Shell model description of dipole strength at low energy

Size: px
Start display at page:

Download "Shell model description of dipole strength at low energy"

Transcription

1 Shell model description of dipole strength at low energy Kamila Sieja Institut Pluridisciplinaire Hubert Curien, Strasbourg Kamila Sieja (IPHC) / 18

2 Overview & Motivation Low energy enhancement of γ-sf E. Litvinova and N. Belov, Phys. Rev. C88 (213) 3132R Thermal continuum QRPA calculations Enhancement due to transitions between thermally unblocked s.p. states and the continuum Note the difference between T = (ground state) and T > (excited state) E1 strength distribution R. Schwengner et al., PRL111 (213) Shell model transitions between a large amount of states Enhancement due to the M1 transitions between states in the region near the quasicontinuum A general mechanism to be found throughout the nuclear chart Kamila Sieja (IPHC) / 18

3 SM calculations in sd pf gds valence space s1/2 d3/2 d5/2 g7/2 g9/2 p1/2 p3/2 f5/2 f7/2 s1/2 d3/2 d5/2 Π 16 O fp 1p-1h 48 Cr Fe ν Full fp-calculations for positive parity states Full 1 hω calculations for negative parity states- all 1p-1h excitations from sd and to gds shells H SM = i ε i c i c i + i,j,k,l V ijkl c i c j c lc k + β c.m. H c.m. 6 states per spin and parity S M1/E1 = B(M1/E1) ρ(e i ) (6 5 iterations...) or Lanczos SF method with 5 iterations for upward S M1/E1 Kamila Sieja (IPHC) / 18

4 Downward and upward strength calculations γ-decay (RSF) calculate desired number of low lying states using standard SM diagonalization techniques obtain the averages and radiative strength functions from relations: photoabsorption (PSF) use Lanczos Strength Function method with a large number of iterations: S = Ô ψ i = ψ i Ô2 ψ i f M1/E1 (E γ )=16π/9( hc) 3 S M1/E1 (E γ ) S M1/E1 = B(M1/E1) ρ i (E i ) The operator Ô does not commute with H and Ô ψ i is not necessarily the eigenstate of the Hamiltonian. But it can be developed in the basis of energy eigenstates: Ô ψ i = S(E f ) E f, f where S(E f )= E f Ô ψ i is microscopic strength function. If we carry Lanczos procedure using O =Ô ψ i as initial vector then H is diagonalized to obtain eigenvalues E f and after N iterations we have also the strength distribution. Kamila Sieja (IPHC) / 18

5 Downward and upward strength calculations γ-decay (RSF) calculate desired number of low lying states using standard SM diagonalization techniques obtain the averages and radiative strength functions from relations: photoabsorption (PSF) use Lanczos Strength Function method with a large number of iterations: S = Ô ψ i = ψ i Ô2 ψ i f M1/E1 (E γ )=16π/9( hc) 3 S M1/E1 (E γ ) S M1/E1 = B(M1/E1) ρ i (E i ) The operator Ô does not commute with H and Ô ψ i is not necessarily the eigenstate of the Hamiltonian. But it can be developed in the basis of energy eigenstates: Ô ψ i = S(E f ) E f, f where S(E f )= E f Ô ψ i is microscopic strength function. If we carry Lanczos procedure using O =Ô ψ i as initial vector then H is diagonalized to obtain eigenvalues E f and after N iterations we have also the strength distribution. Kamila Sieja (IPHC) / 18

6 Large scale shell model framework define valence space H eff Ψ eff = EΨ eff INTERACTIONS CORE build and diagonalize Hamiltonian matrix CODES Strasbourg shell model codes (E. Caurier, RMP77, 25, 427) NATHAN j-coupled basis large number of non-zero ME smaller dimensions tractable good quantum number: J can get many states of the same J used in the present calculations ideal for description of γ-decay downward strength (RSF) ANTOINE m-scheme basis sparse matrices larger dimensions tractable good quantum number: M numerical problems to get many states of the same J used in the present calculations ideal for description of photoabsorption upward strength (PSF) Kamila Sieja (IPHC) / 18

7 Dipole strength in 44 Sc: theory vs exp <B(M1)> (µ Ν 2 ) SM, π + (hω states) SM, π - (1hω states) 44 Sc f 1 (MeV -3 ) 1e-6 1e-7 1e-8 44 Sc EXP SM, E1 SM, M1 SM, E1+M1 <B(M1)> (µ N 2 ) No enhancement of the 1 hω M1 strength due to the complexity of wave functions (comparable to that of deformed nuclei) Ti 5 Ti 54 Ti 48 Cr e all states below S n 1MeV M1 matrix elements E1 matrix elements KS, submitted Kamila Sieja (IPHC) / 18

8 Dipole strength in 44 Sc: E1 part B(E1) (e 2.fm 2 ) J i =-12 +/- J i = Sc E exc (MeV) low energy part: 6567 E1 matrix elements higher energy part: LSF with 5 iterations (J i = 2 + 1,2,3 ) <B(E1)> (e 2.fm 2 ) f E1 (MeV -3 ).1.1 1e-5-5MeV 5-1MeV 44 Sc 8-1MeV -1MeV 1e e-8 2e-8 1e-8-5MeV 5-1MeV 44 Sc 8-1MeV -1MeV Behaviour of the E1 strength at low energy independent on spin range and energy cut-off Kamila Sieja (IPHC) / 18

9 Comparison to other models B(E1) (e 2.fm 2 ) J i =-12 +/- J i = Sc E exc (MeV) f E1 (MeV -3 ) 1e-5 1e-6 1e-7 44 Sc 1e-8 QRPA(Sly4) SM, 2 + SM, 2 +,6 + 1e e-8 Reasonable agreement between QRPA and SM PSF up to 15MeV for higher energies, 3 hω excitations should be included in SM Microscopic SM strength has a non-zero limit for E γ =. Consistent with EGLO model. f E1 (MeV -3 ) 1e-9 44 Sc SM EGLO GFL SLO 1e Kamila Sieja (IPHC) / 18

