Ground State Projector QMC in the valence-bond basis

Size: px
Start display at page:

Download "Ground State Projector QMC in the valence-bond basis"

Transcription

1 Quantum Monte Carlo Methods at Work for Novel Phases of Matter Trieste, Italy, Jan 23 - Feb 3, 2012 Ground State Projector QMC in the valence-bond basis Anders. Sandvik, Boston University Outline: The valence-bond basis Projector QMC with valence bonds Amplitude-product states J-Q chain: 1D valence-bond solid 1

2 Common bases for quantum spin systems Lattice of S=1/2 spins, e.g., Heisenberg antiferromagnet H = J S i S j = J Si z Sj z + (S + i S j + S i S+ j )/2 i,j i,j The most common basis is that of up and down spins = = S z = +1/2 = = S z = 1/2 One can also use eigenstates of two or more spins dimer singlet-triplet basis = ( )/ 2 = = ( + )/ 2 = The hamiltonian is more complicated in this basis 2

3 The valence bond basis for S=1/2 spins Valence-bonds between sublattice A, B sites Basis states; singlet products V r = N/2 b=1 (i rb, j rb ), r = 1,... (N/2)! (i, j) = ( i j i j )/ 2 The valence bond basis is overcomplete and non-orthogonal expansion of arbitrary singlet state is not unique = r f r V r (all fr positive for non-frustrated system) All valence bond states overlap with each other V l V r = 2 N N/2 N = number of loops in overlap graph Spin correlations from loop structure V l S i S j V r V l V r = 3 4 ( 1)x i x j +y i y j 0 (i,j in different loops) (i,j in same loop) A B More complicated matrix elements (e.g., dimer correlations) are also related to the loop structure K.S.D. Beach and A.W.S., Nucl. Phys. B 750, 142 (2006) V l V r V l V r 3

4 Projector Monte Carlo in the valence-bond basis Liang, 1991; Sorella et al. (1998); AWS, Phys. Rev. Lett 95, (2005) (-H) n projects out the ground state from an arbitrary state ( H) n =( H) n i S=1/2 Heisenberg model c i i c 0 ( E 0 ) n 0 H = S i S j = H ij, H ij = ( 1 4 S i S j ) i,j i,j Project with string of bond operators n H i(p)j(p) r 0 (r = irrelevant) {H ij } p=1 (a,d) Action of bond operators (a,b) (c,b) (c,d) H ab...(a, b)...(c, d)... =...(a, b)...(c, d)... H bc...(a, b)...(c, d)... = 1...(c, b)...(a, d)... 2 A B A B (i, j) = ( i j i j )/ 2 Simple reconfiguration of bonds (or no change; diagonal) no minus signs for A B bond direction convetion sign problem does appear for frustrated systems 4

5 Sampling the wave function Simplified notation for operator strings n H i(p)j(p) = P k, k = 1,... Nb n {H ij } p=1 k 6-site chain Simplest trial wave function: a basis state V r P k V r = W kr V r (k) The weight Wkr of a path is given by the number of off-diagonal operations ( bond flips ) nflip W kr = 1 2 nflip n = n dia + n flip H ab...(a, b)...(c, d)... =...(a, b)...(c, d)... H bc...(a, b)...(c, d)... = 1...(c, b)...(a, d)... 2 Note: all paths contribute - no dead (W=0) paths Sampling: Trivial way: Replace m (m 2-4) operators at random P accept = 1 2 n new flip n old flip The state has to be re-propagated with the full operator string More efficient updating scheme exists (later...) 5

6 Calculating the energy Using a state which has equal overlap with all VB basis states e.g., the Neel state N N V r = ( 2) N/2 E 0 = N H 0 N 0 = k N HP k V r k N P k V r H acts on the projected state nf = number of bond flips nd = number of diagonal operations E 0 = n d + n f /2 H 6

7 General expectation values: A = 0 A 0 Strings of singlet projectors P k = n p=1 H ik (p)j k (p), k =1,...,N n b (N b = number of interaction bonds) We have to project bra and ket states P k V r = W kr V r (k) ( E 0 ) n c 0 0 k k V l P g = V l (g) W gl 0 c 0 ( g g 6-spin chain example: E 0 ) n A = g,k V l P g AP k V r g,k V l P g P k V r = g,k W glw kr V l (g) A V r (k) g,k W glw kr V l (g) V r (k) V l A V r Monte Carlo sampling of operator strings 7

8 Sampling an amplitude-product state A better trial state leads to faster n convergence bond-amplitude product state [Liang, Doucot, Anderson, 1990] 0 = k N/2 b=1 h(x rb, y rb ) V k Update state by reconfiguring two bonds a c b d P accept = h(x c, y c )h(x d, y d ) h(x a, y a )h(x b, y b ) If reconfiguration accepted calculate change in projection weight used for final accept/reject prob. S. Liang [PRB 42, 6555 (1990)] used parametrized state amplitudes determined parameters variationally improved state by projection V l A V r 8

9 Variational wave function (2D Heisenberg) All amplitudes h(x,y) can be optimized [J. Lou and A.W.S., PRB 2007, AWS and H.-G. Evertz, PRB 2010] variational energy error 50% smaller than previously best (<0.1%) spin correlations deviate by less than 1% from exact values amplitudes decay as 1/r M s E/N variational projected L 9

