A simple effective interaction for 9 He, and Gamow-SRG

Size: px
Start display at page:

Download "A simple effective interaction for 9 He, and Gamow-SRG"

Transcription

1 A simple effective interaction for 9 He, and Gamow-SRG Kévin Fossez February 28, 218 FRIB, MSU FRIB, MSU - Kévin Fossez Work supported by: DOE: DE-SC1336 (Michigan State University) DOE: DE-SC17887 (Michigan State University) DOE: DE-SC811 (NUCLEI SciDAC-3 collaboration) NSF: PHY

2 Physics of neutron-rich helium isotopes Few-body, effective scale separation, continuum couplings, exotic states... Two- and four-body halos ( 6,8 He). Broad resonances (1/2 in,7 He). Many th. results, high experimental interest. T. AL KALANEE et al. PHYSICAL REVIEW C 88, 3431 (213) Uncertain case of 9 He. Very little known on 1 He. FIG.. Summary of all experimental results for 9 He, up to MeV excitation energy. Solid lines represent states with well defined resonance. Dashed lines or hashed areas represent low-lying structures described by virtual s-wave states (see text for details). T. Al Kalanee et al., Phys. Rev. C 88, 3431 (213) FRIB, MSU - Kévin Fossez 2 the presence of a state in 9 He very close ( 2 kev) to calculated absolute cross section are observed as a function of

3 What are the options to describe 9 He? Practical vs. fundamental: Practical? shell model Explicit 3-body forces halo-eft ab initio Fundamental Well bound core of 4 He. Core approximation justified (SM, EFT). Dilute neutron matter above the core. Residual interaction genuinely residual Decent CSM/GSM descriptions of 1 He available (small spaces, truncations). Different phenomenological descriptions are in agreement, it must be a miracle or there is a good reason behind! Can we find a practical alternative, without explicit 3-body forces, and beyond the SM (with continuum) for He isotopes? FRIB, MSU - Kévin Fossez 3

4 What are the options to describe 9 He? Practical vs. fundamental: Practical? shell model Explicit 3-body forces halo-eft ab initio Fundamental Well bound core of 4 He. Core approximation justified (SM, EFT). Dilute neutron matter above the core. Residual interaction genuinely residual Decent CSM/GSM descriptions of 1 He available (small spaces, truncations). Different phenomenological descriptions are in agreement, it must be a miracle or there is a good reason behind! Can we find a practical alternative, without explicit 3-body forces, and beyond the SM (with continuum) for He isotopes? FRIB, MSU - Kévin Fossez 3

5 Effective interactions inspired from EFT (preliminary) A simple model: Phase-shift (deg) Core potential fitted on n- 4 He phase-shifts. Contact 2-body central term (3 Gaussian functions) for (L even, S = ) channels s 1/2 p 1/2 p 3/2 1 Energy (MeV) Only a prefactor V c in the interaction to fit! (New: just (L =, S = ) works too) Energy (MeV) Exp He J π = + 6 He J π = He 7 He J π = 3/2 J π = / He 8 He -.4 J π = + J π = V c (MeV) FRIB, MSU - Kévin Fossez 4

6 Effective interactions inspired from EFT (preliminary) UQ beyond a sensitivity analysis: (mean), σ (standard deviation). The uncertainty on the energy is given by: V (opt) c E = 1 2 E(V (opt) c + σ) E(V (opt) c σ). Questions: Why does the core need to be fitted on phase-shifts? Is there a proper EFT for all He isotopes behind this simple scheme? -3 + Can it be generalized to other isotopic chains? Parity inversion in 9 He, structure information on 8 1 A He. Powerful approach with full continuum couplings, tens of kev uncertainties. E (MeV) /2 4 He 1/2 (Γ =.9 MeV) /2 3/2 DMRG 1/2 (Γ = 2.1 MeV) FRIB, MSU - Kévin Fossez 2 + /2 + 1/2 1/2 + Exp +