10 Low energy E1 strength in SM & QRPA models QRPA describes formally photoabsorption from the ground state correction term is added to take into account collisions of quasiparticles: QRPA from S. Goriely, priv. comm. Γ (E)=Γ(E)(1+α 4πT 2 EE GDR ) the upbend of QRPA strength is not consistent with low energy strength from shell model shell model is the only microscopic tool that gives the downward strength Kamila Sieja (IPHC) / 18

11 Downward vs upward strength: E1 RSF E1 (MeV -3 ) 1e-5 1e-6 1e-7 1e-8 1e-9 γ-decay (RSF) 1e photoabsorption (PSF) Ti 1e-5 Ti PSF E1 (MeV -3 ) 1e-6 1e-7 1e-8 1e-9 44 Ti 46 Ti 48 Ti 5 Ti 52 Ti 1e E exc = Decay to all available states adds a broad component to the strength function with a non-zero E γ = limit. 1e-5 upward downward 1e-6 f E1 (MeV -3 ) 1e-7 1e-8 48 Ti RSF=PSF of the g.s. only for higher transition energies 1e Kamila Sieja (IPHC) / 18

12 Downward vs upward strength: M1 RSF M1 (MeV -3 ) 6e-8 5e-8 4e-8 3e-8 2e-8 1e-8 γ-decay (RSF) 44 Ti 46 Ti photoabsorption (PSF) 6e-8 48 Ti PSF M1 (MeV -3 ) 5e-8 4e-8 3e-8 2e-8 1e-8 44 Ti 46 Ti 48 Ti 5 Ti 52 Ti E exc = Decay to all available states can produce an enhancement effect at low energy. Kamila Sieja (IPHC) / 18

13 Impact of the realistic M1 fragmentation on the neutron capture cross sections M1 microscopic strength functions in iron chain ( 53 Fe- 7 Fe) and impact on (n,γ) cross sections f M1 [1-8 MeV -3 ] f M1 [1-8 MeV -3 ] f M1 [1-8 MeV -3 ] J= J=2 + H.-P. Loens K. Langanke, G. Martinez-Pinedo and KS, EPJ A48 (212) 48 E γ [MeV] 68 Fe J=4 + E γ [MeV] 68 Fe E γ [MeV] 68 Fe σ [b] Fe(n,γ) 68 Fe J= + J=2 + J= E n [MeV] Using SF of excited states instead of that of + leads to larger cross sections Kamila Sieja (IPHC) / 18

14 Outlook: A word on shell model calculations SM is a powerful tool that can be used in many mass regions. Nevertheless, to get the proper physics, large valence spaces and time-consuming calculations are necessary. A valence space can be adequate to describe some properties and completely wrong for others: 48 Cr (f 7/2 ) 8 (f 7/2 p 3/2 ) 8 (fp) 8 Q(2 + )(e.fm 2 ) E(4 + )/E(2 + ) B(E2;2 + )(e 2.fm 4 ) B(GT) The GT (magnetic) properties require model spaces that include all spin-orbit partners. Some effects can be incorporated via renormalization of the magnetic operator (quenching), but some other cannot... Kamila Sieja (IPHC) / 18

15 B(M1) in 87 Kr: model space dependence <B(M1)> (µ N 2 ) π +, fpgd (LNPS) π +, pf-gds 87 Kr from V. W. Ingeberg talk fpgd model space: full pf-shell for protons, 2p-2h excitations from p 3/2,f 5/2 to p 1/2,g 9/2,d 5/2 neutron orbits pf gds model space: full pf-shell for protons, 2p-2h excitations from g 9/2 to d 5/2,s 1/2,d 3/2,g 7/2 neutron orbits Kamila Sieja (IPHC) / 18

16 Outlook: M1 strengths and correlations within the model space <B(M1)> (µ N 2 ) full ν=4 46 Ti B(M1; + ->1 + ) (µ N 2 ) Fe, fpgd model space 2p-2h, q=1. 6p-6h, q=.75 8p-8h, q= Not enough correlations too much enhancement, not enough strength at low energy... Kamila Sieja (IPHC) / 18

17 Summary The large-scale shell model can describe both, upward and downward M1/E1/E2... strengths. Employed in model spaces encompassing the necessary degrees of freedom can give a valuable insight into physics mechanisms behind the low-energy behavior of calculated strengths. M1 dipole strength functions show an upbend for the low γ-energies. However, the mixing destroys the enhancement. No enhancement of the 1 hω M1 is present for the same reason. More complexity of the wave function less probability for the upbend. E1 dipole strength functions do not show the low energy upbend. Given the nature of the E1 operator, one can expect no much upbend throughout the nuclear chart to be verified in very neutron-rich nuclei. Shell model E1 strength at low energy exhibits different trend from QRPA approaches with a flat, non-zero E γ = limit. Consistent with EGLO model. Systematic, reliable SM calculations needed to characterize the regions where the enhancement should be present and the evolution of strengths in neutron-rich nuclei. Kamila Sieja (IPHC) / 18

18 Effective Hamiltonian Interaction from V lowk based on the CD-Bonn potential Monopole corrections to fix the s.p. and s.h. energies pf-shell TBME from the LNPS fit (PRC82, 5431, 21) Good reproduction of low lying levels in considered nuclei and accurate position of the first 1p-1h states Quenching of.75 on magnetic spin operator Accurate reproduction of known magnetic moments of f 7/2 -shell nuclei E exc (MeV) E exc (MeV) EXP SM 44 Sc *J 44 Ti EXP SM *J Kamila Sieja (IPHC) / 18

Recent developments in the nuclear shell model and their interest for astrophysics