10 More efficient ground state QMC algorithm larger lattices Loop updates in the valence-bond basis AWS and H. G. Evertz, PRB 2010 Put the spins back in a way compatible with the valence bonds (a i,b i )=( i j i j )/ 2 and sample in a combined space of spins and bonds A Loop updates similar to those in finite-t methods (world-line and stochastic series expansion methods) good valence-bond trial wave functions can be used larger systems accessible sample spins, but measure using valence bonds (as before) 10

11 τ V hai = (graphs by Ying Tang) h m m ( H) A( H) 1 h 1 ( H)2m 2 i 2i m m V V power m should be large enough to obtain ground state V 11

12 τ V n oper(n) V use bit operation to flip operators 12

13 Convergence Trial state expanded in H-eigenstates 0 i = X c n ni n Projected state after m-th power m i = H m 0 i = X n Expectation value hai m = h0 A 0i +2h1 A 0i c 1 hai m = h0 A 0i + c exp c n E m n ni c 0 E1 E 0 m N e 0 e 0 = E 0 /M, =E 1 E 0 m +... Conclusion: m/n >> e0/δ in valence-bond basis Δ is the singlet-singlet gap M s 2 E/N trial state also can have fixed momentum k=0 (e.g., ampl. product state) - only k=0 excited states (gap) Heisenberg p=2 p=3 p=4 optimized (1) optimized (2) m/n 13

14 14

15 VBS states from multi-spin interactions Sandvik, Phys. Rev. Lett. 98, (2007) The Heisenberg interaction is equivalent to a singlet-projector C ij = 1 4 S i S j s s C ij ij = ij, C ij tm ij =0 (m = 1, 0, 1) we can construct models with products of singlet projectors no frustration in the conventional sense (QMC can be used) correlated singlet projection reduces antiferromagnetic order/correlations H = J Q 2 i j i j k l J Q 3 i j i j k l m n J X hiji C ij Q 2 X hijkli C ij C kl including all translations - H is translationally invariant The J-Q chains have the same critical-vbs transition as the J1-J2 Heisenberg chain! - Heisenberg SSE and projector codes can be easily adapted to Q-terms 15

16 S=1/2 Heisenberg chain with frustrated interactions (J1-J2 chain) = J 1 = J 2 Different types of ground states, depending on the ratio g=j2/j1 (both >0) Antiferromagnetic quasi order (critical state) for g< exact solution - Bethe Ansatz - for J2=0 - bosonization (continuum field theory) approach gives further insights - spin-spin correlations decay as 1/r C(r) = S i S i+r ( 1) r ln1/2 (r/r 0 ) r - gapless spin excitations ( spinons, not spin waves!) VBS order for g> the ground state is doubly-degenerate state - gap to spin excitations; exponentially decaying spin correlations C(r) = S i S i+r ( 1) r e r/ - singlet-product state is exact for g=1/2 (Majumdar-Gosh point) 0 critical VBS g 16

17 VBS state in J-Q chains (more in tutorial) Y. Tang and AWS, Phys. Rev. Lett. 107, (2011) S. Sanyal, A. Banerjee, and K. Damle, arxiv: J Q 2 i j i j k l critical VBS J Q 3 0 (Q/J)c Q/J i j i j k l m n dimer operator: B i = ~ S i ~S i+1 In a symmetry-broken VBS: hb i i = a + ( 1) i In a finite system in which the symmetry is not broken: <Bi>=0 detect VBS with dimer correlation function D(r) = 1 N NX hb i B i+r i i=1 This is a 4-spin correlation function can be evaluated using the transition graphs (1- and 2-loop contributions) expression in the afternoon tutorial 17

18 Animation of the projected states - transition graph Animations by Ying Tang J =0 18

19 J/Q =0.5 19

20 J/Q =(J/Q) c 6 20

21 Estimator for the singlet-triplet gap The original VB basis spans the singlet space with one triplet bond, one can obtain the lowest triplet state (i, j) = ( i j i j )/ 2 [i, j] = ( i j + i j )/ 2 Under propagation, the triplet flips like a singlet but a diagonal operation on a triplet kills it H bc...[a, b]...(c, d)... = 1...(c, b)...[a, d]... 2 H ab...[a, b]...(c, d)... = 0 The initial triplet can be placed anywhere N/2 different triplet propagations Those that survive contribute to E1 Partial error cancellations in the gap = E 1 E 0 The ability to generate singlet and triplet states in the same run is a unique feature of VB projector Monte Carlo 21

22 Singlet-triplet matrix elements It is also possible to project one singlet and one triplet matrix elements between the lowest singlet and triplet states e.g., magnon weight in dynamic structure factor T (q) Sq z S(0) 22

Quantum Monte Carlo Simulations in the Valence Bond Basis

Quantum Monte Carlo Simulations in the Valence Bond Basis NUMERICAL APPROACHES TO QUANTUM MANY-BODY SYSTEMS, IPAM, January 29, 2009 Quantum Monte Carlo Simulations in the Valence Bond Basis Anders W. Sandvik, Boston University Collaborators Kevin Beach (U. of

More information

Stochastic series expansion (SSE) and ground-state projection

Stochastic series expansion (SSE) and ground-state projection Institute of Physics, Chinese Academy of Sciences, Beijing, October 31, 2014 Stochastic series expansion (SSE) and ground-state projection Anders W Sandvik, Boston University Review article on quantum