7 Gamow-SRG Similarity renormalization group: Hamiltonian: Ĥ SRG evolution: dĥ(s) = [ˆη(s), Ĥ(s)] ds (flow equation) Ĥ(s) = Û(s)ĤÛ 1 (s) HO Flow generator: ˆη(s) = dû(s) Û 1 (s) ds Berggren Hermitian Non-Hermitian ˆη(s) anti-hermitian ˆη(s) Û(s) unitary Û(s) similarity FRIB, MSU - Kévin Fossez 6

8 Gamow-SRG The Berggren basis: Single particle basis including bound states, decaying resonances and scattering states. Im(k) bound states decaying resonances Re(k) discretized continuum in momentum space u l (k n) ũ l (k n) n (b,d) + u l (k i) ũ l (k i) w ki ˆ1 l,j. i Discretization: u l (k i) w ki u l (k i), u l (k n) ũ l (k n) ˆ1 l,j. n (b,d,i) FRIB, MSU - Kévin Fossez 7

9 Gamow-SRG Proof of principle: 1. Re (H) Im (H) > 1. Re(E) (MeV) Im(E) (MeV) White generator PRELIMINARY s Various generator tested. Consistent with observations on Hermitian matrices. It works best for a Berggren basis with selected scattering states s =. s =.94 s = 2.43 s = 6.3. Promising for IM-SRG in the Berggren basis < 1. FRIB, MSU - Kévin Fossez 8

10 Gamow-SRG Some technical observations: Non-Hermitian Hamiltonian: Ĥ = Ĥ h + Ĥ ah = 1 2 (Ĥ + Ĥ ) (Ĥ Ĥ ) Wegner flow generator for a non-hermitian Hamiltonian: ˆη W,cx = [Ĥ h,d + Ĥ ah,d, Ĥ h,od + Ĥ ah,od ] (unstable) ˆη G = [Ĥ h,d, Ĥod] = [Ĥ h,d, Ĥh,od + Ĥah,od] Wegner flow generator for the real part only: ˆη G,h = [Ĥ h,d, Ĥ h,od ] Not yet clear how to extract the anti-hermitian part (key for continuum). ˆη G,h = [Ĥ h,d, Ĥah,od] (not similarity) Re (H) s =. s =.94 s = 2.43 s = 6.3 Im (H) FRIB, MSU - Kévin Fossez 9 > 1.. < 1.

11 Thank you for your attention! Michigan State University: J. Rotureau. H. Hergert. S. Bogner. W. Nazarewicz. FRIB, MSU - Kévin Fossez

12 (NC)GSM vs DMRG s.p. poles s.p. scatt. {SD (N) } (pole space) {SD (N) 1 } (full space) H H 1 Ψ (pivot) Davidson (2D) Ψ 1 (No-Core) Gamow Shell Model (N. Michel) H s.p. pole (Complex-symmetric Hamiltonian matrices) {SD (), SD(1),..., SD(N) } H Ψ (pivot) Density Matrix Renormalization Group (J. Rotureau) P (s.p. poles/scatt.) {SD () 1, SD(1) 1,..., SD(N) 1 } H 1 Davidson Ψ 1 ρ 1 (j, j ) = Ψ j,h Ψ j,h h {Φ () 1, Φ(1) 1,..., Φ(N) 1 } select ε > 1 8 {φ () 1, φ(1) 1,..., φ(n) 1 } FRIB, MSU - Kévin Fossez {SD () 2, SD(1) 2,..., SD(N) 2 } H 2 Davidson Ψ 2 etc.

Continuum States in Drip-line Oxygen isotopes

Continuum States in Drip-line Oxygen isotopes Continuum States in Drip-line Oxygen isotopes EFES-NSCL WORKSHOP, Feb. 4-6, 2010 @ MSU Department of Physics The University of Tokyo Koshiroh Tsukiyama *Collaborators : Takaharu Otsuka (Tokyo), Rintaro

More information

Continuum Shell Model

Continuum Shell Model Continuum Shell Model Alexander Volya Florida State University This work was done with Vladimir Zelevinsky Supported by DOE and NSF. Outline Continuum Shell Model Basic Theory Reaction Formalism One-body