Recent developments in the nuclear shell model and their interest for astrophysics Recent developments in the nuclear shell model and their interest for astrophysics Kamila Sieja Institut Pluridisciplinaire Hubert Curien, Strasbourg FUSTIPEN topical meeting "Recent Advances in the Nuclear

More information

Recent developments in the nuclear shell model and their interest for astrophysics

Recent developments in the nuclear shell model and their interest for astrophysics Recent developments in the nuclear shell model and their interest for astrophysics Kamila Sieja Institut Pluridisciplinaire Hubert Curien, Strasbourg Kamila Sieja (IPHC) 10-14.03.24 1 / 46 Atomic nucleus:

More information

Advantages and Limitations Of The Shell Model

Advantages and Limitations Of The Shell Model Advantages and Limitations Of The Shell Model F. Nowacki 1 Atelier de Structure Nucléaire Théorique April 7 th /11 th -2008 1 Strasbourg-Madrid-GSI Shell-Model collaboration What do we mean by SHELL MODEL

More information

Shell evolution and pairing in calcium isotopes with two- and three-body forces

Shell evolution and pairing in calcium isotopes with two- and three-body forces Shell evolution and pairing in calcium isotopes with two- and three-body forces Javier Menéndez Institut für Kernphysik, TU Darmstadt ExtreMe Matter Institute (EMMI) with Jason D. Holt, Achim Schwenk and

More information

Neutrino-Nucleus Reactions Based on Recent Progress of Shell Model Calculations

Neutrino-Nucleus Reactions Based on Recent Progress of Shell Model Calculations Neutrino-Nucleus Reactions Based on Recent Progress of Shell Model Calculations Toshio Suzuki (Nihon University) New shell model calculations in p-shell modified shell model Hamiltonian (SFO) with improved

More information

Probing shell evolution with large scale shell model calculations

Probing shell evolution with large scale shell model calculations Probing shell evolution with large scale shell model calculations Yutaka Utsuno Advanced Science Research Center, Japan Atomic Energy Agency Center for Nuclear Study, University of Tokyo Nuclear structure

More information

Beyond mean-field study on collective vibrations and beta-decay

Beyond mean-field study on collective vibrations and beta-decay Advanced many-body and statistical methods in mesoscopic systems III September 4 th 8 th, 2017, Busteni, Romania Beyond mean-field study on collective vibrations and beta-decay Yifei Niu Collaborators:

More information

Nuclear structure theory

Nuclear structure theory Nuclear structure theory Thomas Papenbrock and Lecture 2: Traditional shell model National Nuclear Physics Summer School 2008 George Washington University Shell structure in nuclei Mass differences: Liquid

More information

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach A. PETROVICI Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania Outline complex

More information

Neutrinoless Double Beta Decay within the Interacting Shell Model

Neutrinoless Double Beta Decay within the Interacting Shell Model Neutrinoless Double Beta Decay within the Interacting Shell Model Institute for Nuclear Physics, Technical University Darmstadt (TUD) ExtreMe Matter Institute (EMMI), GSI EFN 2010, El Escorial, 27-29 September

More information

Three-nucleon forces and shell structure of neutron-rich Ca isotopes

Three-nucleon forces and shell structure of neutron-rich Ca isotopes Three-nucleon forces and shell structure of neutron-rich Ca isotopes Javier Menéndez Institut für Kernphysik (TU Darmstadt) and ExtreMe Matter Institute (EMMI) NUSTAR Week 3, Helsinki, 9 October 13 Outline

More information

QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates. N. Paar

QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates. N. Paar Strong, Weak and Electromagnetic Interactions to probe Spin-Isospin Excitations ECT*, Trento, 28 September - 2 October 2009 QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates N.

More information

Shape coexistence and beta decay in proton-rich A~70 nuclei within beyond-mean-field approach

Shape coexistence and beta decay in proton-rich A~70 nuclei within beyond-mean-field approach Shape coexistence and beta decay in proton-rich A~ nuclei within beyond-mean-field approach A. PETROVICI Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania Outline

More information

Shell-model description for beta decays of pfg-shell nuclei

Shell-model description for beta decays of pfg-shell nuclei Shell-model description for beta decays of pfg-shell nuclei Workshop on New Era of Nuclear Physics in the Cosmos the r-process nucleosynthesis Sep. 25-26, 2008 @RIKEN M. Honma (Univ. of Aizu) T. Otsuka

More information

NEW ADVANCES IN SHELL MODEL CALCULATIONS: APPLICATIONS AROUND

NEW ADVANCES IN SHELL MODEL CALCULATIONS: APPLICATIONS AROUND NEW ADVANCES IN SHELL MODEL CALCULATIONS: APPLICATIONS AROUND DOUBLY MAGIC NUCLEI 40 Ca AND 132 Sn Houda NAÏDJA IPHC Strasbourg, France GSI Darmstadt, Germany. LPMS, Université Constantine 1, Algeria.

More information

Large scale shell model calculations for neutron rich fp-shell nuclei

Large scale shell model calculations for neutron rich fp-shell nuclei Large scale shell model calculations for neutron rich fp-shell nuclei Physical Research Laboratory, Ahmedabad-380 009, India Collaborators: I. Mehrotra (Allahabad) P.Van Isacker (GANIL, France) V.K.B.