More information

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University Quantum Monte Carlo Simulations in the Valence Bond Basis Anders Sandvik, Boston University Outline The valence bond basis for S=1/2 spins Projector QMC in the valence bond basis Heisenberg model with

More information

Quantum spin systems - models and computational methods

Quantum spin systems - models and computational methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Quantum spin systems - models and computational methods Anders W. Sandvik, Boston University Lecture outline Introduction

More information

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates)

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates) Non-magnetic states Two spins, i and j, in isolation, H ij = J ijsi S j = J ij [Si z Sj z + 1 2 (S+ i S j + S i S+ j )] For Jij>0 the ground state is the singlet; φ s ij = i j i j, E ij = 3J ij /4 2 The

More information

Quantum Monte Carlo simulations of deconfined quantum criticality at. the 2D Néel-VBS transition. Anders W. Sandvik, Boston University

Quantum Monte Carlo simulations of deconfined quantum criticality at. the 2D Néel-VBS transition. Anders W. Sandvik, Boston University Quantum Monte Carlo Methods at Work for Novel Phases of Matter Trieste, Italy, Jan 23 - Feb 3, 2012 Quantum Monte Carlo simulations of deconfined quantum criticality at the 2D Néel-VBS transition Anders

More information

Numerical diagonalization studies of quantum spin chains

Numerical diagonalization studies of quantum spin chains PY 502, Computational Physics, Fall 2016 Anders W. Sandvik, Boston University Numerical diagonalization studies of quantum spin chains Introduction to computational studies of spin chains Using basis states

More information

Exact diagonalization methods

Exact diagonalization methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Exact diagonalization methods Anders W. Sandvik, Boston University Representation of states in the computer bit

More information

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University NATIONAL TAIWAN UNIVERSITY, COLLOQUIUM, MARCH 10, 2015 Quantum and classical annealing in spin glasses and quantum computing Anders W Sandvik, Boston University Cheng-Wei Liu (BU) Anatoli Polkovnikov (BU)

More information

Solving the sign problem for a class of frustrated antiferromagnets

Solving the sign problem for a class of frustrated antiferromagnets Solving the sign problem for a class of frustrated antiferromagnets Fabien Alet Laboratoire de Physique Théorique Toulouse with : Kedar Damle (TIFR Mumbai), Sumiran Pujari (Toulouse Kentucky TIFR Mumbai)

More information

Simulations of Quantum Dimer Models

Simulations of Quantum Dimer Models Simulations of Quantum Dimer Models Didier Poilblanc Laboratoire de Physique Théorique CNRS & Université de Toulouse 1 A wide range of applications Disordered frustrated quantum magnets Correlated fermions

More information

Mind the gap Solving optimization problems with a quantum computer

Mind the gap Solving optimization problems with a quantum computer Mind the gap Solving optimization problems with a quantum computer A.P. Young http://physics.ucsc.edu/~peter Work supported by NASA future technologies conference, January 17-212, 2012 Collaborators: Itay

More information

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University PY502, Computational Physics, December 12, 2017 Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University Advancing Research in Basic Science and Mathematics Example:

More information

The Quantum Adiabatic Algorithm

The Quantum Adiabatic Algorithm The Quantum Adiabatic Algorithm A.P. Young http://physics.ucsc.edu/~peter Work supported by Talk at SMQS-IP2011, Jülich, October 18, 2011 The Quantum Adiabatic Algorithm A.P. Young http://physics.ucsc.edu/~peter

More information

Quantum s=1/2 antiferromagnet on the Bethe lattice at percolation I. Low-energy states, DMRG, and diagnostics

Quantum s=1/2 antiferromagnet on the Bethe lattice at percolation I. Low-energy states, DMRG, and diagnostics Quantum s=1/2 antiferromagnet on the Bethe lattice at percolation I. Low-energy states, DMRG, and diagnostics Hitesh J. Changlani, Shivam Ghosh, Sumiran Pujari, Christopher L. Henley Laboratory of Atomic

More information

Spin liquid phases in strongly correlated lattice models

Spin liquid phases in strongly correlated lattice models Spin liquid phases in strongly correlated lattice models Sandro Sorella Wenjun Hu, F. Becca SISSA, IOM DEMOCRITOS, Trieste Seiji Yunoki, Y. Otsuka Riken, Kobe, Japan (K-computer) Williamsburg, 14 June

More information

LPTM. Quantum-Monte-Carlo Approach to the Thermodynamics of Highly Frustrated Spin-½ Antiferromagnets. Andreas Honecker 1

LPTM. Quantum-Monte-Carlo Approach to the Thermodynamics of Highly Frustrated Spin-½ Antiferromagnets. Andreas Honecker 1 Quantum-Monte-Carlo Approach to the Thermodynamics of Highly Frustrated Spin-½ Antiferromagnets LPTM Laboratoire de Physique Théorique et Modélisation Andreas Honecker 1 Laboratoire de Physique Théorique

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information

Quantum Spin-Metals in Weak Mott Insulators

Quantum Spin-Metals in Weak Mott Insulators Quantum Spin-Metals in Weak Mott Insulators MPA Fisher (with O. Motrunich, Donna Sheng, Simon Trebst) Quantum Critical Phenomena conference Toronto 9/27/08 Quantum Spin-metals - spin liquids with Bose

More information

Quantum Monte Carlo Simulations of the Half-filled Hubbard Model. Anders F. J. Gabrielsson