More information

Effective Field Theory for light nuclear systems

Effective Field Theory for light nuclear systems Effective Field Theory for light nuclear systems Jimmy Rotureau Chalmers University of Technology, Göteborg, Sweden B. Barrett, University of Arizona, Tucson I. Stetcu, University of Washington, Seattle

More information

Cluster-orbital shell model approach for unstable nuclei and the developments

Cluster-orbital shell model approach for unstable nuclei and the developments CANHP2015 (week 6), 25-30 Oct. 2015, Kyoto, Japan Cluster-orbital shell model approach for unstable nuclei and the developments Hiroshi MASUI Kitami Institute of Technology Outline of my talk 1. Cluster-orbital

More information

Ab Initio Theory for All Medium-Mass Nuclei

Ab Initio Theory for All Medium-Mass Nuclei Canada s national laboratory for particle and nuclear physics and accelerator-based science Ab Initio Theory for All Medium-Mass Nuclei Jason D. Holt INPC September 12, 2016 Collaborators S. R. Stroberg

More information

Part III: The Nuclear Many-Body Problem

Part III: The Nuclear Many-Body Problem Part III: The Nuclear Many-Body Problem To understand the properties of complex nuclei from first principles Microscopic Valence- Space Interactions Model spaces Many-body perturbation theory (MBPT) Calculating

More information

arxiv:nucl-th/ v1 18 Jan 2006

arxiv:nucl-th/ v1 18 Jan 2006 Continuum Coupling and Spectroscopic Properties of Nuclei arxiv:nucl-th/655v 8 Jan 26 N. Michel,,2,3 W. Nazarewicz,,2,4 M. P loszajczak, 5 and J. Rotureau,2,3 Department of Physics and Astronomy, University

More information

arxiv: v1 [nucl-th] 9 Mar 2010

arxiv: v1 [nucl-th] 9 Mar 2010 Ab-initio computation of the 17 F proton-halo state and resonances in A = 17 nuclei G. Hagen, 1 T. Papenbrock,,1 and M. Hjorth-Jensen 1 Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 781,

More information

Ab Initio Nuclear Structure Theory

Ab Initio Nuclear Structure Theory Ab Initio Nuclear Structure Theory Lecture 3: Light Nuclei Robert Roth Overview Lecture 1: Hamiltonian Prelude Many-ody Quantum Mechanics Nuclear Hamiltonian Matrix Elements Lecture 2: orrelations Two-ody

More information

Ab Initio Electromagnetic Transitions with the IMSRG

Ab Initio Electromagnetic Transitions with the IMSRG Ab Initio Electromagnetic Transitions with the IMSRG Nathan Parzuchowski Michigan State University March, 017 1 / 1 Outline IMSRG IMSRG rotates the Hamiltonian into a coordinate system where simple methods

More information

Renormalization group methods in nuclear few- and many-body problems

Renormalization group methods in nuclear few- and many-body problems Renormalization group methods in nuclear few- and many-body problems Lecture 1 S.K. Bogner (NSCL/MSU) 2011 National Nuclear Physics Summer School University of North Carolina at Chapel Hill Useful readings

More information

The Nuclear Many-Body problem. Lecture 3

The Nuclear Many-Body problem. Lecture 3 The Nuclear Many-Body problem Lecture 3 Emergent phenomena at the drip lines. How do properties of nuclei change as we move towards the nuclear driplines? Many-body open quantum systems. Unification of

More information

Coupled-cluster theory for medium-mass nuclei

Coupled-cluster theory for medium-mass nuclei Coupled-cluster theory for medium-mass nuclei Thomas Papenbrock and G. Hagen (ORNL) D. J. Dean (ORNL) M. Hjorth-Jensen (Oslo) A. Nogga (Juelich) A. Schwenk (TRIUMF) P. Piecuch (MSU) M. Wloch (MSU) Seattle,

More information

Advances in Ab Initio Nuclear Structure Theory. Robert Roth

Advances in Ab Initio Nuclear Structure Theory. Robert Roth Advances in Ab Initio Nuclear Structure Theory Robert Roth Ab Initio Nuclear Structure Theory solve nuclear many-body problem based on realistic interactions using controlled and improvable truncations