More information

Comparison of Nuclear Configuration Interaction Calculations and Coupled Cluster Calculations

Comparison of Nuclear Configuration Interaction Calculations and Coupled Cluster Calculations Comparison of Nuclear Configuration Interaction Calculations and Coupled Cluster Calculations Mihai Horoi Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA Support

More information

Accurate Description of the Spinand Parity-Dependent Nuclear Level Densities

Accurate Description of the Spinand Parity-Dependent Nuclear Level Densities Accurate Description of the Spinand Parity-Dependent Nuclear Level Densities Mihai Horoi Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA Nuclear Level Densities

More information

Lecture #3 a) Nuclear structure - nuclear shell model b) Nuclear structure -quasiparticle random phase approximation c) Exactly solvable model d)

Lecture #3 a) Nuclear structure - nuclear shell model b) Nuclear structure -quasiparticle random phase approximation c) Exactly solvable model d) Lecture #3 a) Nuclear structure - nuclear shell model b) Nuclear structure -quasiparticle random phase approximation c) Exactly solvable model d) Dependence on the distance between neutrons (or protons)

More information

The nuclear shell-model: from single-particle motion to collective effects

The nuclear shell-model: from single-particle motion to collective effects The nuclear shell-model: from single-particle motion to collective effects 1. Nuclear forces and very light nuclei 2. Independent-particle shell model and few nucleon correlations 3. Many-nucleon correlations:

More information

TEST OF CLOSED-FORM GAMMA-STRENGTH FUNCTIONS. Vladimir Plujko. Taras Shevchenko National University; Institute for Nuclear Research, Kyiv, Ukraine

TEST OF CLOSED-FORM GAMMA-STRENGTH FUNCTIONS. Vladimir Plujko. Taras Shevchenko National University; Institute for Nuclear Research, Kyiv, Ukraine TEST OF CLOSED-FORM GAMMA-STRENGTH FUNCTIONS Vladimir Plujko Taras Shevchenko National University; Institute for Nuclear Research, Kyiv, Ukraine 1. Radiative (photon, gamma) strength functions (RSF)- definitions.

More information

Silvia M. Lenzi University of Padova and INFN. Silvia Lenzi, 10th Int. Spring Seminar on Nuclear Physics, Vietri sul Mare, May 21-25, 2010

Silvia M. Lenzi University of Padova and INFN. Silvia Lenzi, 10th Int. Spring Seminar on Nuclear Physics, Vietri sul Mare, May 21-25, 2010 Structure of Neutron-Rich Nuclei near N=40 Silvia M. Lenzi University of Padova and INFN 10th International Spring Seminar on Nuclear Physics Vietri sul Mare, May 21-25, 2010 Collaboration Theory: F. Nowacki,

More information

The No-Core Shell Model

The No-Core Shell Model The No-Core Shell Model New Perspectives on P-shell Nuclei - The Shell Model and Beyond Erich Ormand Petr Navratil Christian Forssen Vesselin Gueorguiev Lawrence Livermore National Laboratory Collaborators:

More information

Application of Equation of Motion Phonon Method to Nuclear and Exotic Nuclear Systems

Application of Equation of Motion Phonon Method to Nuclear and Exotic Nuclear Systems Application of Equation of Motion Phonon Method to Nuclear and Exotic Nuclear Systems Petr Veselý Nuclear Physics Institute, Czech Academy of Sciences gemma.ujf.cas.cz/~p.vesely/ seminar at UTEF ČVUT,

More information

SHELL-MODEL RESULTS IN fp AND fpg 9/2 SPACES FOR

SHELL-MODEL RESULTS IN fp AND fpg 9/2 SPACES FOR SHELL-MODEL RESULTS IN fp AND fpg 9/2 SPACES FOR 61,63,65 Co ISOTOPES P.C. Srivastava 1, * 1, ** and V.K.B. Kota 1 Physical Research Laboratory, Ahmedabad, India arxiv:1004.4443v2 [nucl-th] 18 May 2011

More information

Matrix elements for processes that could compete in double beta decay

Matrix elements for processes that could compete in double beta decay Matrix elements for processes that could compete in double beta decay Mihai Horoi Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA Ø Support from NSF grant PHY-106817

More information

Towards a universal nuclear structure model. Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 2017

Towards a universal nuclear structure model. Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 2017 Towards a universal nuclear structure model Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 217 1 Table of contents: Brief presentation of the group Motivation Model and selected

More information

Testing the validity of the Spin-orbit interaction Nuclear forces at the drip-line O. Sorlin (GANIL, Caen, France)

Testing the validity of the Spin-orbit interaction Nuclear forces at the drip-line O. Sorlin (GANIL, Caen, France) PART 1: Testing the validity of the Spin-orbit interaction Nuclear forces at the drip-line O. Sorlin (GANIL, Caen, France) Introduction to the SO interaction Historical picture -> magic numbers The SO

More information

Towards first-principle description of electromagnetic reactions in medium-mass nuclei

Towards first-principle description of electromagnetic reactions in medium-mass nuclei Canada s National Laboratory for Particle and Nuclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules Towards first-principle description of

More information

New T=1 effective interactions for the f 5/2 p 3/2 p 1/2 g 9/2 model space: Implications for valence-mirror symmetry and seniority isomers

New T=1 effective interactions for the f 5/2 p 3/2 p 1/2 g 9/2 model space: Implications for valence-mirror symmetry and seniority isomers PHYSICAL REVIEW C 70, 044314 (2004) New T=1 effective interactions for the f 5/2 p 3/2 p 1/2 g 9/2 model space: Implications for valence-mirror symmetry and seniority isomers A. F. Lisetskiy, 1 B. A. Brown,

More information

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar Evolution Of Shell Structure, Shapes & Collective Modes Dario Vretenar vretenar@phy.hr 1. Evolution of shell structure with N and Z A. Modification of the effective single-nucleon potential Relativistic

More information

Remarks about weak-interaction processes

Remarks about weak-interaction processes Remarks about weak-interaction processes K. Langanke GSI Darmstadt and TUD, Darmstadt March 9, 2006 K. Langanke (GSI and TUD, Darmstadt)Remarks about weak-interaction processes March 9, 2006 1 / 35 Nuclear

More information

Shell model calculation ー from basics to the latest methods ー

Shell model calculation ー from basics to the latest methods ー Shell model calculation ー from basics to the latest methods ー Takahiro Mizusaki Senshu university / CNS, the univ. of Tokyo Basics What we will learn? What is Shell Model? Shell model basis states M-scheme