Quantum Monte Carlo Simulations of the Half-filled Hubbard Model. Anders F. J. Gabrielsson Quantum Monte Carlo Simulations of the Half-filled Hubbard Model Anders F. J. Gabrielsson June 2011 Abstract A Quantum Monte Carlo method of calculating operator expectation values for the ground state

More information

Dimerized & frustrated spin chains. Application to copper-germanate

Dimerized & frustrated spin chains. Application to copper-germanate Dimerized & frustrated spin chains Application to copper-germanate Outline CuGeO & basic microscopic models Excitation spectrum Confront theory to experiments Doping Spin-Peierls chains A typical S=1/2

More information

The Quantum Heisenberg Ferromagnet

The Quantum Heisenberg Ferromagnet The Quantum Heisenberg Ferromagnet Soon after Schrödinger discovered the wave equation of quantum mechanics, Heisenberg and Dirac developed the first successful quantum theory of ferromagnetism W. Heisenberg,

More information

Classical Monte Carlo Simulations

Classical Monte Carlo Simulations Classical Monte Carlo Simulations Hyejin Ju April 17, 2012 1 Introduction Why do we need numerics? One of the main goals of condensed matter is to compute expectation values O = 1 Z Tr{O e βĥ} (1) and

More information

Matrix-Product states: Properties and Extensions

Matrix-Product states: Properties and Extensions New Development of Numerical Simulations in Low-Dimensional Quantum Systems: From Density Matrix Renormalization Group to Tensor Network Formulations October 27-29, 2010, Yukawa Institute for Theoretical

More information

2. Spin liquids and valence bond solids

2. Spin liquids and valence bond solids Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence bond solids (a) Schwinger-boson mean-field theory - square lattice (b) Gauge theories of perturbative

More information

Measuring Entanglement Entropy in Valence Bond Quantum Monte Carlo Simulations

Measuring Entanglement Entropy in Valence Bond Quantum Monte Carlo Simulations Measuring Entanglement Entropy in Valence Bond Quantum Monte Carlo Simulations by Ann Berlinsky Kallin A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the

More information

Numerical Studies of Adiabatic Quantum Computation applied to Optimization and Graph Isomorphism

Numerical Studies of Adiabatic Quantum Computation applied to Optimization and Graph Isomorphism Numerical Studies of Adiabatic Quantum Computation applied to Optimization and Graph Isomorphism A.P. Young http://physics.ucsc.edu/~peter Work supported by Talk at AQC 2013, March 8, 2013 Collaborators:

More information

arxiv: v1 [cond-mat.str-el] 17 Jan 2011

arxiv: v1 [cond-mat.str-el] 17 Jan 2011 Computational Studies of Quantum Spin Systems arxiv:1101.3281v1 [cond-mat.str-el] 17 Jan 2011 Anders W. Sandvik Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts

More information

News on tensor network algorithms

News on tensor network algorithms News on tensor network algorithms Román Orús Donostia International Physics Center (DIPC) December 6th 2018 S. S. Jahromi, RO, M. Kargarian, A. Langari, PRB 97, 115162 (2018) S. S. Jahromi, RO, PRB 98,

More information

SPIN LIQUIDS AND FRUSTRATED MAGNETISM

SPIN LIQUIDS AND FRUSTRATED MAGNETISM SPIN LIQUIDS AND FRUSTRATED MAGNETISM Classical correlations, emergent gauge fields and fractionalised excitations John Chalker Physics Department, Oxford University For written notes see: http://topo-houches.pks.mpg.de/

More information

Mind the gap Solving optimization problems with a quantum computer

Mind the gap Solving optimization problems with a quantum computer Mind the gap Solving optimization problems with a quantum computer A.P. Young http://physics.ucsc.edu/~peter Work supported by Talk at the London Centre for Nanotechnology, October 17, 2012 Collaborators:

More information

Mind the gap Solving optimization problems with a quantum computer

Mind the gap Solving optimization problems with a quantum computer Mind the gap Solving optimization problems with a quantum computer A.P. Young http://physics.ucsc.edu/~peter Work supported by Talk at Saarbrücken University, November 5, 2012 Collaborators: I. Hen, E.

More information

Introduction to Quantum Monte Carlo

Introduction to Quantum Monte Carlo Entanglement in Strongly Correlated Systems @ Benasque Feb. 6-17, 2017 Introduction to Quantum Monte Carlo Naoki KAWASHIMA (ISSP) 2017.02.06-07 Why bother? Estimating scaling dimension by TRG, TNR, etc

More information

Coupled Cluster Method for Quantum Spin Systems

Coupled Cluster Method for Quantum Spin Systems Coupled Cluster Method for Quantum Spin Systems Sven E. Krüger Department of Electrical Engineering, IESK, Cognitive Systems Universität Magdeburg, PF 4120, 39016 Magdeburg, Germany sven.krueger@e-technik.uni-magdeburg.de

More information

Andreas Kreisel. Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main. July,

Andreas Kreisel. Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main. July, BEC of magnons and spin wave interactions in QAF Andreas Kreisel Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main July, 18 2007 collaborators: N. Hasselmann, P. Kopietz

More information

Gapless Spin Liquids in Two Dimensions

Gapless Spin Liquids in Two Dimensions Gapless Spin Liquids in Two Dimensions MPA Fisher (with O. Motrunich, Donna Sheng, Matt Block) Boulder Summerschool 7/20/10 Interest Quantum Phases of 2d electrons (spins) with emergent rather than broken

More information

arxiv:quant-ph/ v2 24 Dec 2003

arxiv:quant-ph/ v2 24 Dec 2003 Quantum Entanglement in Heisenberg Antiferromagnets V. Subrahmanyam Department of Physics, Indian Institute of Technology, Kanpur, India. arxiv:quant-ph/0309004 v2 24 Dec 2003 Entanglement sharing among

More information

Numerical Studies of the Quantum Adiabatic Algorithm

Numerical Studies of the Quantum Adiabatic Algorithm Numerical Studies of the Quantum Adiabatic Algorithm A.P. Young Work supported by Colloquium at Universität Leipzig, November 4, 2014 Collaborators: I. Hen, M. Wittmann, E. Farhi, P. Shor, D. Gosset, A.

