of Matter Trieste, Italy, Jan 23 - Feb 3, 2012 Quantum Monte Carlo simulations of deconfined quantum criticality at the 2D Néel-VBS transition Anders

More information

Quantum Condensed Matter Physics Lecture 5

Quantum Condensed Matter Physics Lecture 5 Quantum Condensed Matter Physics Lecture 5 detector sample X-ray source monochromator David Ritchie http://www.sp.phy.cam.ac.uk/drp2/home QCMP Lent/Easter 2019 5.1 Quantum Condensed Matter Physics 1. Classical

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 3 March 2006 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Extended quantum critical phase in a magnetized spin- 1 2 antiferromagnetic chain. Abstract

Extended quantum critical phase in a magnetized spin- 1 2 antiferromagnetic chain. Abstract Extended quantum critical phase in a magnetized spin- antiferromagnetic chain M. B. Stone,, D. H. Reich, C. Broholm,, K. Lefmann, 3 C. Rischel, 4 C. P. Landee, 5 and M. M. Turnbull 5 Department of Physics

More information