More information

New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen

New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen I. General introduction to the atomic nucleus Charge density, shell gaps, shell occupancies, Nuclear forces, empirical monopoles, additivity,

More information

Probing the evolution of shell structure with in-beam spectroscopy

Probing the evolution of shell structure with in-beam spectroscopy Probing the evolution of shell structure with in-beam spectroscopy Alexandra Gade National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy at Michigan State University, East

More information

Part III: The Nuclear Many-Body Problem

Part III: The Nuclear Many-Body Problem Part III: The Nuclear Many-Body Problem To understand the properties of complex nuclei from first principles Microscopic Valence- Space Interactions Model spaces Many-body perturbation theory (MBPT) Calculating

More information

The Nuclear Many-Body Problem. Lecture 2

The Nuclear Many-Body Problem. Lecture 2 The Nuclear Many-Body Problem Lecture 2 How do we describe nuclei? Shell structure in nuclei and the phenomenological shell model approach to nuclear structure. Ab-initio approach to nuclear structure.

More information

MICROSCOPIC NATURE OF THE PHOTON STRENGTH FUNCTION: STABLE AND UNSTABLE Ni AND Sn ISOTOPES

MICROSCOPIC NATURE OF THE PHOTON STRENGTH FUNCTION: STABLE AND UNSTABLE Ni AND Sn ISOTOPES MICROSCOPIC NATURE OF THE PHOTON STRENGTH FUNCTION: STABLE AND UNSTABLE Ni AND Sn ISOTOPES O. Achakovskiy 4, A. Avdeenkov 4, S. Goriely 2, S. Kamerdzhiev 1, S. Krewald 3, D. Voitenkov 4 1. Institute for

More information

High-spin studies and nuclear structure in three semi-magic regions of the nuclide chart High-seniority states in Sn isotopes

High-spin studies and nuclear structure in three semi-magic regions of the nuclide chart High-seniority states in Sn isotopes High-spin studies and nuclear structure in three semi-magic regions of the nuclide chart High-seniority states in Sn isotopes Outline: Alain Astier, CSNSM Orsay, France Motivations Experimental conditions

More information

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain Mean field studies of odd mass nuclei and quasiparticle excitations Luis M. Robledo Universidad Autónoma de Madrid Spain Odd nuclei and multiquasiparticle excitations(motivation) Nuclei with odd number

More information

arxiv:nucl-th/ v1 20 Dec 2000

arxiv:nucl-th/ v1 20 Dec 2000 Shell model study of the isobaric chains A = 5, A = 5 and A = 5 A. Poves and J. Sánchez-Solano arxiv:nucl-th/77v Dec Departamento de Física Teórica C-XI, Universidad Autónoma de Madrid, E 89 Madrid, Spain

More information

Charge exchange reactions and photo-nuclear reactions

Charge exchange reactions and photo-nuclear reactions Charge exchange reactions and photo-nuclear reactions σ( 7 Li, 7 Be) and σ(γ,n) S. Nakayama (Univ of Tokushima) Determination of σ(γ,n) from CE reactions (CE reaction = Charge Exchange reaction) Application

More information

Projected shell model for nuclear structure and weak interaction rates

Projected shell model for nuclear structure and weak interaction rates for nuclear structure and weak interaction rates Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China E-mail: sunyang@sjtu.edu.cn The knowledge on stellar weak interaction processes

More information

Shell Model A Unified View of Nuclear Structure

Shell Model A Unified View of Nuclear Structure Shell Model A Unified View of Nuclear Structure Frédéric Nowacki 1 18 th STFC UK Postgraduate Summer School Lancaster, August 4 th -September 5 th -15 1 Strasbourg-Madrid Shell-Model collaboration Bibliography

More information

Low-lying gamma-strength within microscopic models

Low-lying gamma-strength within microscopic models Low-lying gamma-strength within microscopic models Elena Litvinova 1,2 1 GSI Helmholtzzentrum für Schwerionenforschung mbh, Darmstadt, Germany 2 Institut für Theoretische Physik, Goethe Universität, Frankfurt

More information

Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy.

Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy. Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy Hiroshi Watanabe Outline Prospects for decay spectroscopy of neutron-rich

More information

Spectroscopic Quadrupole Moment in 96,98 Sr : Shape coexistence at N=60. E.Clément-GANIL IS451 Collaboration

Spectroscopic Quadrupole Moment in 96,98 Sr : Shape coexistence at N=60. E.Clément-GANIL IS451 Collaboration Spectroscopic Quadrupole Moment in 96,98 Sr : Shape coexistence at N=60 E.Clément-GANIL IS451 Collaboration Shape Transition at N=60 P. Campbell, I.D. Moore, M.R. Pearson Progress in Particle and Nuclear

More information

Nuclear Structure Theory II

Nuclear Structure Theory II uclear Structure Theory II The uclear Many-body Problem Alexander Volya Florida State University Physics of light nuclei 1 H 4 Li 3 He 2 H 8 7 6 Be 5 Li 4 He 3 B H 10 9 8 7 Be 6 Li 5 He 4 B H 12 11 10

More information

Ab Initio Nuclear Structure Theory

Ab Initio Nuclear Structure Theory Ab Initio Nuclear Structure Theory Lecture 3: Light Nuclei Robert Roth Overview Lecture 1: Hamiltonian Prelude Many-ody Quantum Mechanics Nuclear Hamiltonian Matrix Elements Lecture 2: orrelations Two-ody

More information

Three-step gamma cascades following the neutron capture in 161 Dy

Three-step gamma cascades following the neutron capture in 161 Dy Three-step gamma cascades following the neutron capture in 161 Dy F. Beèváø, T. Belgya, G. de France, M. Jentschel, U. Koester, J. Kroll, M. Krtièka, P. Mutti, R. Schwengner, G. Simpson, I. Tomandl, W.