More information

Spin liquids on ladders and in 2d

Spin liquids on ladders and in 2d Spin liquids on ladders and in 2d MPA Fisher (with O. Motrunich) Minnesota, FTPI, 5/3/08 Interest: Quantum Spin liquid phases of 2d Mott insulators Background: Three classes of 2d Spin liquids a) Topological

More information

Spin liquids in frustrated magnets

Spin liquids in frustrated magnets May 20, 2010 Contents 1 Frustration 2 3 4 Exotic excitations 5 Frustration The presence of competing forces that cannot be simultaneously satisfied. Heisenberg-Hamiltonian H = 1 J ij S i S j 2 ij The ground

More information

J. Phys.: Condens. Matter 10 (1998) L159 L165. Printed in the UK PII: S (98)90604-X

J. Phys.: Condens. Matter 10 (1998) L159 L165. Printed in the UK PII: S (98)90604-X J. Phys.: Condens. Matter 10 (1998) L159 L165. Printed in the UK PII: S0953-8984(98)90604-X LETTER TO THE EDITOR Calculation of the susceptibility of the S = 1 antiferromagnetic Heisenberg chain with single-ion

More information

Quasi-1d Antiferromagnets

Quasi-1d Antiferromagnets Quasi-1d Antiferromagnets Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Quantum Fluids, Nordita 2007 Outline Motivation: Quantum magnetism and the search for spin liquids Neutron

More information

Spin liquids on the triangular lattice

Spin liquids on the triangular lattice Spin liquids on the triangular lattice ICFCM, Sendai, Japan, Jan 11-14, 2011 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Classification of spin liquids Quantum-disordering magnetic order

More information

Second Lecture: Quantum Monte Carlo Techniques

Second Lecture: Quantum Monte Carlo Techniques Second Lecture: Quantum Monte Carlo Techniques Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden http://www.pks.mpg.de/~aml aml@pks.mpg.de Lecture Notes at http:www.pks.mpg.de/~aml/leshouches

More information

with four spin interaction Author(s) Tsukamoto, M.; Harada, K.; Kawashim (2009). doi: / /150/

with four spin interaction Author(s) Tsukamoto, M.; Harada, K.; Kawashim   (2009). doi: / /150/ Title Quantum Monte Carlo simulation of S with four spin interaction Author(s) Tsukamoto, M.; Harada, K.; Kawashim Citation Journal of Physics: Conference Seri Issue Date 2009 URL http://hdl.handle.net/2433/200787

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 24 Jan 2000

arxiv:cond-mat/ v1 [cond-mat.str-el] 24 Jan 2000 The sign problem in Monte Carlo simulations of frustrated quantum spin systems Patrik Henelius and Anders W. Sandvik 2 National High Magnetic Field Laboratory, 800 East Paul Dirac Dr., Tallahassee, Florida

More information

SSH Model. Alessandro David. November 3, 2016

SSH Model. Alessandro David. November 3, 2016 SSH Model Alessandro David November 3, 2016 Adapted from Lecture Notes at: https://arxiv.org/abs/1509.02295 and from article: Nature Physics 9, 795 (2013) Motivations SSH = Su-Schrieffer-Heeger Polyacetylene

More information

Kitaev honeycomb lattice model: from A to B and beyond

Kitaev honeycomb lattice model: from A to B and beyond Kitaev honeycomb lattice model: from A to B and beyond Jiri Vala Department of Mathematical Physics National University of Ireland at Maynooth Postdoc: PhD students: Collaborators: Graham Kells Ahmet Bolukbasi

More information

/N

/N 1.5 3 Positive Alternated 2 1.0 1.01 Gap α=1.01 2 0.5 3 1.01 0.0 0 0.05 0.1 0.15 0.2 0.25 1/N 0.2 0.1 Gap ε 0.0-0.1 α=1.01-0.2 0.0 0.5 1.0 1.5 2.0 ω 0.2 0.1 Gap ε 0.0-0.1 α=2-0.2 0.0 0.5 1.0 1.5 2.0 ω

More information

quasi-particle pictures from continuous unitary transformations

quasi-particle pictures from continuous unitary transformations quasi-particle pictures from continuous unitary transformations Kai Phillip Schmidt 24.02.2016 quasi-particle pictures from continuous unitary transformations overview Entanglement in Strongly Correlated

More information

Heisenberg Antiferromagnet on a Triangular Lattice* ABSTRACT

Heisenberg Antiferromagnet on a Triangular Lattice* ABSTRACT SLAC-PUB-4880 February 1989 (T) Heisenberg Antiferromagnet on a Triangular Lattice* D. HORN School of Physics and Astronomy Tel-Aviv Tel-Aviv University 69978 Israel and H.R.QuINN AND M.WEINSTEIN Stanford