More information

Physics of neutron-rich nuclei

Physics of neutron-rich nuclei Physics of neutron-rich nuclei Nuclear Physics: developed for stable nuclei (until the mid 1980 s) saturation, radii, binding energy, magic numbers and independent particle. Physics of neutron-rich nuclei

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1 2358-19 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 1 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

Cluster Models for Light Nuclei

Cluster Models for Light Nuclei Cluster Models for Light Nuclei N. Itagaki, T. Otsuka, University of Tokyo S. Aoyama, Niigata University K. Ikeda, RIKEN S. Okabe, Hokkaido University Purpose of the present study Cluster model explore

More information

Quantum Theory of Many-Particle Systems, Phys. 540

Quantum Theory of Many-Particle Systems, Phys. 540 Quantum Theory of Many-Particle Systems, Phys. 540 Questions about organization Second quantization Questions about last class? Comments? Similar strategy N-particles Consider Two-body operators in Fock

More information

Structure at and Beyond the Neutron Dripline

Structure at and Beyond the Neutron Dripline Structure at and Beyond the Neutron Dripline Collaboration LPC-CHARISSA CHARISSA-DEMON H Al Falou,, FM Marqués, JL Lecouey, NA Orr, Structure at and Beyond the Neutron Dripline * Motivation Experimental

More information

Nuclear Isomers: What we learn from Tin to Tin

Nuclear Isomers: What we learn from Tin to Tin INDIAN INSTITUTE OF TECHNOLOGY ROORKEE Nuclear Isomers: What we learn from Tin to Tin Ashok Kumar Jain Bhoomika Maheshwari Department of Physics Outline Nuclear Isomers The longest chain of Sn isotopes

More information

The Nuclear Many Body Problem Lecture 3

The Nuclear Many Body Problem Lecture 3 The Nuclear Many Body Problem Lecture 3 Shell structure in nuclei and the phenomenological shell model approach to nuclear structure Ab initio approach to nuclear structure. Green's function Monte Carlo

More information

Aligned neutron-proton pairs in N=Z nuclei

Aligned neutron-proton pairs in N=Z nuclei Aligned neutron-proton pairs in N=Z nuclei P. Van Isacker, GANIL, France Motivation Shell-model analysis A model with high-spin bosons Experimental tests Neutron-proton correlations, UHK, Hong Kong, July

More information

ab-initio alpha-alpha scattering

ab-initio alpha-alpha scattering ab-initio alpha-alpha scattering Elhatisari et al., Nature 528, 111 (215) http://www.nature.com/nature/journal/v528/n758/full/nature1667.html http://www.nature.com/nature/journal/v528/n758/abs/52842a.html

More information

Medium polarization effects and pairing interaction in finite nuclei

Medium polarization effects and pairing interaction in finite nuclei Medium polarization effects and pairing interaction in finite nuclei S. Baroni, P.F. Bortignon, R.A. Broglia, G. Colo, E. Vigezzi Milano University and INFN F. Barranco Sevilla University Commonly used

More information

Nuclear structure from chiral-perturbation-theory two- plus three-nucleon interactions

Nuclear structure from chiral-perturbation-theory two- plus three-nucleon interactions Nuclear structure from chiral-perturbation-theory two- plus three-nucleon interactions Petr Navratil Lawrence Livermore National Laboratory* Collaborators: W. E. Ormand (LLNL), J. P. Vary (ISU), E. Caurier

More information

Calculating β Decay for the r Process

Calculating β Decay for the r Process Calculating β Decay for the r Process J. Engel with M. Mustonen, T. Shafer C. Fröhlich, G. McLaughlin, M. Mumpower, R. Surman D. Gambacurta, M. Grasso June 3, 26 Nuclear Landscape To convincingly locate

More information

proton-neutron pairing vibrations

proton-neutron pairing vibrations proton-neutron pairing vibrations Outline of this lecture: Basics of the vibrational modes of excitation in nuclei surface vibration, like-particle pairing vibration, and then Microscopic framework to

More information

Introduction to NUSHELLX and transitions

Introduction to NUSHELLX and transitions Introduction to NUSHELLX and transitions Angelo Signoracci CEA/Saclay Lecture 4, 14 May 213 Outline 1 Introduction 2 β decay 3 Electromagnetic transitions 4 Spectroscopic factors 5 Two-nucleon transfer/

More information

Measuring Neutron Capture Cross Sections on s-process Radioactive Nuclei

Measuring Neutron Capture Cross Sections on s-process Radioactive Nuclei Measuring Neutron Capture Cross Sections on s-process Radioactive Nuclei 5th Workshop on Nuclear Level Density and Gamma Strength Oslo, May 18-22, 2015 LLNL-PRES-670315 LLNL-PRES-XXXXXX This work was performed

More information

ISSN : Asian Journal of Engineering and Technology Innovation 02 (03) 2014 (08-13) QR Code for Mobile users

ISSN : Asian Journal of Engineering and Technology Innovation 02 (03) 2014 (08-13) QR Code for Mobile users ISSN : 2347-7385 Calculation of the Energy Levels of 25Na-27Na Isotopes S. Mohammadi, Sima Zamani Department of Physics, Payame Noor University, PO BOX 19395-3697 Tehran, Iran. Received on: 09-03-2014

More information

Novel High Performance Computational Aspects of the Shell Model Approach for Medium Nuclei

Novel High Performance Computational Aspects of the Shell Model Approach for Medium Nuclei Novel High Performance Computational Aspects of the Shell Model Approach for Medium Nuclei Mihai Horoi Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA Collaborators:

More information

Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them

Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them Introduction Yoram Alhassid (Yale University) Finite-temperature auxiliary-field Monte Carlo methods in Fock

More information

Coupled-cluster computations of weak decays in nuclei

Coupled-cluster computations of weak decays in nuclei Coupled-cluster computations of weak decays in nuclei Gaute Hagen Oak Ridge National Laboratory Nuclear ab initio Theories and Neutrino Physics INT, March 6th, 2018 Trend in realistic ab-initio calculations

More information

Cluster-gas-like states and monopole excitations. T. Yamada

Cluster-gas-like states and monopole excitations. T. Yamada Cluster-gas-like states and monopole excitations T. Yamada Cluster-gas-like states and monopole excitations Isoscalar monopole excitations in light nuclei Cluster-gas-likes states: C, 16 O, 11 B, 13 C

More information

Electromagnetic reactions from few to many-body systems Giuseppina Orlandini

Electromagnetic reactions from few to many-body systems Giuseppina Orlandini Electromagnetic reactions from few to many-body systems Giuseppina Orlandini ECT* Workshop on Recent advances and challenges in the description of nuclear reactions at the limit of stability, March 5-9,

More information

New Phenomena in Gamma-Ray Strength Functions

New Phenomena in Gamma-Ray Strength Functions Text optional: Institutsname Prof. Dr. Hans Mustermann www.fzd.de Mitglied der Leibniz-Gemeinschaft Ronald Schwengner Institut für Strahlenphysik http://www.hzdr.de New Phenomena in Gamma-Ray Strength

More information

Charge Exchange and Weak Strength for Astrophysics

Charge Exchange and Weak Strength for Astrophysics Charge Exchange and Weak Strength for Astrophysics Sam Austin STANfest-July 16 2004 Charge Exchange and Weak Strength for Astrophysics Interesting phenomena Electron capture strength (GT) (Langanke talk)

More information

Modeling the Atomic Nucleus. Theoretical bag of tricks

Modeling the Atomic Nucleus. Theoretical bag of tricks Modeling the Atomic Nucleus Theoretical bag of tricks The nuclear many-body problem The Nuclear Many-Body Problem H ˆ = T ˆ + V ˆ ˆ T = A 2 p ˆ " i, V ˆ = 2m i i=1 one-body H ˆ " = E" " V ˆ 2b (i, j) +

More information

QRPA calculations of stellar weak-interaction rates

QRPA calculations of stellar weak-interaction rates QRPA calculations of stellar weak-interaction rates P. Sarriguren Instituto de Estructura de la Materia CSIC, Madrid, Spain Zakopane Conference on Nuclear Physics: Extremes of Nuclear Landscape. August

More information

A simple effective interaction for 9 He, and Gamow-SRG

A simple effective interaction for 9 He, and Gamow-SRG A simple effective interaction for 9 He, and Gamow-SRG Kévin Fossez February 28, 218 FRIB, MSU FRIB, MSU - Kévin Fossez Work supported by: DOE: DE-SC1336 (Michigan State University) DOE: DE-SC17887 (Michigan

More information

Three-Nucleon Forces and Masses of Neutron-Rich Nuclei Jason D. Holt

Three-Nucleon Forces and Masses of Neutron-Rich Nuclei Jason D. Holt Three-Nucleon Forces and Masses of Neutron-Rich Nuclei Jason D. Holt Drip Lines and Magic Numbers: The Evolving Nuclear Landscape 3N forces important in light nuclei, nuclear matter What are the limits

More information

Nucleon Pair Approximation to the nuclear Shell Model

Nucleon Pair Approximation to the nuclear Shell Model Nucleon Pair Approximation to the nuclear Shell Model Yiyuan Cheng Department of Physics and Astronomy, Shanghai Jiao Tong University, China RCNP, Osaka university, Japan Collaborators: Yu-Min Zhao, Akito

More information

in covariant density functional theory.

in covariant density functional theory. Nuclear Particle ISTANBUL-06 Density vibrational Functional coupling Theory for Excited States. in covariant density functional theory. Beijing, Sept. 8, 2011 Beijing, May 9, 2011 Peter Peter Ring Ring

More information

Nuclear Physics and Supernova Dynamics. Karlheinz Langanke GSI Helmholtzzentrum Darmstadt Technische Universität Darmstadt

Nuclear Physics and Supernova Dynamics. Karlheinz Langanke GSI Helmholtzzentrum Darmstadt Technische Universität Darmstadt Nuclear Physics and Supernova Dynamics Karlheinz Langanke GSI Helmholtzzentrum Darmstadt Technische Universität Darmstadt Tribute to Gerry - Stony Brook, November 26, 2013 Hans Bethe s Centennial at Caltech

More information

New Frontiers in Nuclear Structure Theory

New Frontiers in Nuclear Structure Theory New Frontiers in Nuclear Structure Theory From Realistic Interactions to the Nuclear Chart Robert Roth Institut für Kernphysik Technical University Darmstadt Overview Motivation Nucleon-Nucleon Interactions

More information

Statistical Approach to Nuclear Level Density

Statistical Approach to Nuclear Level Density Statistical Approach to Nuclear Level Density R. A. Sen kov,v.g.zelevinsky and M. Horoi Department of Physics, Central Michigan University, Mount Pleasant, MI 889, USA Department of Physics and Astronomy

More information

Theory for nuclear processes in stars and nucleosynthesis

Theory for nuclear processes in stars and nucleosynthesis Theory for nuclear processes in stars and nucleosynthesis Gabriel Martínez Pinedo Nuclear Astrophysics in Germany November 15-16, 2016 Nuclear Astrophysics Virtual Institute Outline 1 Ab-initio description

More information

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup Dominic Rossi for the LAND collaboration GSI Helmholtzzentrum für Schwerionenforschung GmbH D 64291 Darmstadt, Germany

More information

14. Structure of Nuclei

14. Structure of Nuclei 14. Structure of Nuclei Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 14. Structure of Nuclei 1 In this section... Magic Numbers The Nuclear Shell Model Excited States Dr. Tina Potter 14.