More information

7 Monte Carlo Simulations of Quantum Spin Models

7 Monte Carlo Simulations of Quantum Spin Models 7 Monte Carlo Simulations of Quantum Spin Models Stefan Wessel Institute for Theoretical Solid State Physics RWTH Aachen University Contents 1 Introduction 2 2 World lines and local updates 2 2.1 Suzuki-Trotter

More information

Magnetic ordering of local moments

Magnetic ordering of local moments Magnetic ordering Types of magnetic structure Ground state of the Heisenberg ferromagnet and antiferromagnet Spin wave High temperature susceptibility Mean field theory Magnetic ordering of local moments

More information

Spinons and triplons in spatially anisotropic triangular antiferromagnet

Spinons and triplons in spatially anisotropic triangular antiferromagnet Spinons and triplons in spatially anisotropic triangular antiferromagnet Oleg Starykh, University of Utah Leon Balents, UC Santa Barbara Masanori Kohno, NIMS, Tsukuba PRL 98, 077205 (2007); Nature Physics

More information

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16 Paramagnetic phases of Kagome lattice quantum Ising models Predrag Nikolić In collaboration with T. Senthil Massachusetts Institute of Technology Paramagnetic phases of Kagome lattice quantum Ising models

More information

Z2 topological phase in quantum antiferromagnets. Masaki Oshikawa. ISSP, University of Tokyo

Z2 topological phase in quantum antiferromagnets. Masaki Oshikawa. ISSP, University of Tokyo Z2 topological phase in quantum antiferromagnets Masaki Oshikawa ISSP, University of Tokyo RVB spin liquid 4 spins on a square: Groundstate is exactly + ) singlet pair a.k.a. valence bond So, the groundstate

More information

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu arxiv:0809.0694 Yang Qi Harvard Cenke Xu Harvard Max Metlitski Harvard Ribhu Kaul Microsoft Roger Melko

More information

Stochastic Series Expansion Quantum Monte Carlo

Stochastic Series Expansion Quantum Monte Carlo 1 Stochastic Series Expansion Quantum Monte Carlo Roger G. Melko 1 Department of Physics and Astronomy, University of Waterloo, Ontario, N2L 3G1, Canada rgmelko@uwaterloo.ca 2 Perimeter Institute for Theoretical

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Quasi-1d Frustrated Antiferromagnets Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Outline Frustration in quasi-1d systems Excitations: magnons versus spinons Neutron scattering

More information

Quantum Phase Transitions in Low Dimensional Magnets

Quantum Phase Transitions in Low Dimensional Magnets 2006.08.03 Computational Approaches to Quantum Critical Phenomena @ ISSP Quantum Phase Transitions in Low Dimensional Magnets Synge Todo ( ) Department of Applied Physics, University of Tokyo

More information

Emergent SU(4) symmetry and quantum spin-orbital liquid in 3 α-zrcl3

Emergent SU(4) symmetry and quantum spin-orbital liquid in 3 α-zrcl3 Emergent SU(4) symmetry and quantum spin-orbital liquid in 3 α-zrcl3 arxiv:1709.05252 Masahiko G. Yamada the Institute for Solid State Physics, the University of Tokyo with Masaki Oshikawa (ISSP) and George

More information

Winter School for Quantum Magnetism EPFL and MPI Stuttgart Magnetism in Strongly Correlated Systems Vladimir Hinkov

Winter School for Quantum Magnetism EPFL and MPI Stuttgart Magnetism in Strongly Correlated Systems Vladimir Hinkov Winter School for Quantum Magnetism EPFL and MPI Stuttgart Magnetism in Strongly Correlated Systems Vladimir Hinkov 1. Introduction Excitations and broken symmetry 2. Spin waves in the Heisenberg model

More information

Disordered metals without quasiparticles, and charged black holes

Disordered metals without quasiparticles, and charged black holes HARVARD Disordered metals without quasiparticles, and charged black holes String Theory: Past and Present (SpentaFest) International Center for Theoretical Sciences, Bengaluru January 11-13, 2017 Subir

More information

From an Antiferromagnet to a Valence Bond Solid: Evidence for a First Order Phase Transition

From an Antiferromagnet to a Valence Bond Solid: Evidence for a First Order Phase Transition From an Antiferromagnet to a Valence Bond Solid: Evidence for a First Order Phase Transition arxiv:0710.396v1 [cond-mat.str-el] 1 Oct 007 F.-J. Jiang a, M. Nyfeler a, S. Chandrasekharan b, and U.-J. Wiese

More information

Spinon magnetic resonance. Oleg Starykh, University of Utah

Spinon magnetic resonance. Oleg Starykh, University of Utah Spinon magnetic resonance Oleg Starykh, University of Utah May 17-19, 2018 Examples of current literature 200 cm -1 = 6 THz Spinons? 4 mev = 1 THz The big question(s) What is quantum spin liquid? No broken

More information

Scaling Theory. Roger Herrigel Advisor: Helmut Katzgraber

Scaling Theory. Roger Herrigel Advisor: Helmut Katzgraber Scaling Theory Roger Herrigel Advisor: Helmut Katzgraber 7.4.2007 Outline The scaling hypothesis Critical exponents The scaling hypothesis Derivation of the scaling relations Heuristic explanation Kadanoff