More information

Gamma-ray strength functions obtained with the Oslo method

Gamma-ray strength functions obtained with the Oslo method Gamma-ray strength functions obtained with the Oslo method Ann-Cecilie Larsen July 8, 2008 DEPARTMENT OF PHYSICS UNIVERSITY OF OSLO Collaborators Oslo: A. Bürger, M. Guttormsen, S. Messelt, F. Ingebretsen,

More information

Nuclear structure and stellar weak interaction rates of nuclei below the 132 Sn core

Nuclear structure and stellar weak interaction rates of nuclei below the 132 Sn core Nuclear structure and stellar weak interaction rates of nuclei below the 132 Sn core Nuclear and Atomic Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064, INDIA E-mail: maitrayee.sahasarkar@saha.ac.in

More information

PARTICLE-NUMBER CONSERVING

PARTICLE-NUMBER CONSERVING PARTICLE-NUMBER CONSERVING MICROSCOPIC APPROACH AND APPLICATION TO ISOSPIN MIXING L. Bonneau, J. Le Bloas, H. Naidja, P. Quentin, K. Sieja (CENBG/Université Bordeaux 1) J. Bartel (IPHC/Université Louis

More information

Probing properties of the nuclear force in extreme conditions

Probing properties of the nuclear force in extreme conditions Probing properties of the nuclear force in extreme conditions O. Sorlin (GANIL, Caen, rance) PART 1: Testing the spin-orbit force with a bubble nucleus PART 2: Proton-neutron forces at the drip-line May

More information

Semi-Classical perturbation theory Coulomb only First-order most used

Semi-Classical perturbation theory Coulomb only First-order most used direct reactions Models for breakup Semi-Classical perturbation theory Coulomb only First-order most used TDSE (Time Dependent Schrodinger Equation) Coulomb + Nuclear Semi-classical orbit needed DWBA (Distorted

More information

The Nuclear Equation of State

The Nuclear Equation of State The Nuclear Equation of State Theoretical models for nuclear structure studies Xavier Roca-Maza Università degli Studi di Milano e INFN, sezione di Milano Terzo Incontro Nazionale di Fisica Nucleare LNF,

More information

The 2010 US National Nuclear Physics Summer School and the TRIUMF Summer Institute, NNPSS-TSI June 21 July 02, 2010, Vancouver, BC, Canada

The 2010 US National Nuclear Physics Summer School and the TRIUMF Summer Institute, NNPSS-TSI June 21 July 02, 2010, Vancouver, BC, Canada TU DARMSTADT The 2010 US National Nuclear Physics Summer School and the TRIUMF Summer Institute, NNPSS-TSI June 21 July 02, 2010, Vancouver, BC, Canada Achim Richter ECT* Trento/Italy and TU Darmstadt/Germany

More information

Phases in an Algebraic Shell Model of Atomic Nuclei

Phases in an Algebraic Shell Model of Atomic Nuclei NUCLEAR THEORY, Vol. 36 (2017) eds. M. Gaidarov, N. Minkov, Heron Press, Sofia Phases in an Algebraic Shell Model of Atomic Nuclei K.P. Drumev 1, A.I. Georgieva 2, J. Cseh 3 1 Institute for Nuclear Research

More information

Nuclear Matter Incompressibility and Giant Monopole Resonances

Nuclear Matter Incompressibility and Giant Monopole Resonances Nuclear Matter Incompressibility and Giant Monopole Resonances C.A. Bertulani Department of Physics and Astronomy Texas A&M University-Commerce Collaborator: Paolo Avogadro 27th Texas Symposium on Relativistic

More information

Features of nuclear many-body dynamics: from pairing to clustering

Features of nuclear many-body dynamics: from pairing to clustering Features of nuclear many-body dynamics: from pairing to clustering Alexander Volya Florida State University Collaborators: K. Kravvaris, Yu. Tchuvil sky Outline Configuration interaction approach SU(3)

More information

Magnetic Dipole and Quadrupole Transitions in Nuclei Open Problems

Magnetic Dipole and Quadrupole Transitions in Nuclei Open Problems TU DARMSTADT Magnetic Dipole and Quadrupole Transitions in Nuclei Open Problems Qualitative nature of the M1 response Orbital M1 scissors mode: low and high Spin M1 resonance in heavy deformed nuclei Quenching

More information

Nature of low-energy dipole states in exotic nuclei

Nature of low-energy dipole states in exotic nuclei Nature of low-energy dipole states in exotic nuclei Xavier Roca-Maza Università degli Studi di Milano, Via Celoria 16, I-133, Milano SPES One-day Workshop on "Collective Excitations of Exotic Nuclei" December

More information

High-resolution study of Gamow- Teller transitions in pf-shell nuclei. Tatsuya ADACHI

High-resolution study of Gamow- Teller transitions in pf-shell nuclei. Tatsuya ADACHI High-resolution study of Gamow- Teller transitions in pf-shell nuclei Tatsuya ADACHI Type II supernova Electron Capture (EC) & β decay Neutrino induced reaction A Z-1X N+1 daughter EC β A ZX N parent (A,Z)

More information

E1 STRENGTH FUNCTIONS FOR PHOTOABSORPTION AND EMISSION WITHIN CLOSED-FORM METHODS

E1 STRENGTH FUNCTIONS FOR PHOTOABSORPTION AND EMISSION WITHIN CLOSED-FORM METHODS E1 STRENGTH FUNCTIONS FOR PHOTOABSORPTION AND EMISSION WITHIN CLOSED-FORM METHODS 1. Introduction V.A. Plujko *), O.M.Gorbachenko *), R. Capote &), V.Bondar *) *) NPD, Taras Shevchenko National University,

More information

Laser spectroscopy studies of neutron-rich nuclei

Laser spectroscopy studies of neutron-rich nuclei Laser spectroscopy studies of neutron-rich nuclei Ronald Fernando Garcia Ruiz The University of Manchester Walk on the neutron-rich side ECT* Trento, April 2017 The COLLAPS Collaboration M. Bissell, K.

More information