More information

Frustration-free Ground States of Quantum Spin Systems 1

Frustration-free Ground States of Quantum Spin Systems 1 1 Davis, January 19, 2011 Frustration-free Ground States of Quantum Spin Systems 1 Bruno Nachtergaele (UC Davis) based on joint work with Sven Bachmann, Spyridon Michalakis, Robert Sims, and Reinhard Werner

More information

T S z 1,S z 2,..., S z N = S z N,S z 1,..., S z N 1

T S z 1,S z 2,..., S z N = S z N,S z 1,..., S z N 1 Momentum states (translationally invariant systems) A periodic chain (ring), translationally invariant eigenstates with a fixed momentum (crystal momentum ) quantum number k T n =e ik n k = m 2π, m =0,...,

More information

Quantum simulation with string-bond states: Joining PEPS and Monte Carlo

Quantum simulation with string-bond states: Joining PEPS and Monte Carlo Quantum simulation with string-bond states: Joining PEPS and Monte Carlo N. Schuch 1, A. Sfondrini 1,2, F. Mezzacapo 1, J. Cerrillo 1,3, M. Wolf 1,4, F. Verstraete 5, I. Cirac 1 1 Max-Planck-Institute

More information

Ashvin Vishwanath UC Berkeley

Ashvin Vishwanath UC Berkeley TOPOLOGY + LOCALIZATION: QUANTUM COHERENCE IN HOT MATTER Ashvin Vishwanath UC Berkeley arxiv:1307.4092 (to appear in Nature Comm.) Thanks to David Huse for inspiring discussions Yasaman Bahri (Berkeley)

More information

Supersymmetry breaking and Nambu-Goldstone fermions in lattice models

Supersymmetry breaking and Nambu-Goldstone fermions in lattice models YKIS2016@YITP (2016/6/15) Supersymmetry breaking and Nambu-Goldstone fermions in lattice models Hosho Katsura (Department of Physics, UTokyo) Collaborators: Yu Nakayama (IPMU Rikkyo) Noriaki Sannomiya

More information

Supplementary information I Hilbert Space, Dirac Notation, and Matrix Mechanics. EE270 Fall 2017

Supplementary information I Hilbert Space, Dirac Notation, and Matrix Mechanics. EE270 Fall 2017 Supplementary information I Hilbert Space, Dirac Notation, and Matrix Mechanics Properties of Vector Spaces Unit vectors ~xi form a basis which spans the space and which are orthonormal ( if i = j ~xi

More information

I. QUANTUM MONTE CARLO METHODS: INTRODUCTION AND BASICS

I. QUANTUM MONTE CARLO METHODS: INTRODUCTION AND BASICS I. QUANTUM MONTE CARLO METHODS: INTRODUCTION AND BASICS Markus Holzmann LPMMC, UJF, Grenoble, and LPTMC, UPMC, Paris markus@lptl.jussieu.fr http://www.lptl.jussieu.fr/users/markus (Dated: January 24, 2012)

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 7: Magnetic excitations - Phase transitions and the Landau mean-field theory. - Heisenberg and Ising models. - Magnetic excitations. External parameter, as for

More information

Nematicity and quantum paramagnetism in FeSe

Nematicity and quantum paramagnetism in FeSe Nematicity and quantum paramagnetism in FeSe Fa Wang 1,, Steven A. Kivelson 3 & Dung-Hai Lee 4,5, 1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.

More information

Quantum-Classical Hybrid Monte Carlo Algorithm with Applications to AQC

Quantum-Classical Hybrid Monte Carlo Algorithm with Applications to AQC Quantum-Classical Hybrid Monte Carlo Algorithm with Applications to AQC Itay Hen Information Sciences Institute, USC Workshop on Theory and Practice of AQC and Quantum Simulation Trieste, Italy August

More information

Tensor network methods in condensed matter physics. ISSP, University of Tokyo, Tsuyoshi Okubo

Tensor network methods in condensed matter physics. ISSP, University of Tokyo, Tsuyoshi Okubo Tensor network methods in condensed matter physics ISSP, University of Tokyo, Tsuyoshi Okubo Contents Possible target of tensor network methods! Tensor network methods! Tensor network states as ground

More information

Quantum disordering magnetic order in insulators, metals, and superconductors

Quantum disordering magnetic order in insulators, metals, and superconductors Quantum disordering magnetic order in insulators, metals, and superconductors Perimeter Institute, Waterloo, May 29, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Cenke Xu, Harvard arxiv:1004.5431

More information

Techniques for translationally invariant matrix product states

Techniques for translationally invariant matrix product states Techniques for translationally invariant matrix product states Ian McCulloch University of Queensland Centre for Engineered Quantum Systems (EQuS) 7 Dec 2017 Ian McCulloch (UQ) imps 7 Dec 2017 1 / 33 Outline

More information

Valence Bonds in Random Quantum Magnets

Valence Bonds in Random Quantum Magnets Valence Bonds in Random Quantum Magnets theory and application to YbMgGaO 4 Yukawa Institute, Kyoto, November 2017 Itamar Kimchi I.K., Adam Nahum, T. Senthil, arxiv:1710.06860 Valence Bonds in Random Quantum

More information

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden H ψ = E ψ Introduction to Exact Diagonalization Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden http://www.pks.mpg.de/~aml laeuchli@comp-phys.org Simulations of

More information

VI.D Self Duality in the Two Dimensional Ising Model

VI.D Self Duality in the Two Dimensional Ising Model VI.D Self Duality in the Two Dimensional Ising Model Kramers and Wannier discovered a hidden symmetry that relates the properties of the Ising model on the square lattice at low and high temperatures.

More information

The Mott Metal-Insulator Transition

The Mott Metal-Insulator Transition Florian Gebhard The Mott Metal-Insulator Transition Models and Methods With 38 Figures Springer 1. Metal Insulator Transitions 1 1.1 Classification of Metals and Insulators 2 1.1.1 Definition of Metal

More information

Chiral Haldane-SPT phases of SU(N) quantum spin chains in the adjoint representation

Chiral Haldane-SPT phases of SU(N) quantum spin chains in the adjoint representation Chiral Haldane-SPT phases of SU(N) quantum spin chains in the adjoint representation Thomas Quella University of Cologne Presentation given on 18 Feb 2016 at the Benasque Workshop Entanglement in Strongly

More information

Fully symmetric and non-fractionalized Mott insulators at fractional site-filling

Fully symmetric and non-fractionalized Mott insulators at fractional site-filling Fully symmetric and non-fractionalized Mott insulators at fractional site-filling Itamar Kimchi University of California, Berkeley EQPCM @ ISSP June 19, 2013 PRL 2013 (kagome), 1207.0498...[PNAS] (honeycomb)

More information

Fermionic tensor networks

Fermionic tensor networks Fermionic tensor networks Philippe Corboz, Institute for Theoretical Physics, ETH Zurich Bosons vs Fermions P. Corboz and G. Vidal, Phys. Rev. B 80, 165129 (2009) : fermionic 2D MERA P. Corboz, R. Orus,

More information

Hidden Symmetry and Quantum Phases in Spin 3/2 Cold Atomic Systems

Hidden Symmetry and Quantum Phases in Spin 3/2 Cold Atomic Systems Hidden Symmetry and Quantum Phases in Spin / Cold Atomic Systems Congjun Wu Kavli Institute for Theoretical Physics, UCSB Ref: C. Wu, Mod. Phys. Lett. B 0, 707, (006); C. Wu, J. P. Hu, and S. C. Zhang,

More information

Persistent spin current in a spin ring

Persistent spin current in a spin ring Persistent spin current in a spin ring Ming-Che Chang Dept of Physics Taiwan Normal Univ Jing-Nuo Wu (NCTU) Min-Fong Yang (Tunghai U.) A brief history precursor: Hund, Ann. Phys. 1934 spin charge persistent

More information

Quantum Monte Carlo simulation of thin magnetic films

Quantum Monte Carlo simulation of thin magnetic films Quantum Monte Carlo simulation of thin magnetic films P. Henelius, 1, * P. Fröbrich, 2,3 P. J. Kuntz, 2 C. Timm, 3 and P. J. Jensen 3,4 1 Condensed Matter Theory, Royal Institute of Technology, SE-106

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Talks online at http://sachdev.physics.harvard.edu What is a phase transition? A change in the collective properties of a macroscopic number of atoms What is a quantum

More information

Quantum many-body systems and tensor networks: simulation methods and applications

Quantum many-body systems and tensor networks: simulation methods and applications Quantum many-body systems and tensor networks: simulation methods and applications Román Orús School of Physical Sciences, University of Queensland, Brisbane (Australia) Department of Physics and Astronomy,

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Properties of monopole operators in 3d gauge theories

Properties of monopole operators in 3d gauge theories Properties of monopole operators in 3d gauge theories Silviu S. Pufu Princeton University Based on: arxiv:1303.6125 arxiv:1309.1160 (with Ethan Dyer and Mark Mezei) work in progress with Ethan Dyer, Mark

More information

Quantum criticality of Fermi surfaces

Quantum criticality of Fermi surfaces Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface

More information

LIBERATION ON THE WALLS IN GAUGE THEORIES AND ANTI-FERROMAGNETS

LIBERATION ON THE WALLS IN GAUGE THEORIES AND ANTI-FERROMAGNETS LIBERATION ON THE WALLS IN GAUGE THEORIES AND ANTI-FERROMAGNETS Tin Sulejmanpasic North Carolina State University Erich Poppitz, Mohamed Anber, TS Phys.Rev. D92 (2015) 2, 021701 and with Anders Sandvik,

More information

Symmetric Surfaces of Topological Superconductor

Symmetric Surfaces of Topological Superconductor Symmetric Surfaces of Topological Superconductor Sharmistha Sahoo Zhao Zhang Jeffrey Teo Outline Introduction Brief description of time reversal symmetric topological superconductor. Coupled wire model

More information

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu Quantum phases of antiferromagnets and the underdoped cuprates Talk online: sachdev.physics.harvard.edu Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and

More information

Nonlinear Sigma Model(NLSM) and its Topological Terms

Nonlinear Sigma Model(NLSM) and its Topological Terms Nonlinear Sigma Model(NLSM) and its Topological Terms Dec 19, 2011 @ MIT NLSM and topological terms Motivation - Heisenberg spin chain 1+1-dim AFM spin-z and Haldane gap 1+1-dim AFM spin-z odd /2 and gapless

More information

Time Evolving Block Decimation Algorithm

Time Evolving Block Decimation Algorithm Time Evolving Block Decimation Algorithm Application to bosons on a lattice Jakub Zakrzewski Marian Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Center, Jagiellonian University,

More information