More information

Renormalization group methods in nuclear few- and many-body problems

Renormalization group methods in nuclear few- and many-body problems Renormalization group methods in nuclear few- and many-body problems Lecture 1 S.K. Bogner (NSCL/MSU) 2011 National Nuclear Physics Summer School University of North Carolina at Chapel Hill Useful readings

More information

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach A. PETROVICI Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania Outline complex

More information

The No-Core Shell Model

The No-Core Shell Model The No-Core Shell Model New Perspectives on P-shell Nuclei - The Shell Model and Beyond Erich Ormand Petr Navratil Christian Forssen Vesselin Gueorguiev Lawrence Livermore National Laboratory Collaborators:

More information

Multi-Reference In-medium Similarity Renormalization Group for the Nuclear Matrix Elements of Neutrinoless Double Beta Decay

Multi-Reference In-medium Similarity Renormalization Group for the Nuclear Matrix Elements of Neutrinoless Double Beta Decay Multi-Reference In-medium Similarity Renormalization Group for the Nuclear Matrix Elements of Neutrinoless Double Beta Decay Jiangming Yao Department of Physics and Astronomy, University of North Carolina

More information

Nuclear structure input for rp-process rate calculations in the sd shell

Nuclear structure input for rp-process rate calculations in the sd shell Nuclear structure input for rp-process rate calculations in the sd shell W A RICHTER ITHEMBA LABS UNIVERSITY OF THE WESTERN CAPE B A BROWN NSCL, MICHIGAN STATE UNIVERSITY This work is supported by the

More information

In-medium Similarity Renormalization Group for nuclear many-body systems

In-medium Similarity Renormalization Group for nuclear many-body systems In-medium Similarity Renormalization Group for nuclear many-body systems Koshiroh Tsukiyama (CNS/ U. Tokyo) Dec. 3-5 2011 HPCI project Large-scale quantum many-body calculations for nuclear property and

More information

Structure at and Beyond the Neutron Dripline

Structure at and Beyond the Neutron Dripline Structure at and Beyond the Neutron Dripline Collaboration LPC-CHARISSA CHARISSA-DEMON H Al Falou,, FM Marqués, JL Lecouey, NA Orr, Structure at and Beyond the Neutron Dripline * Motivation Experimental

More information

Shell model description of dipole strength at low energy

Shell model description of dipole strength at low energy Shell model description of dipole strength at low energy Kamila Sieja Institut Pluridisciplinaire Hubert Curien, Strasbourg 8-12.5.217 Kamila Sieja (IPHC) 8-12.5.217 1 / 18 Overview & Motivation Low energy

More information

Shell evolution and pairing in calcium isotopes with two- and three-body forces

Shell evolution and pairing in calcium isotopes with two- and three-body forces Shell evolution and pairing in calcium isotopes with two- and three-body forces Javier Menéndez Institut für Kernphysik, TU Darmstadt ExtreMe Matter Institute (EMMI) with Jason D. Holt, Achim Schwenk and

More information

Hybrid Ab Initio Methods. Robert Roth

Hybrid Ab Initio Methods. Robert Roth Hybrid Ab Initio Methods Robert Roth Ab Initio Methods No-Core Shell Model In-Medium Similarity Renormalization Group solution of matrix eigenvalue problem in truncated many-body model space flexibility:

More information

Time dependent coupled-cluster method

Time dependent coupled-cluster method Time dependent coupled-cluster method Thomas Papenbrock and G. Hagen & H. A. Nam (ORNL), David Pigg (Vanderbilt) 7 th ANL/INT/JINA/MSU annual FRIB workshop August 8-12, 2011 Interfaces Between Nuclear

More information

Introduction to NUSHELLX and transitions

Introduction to NUSHELLX and transitions Introduction to NUSHELLX and transitions Angelo Signoracci CEA/Saclay Lecture 4, 14 May 213 Outline 1 Introduction 2 β decay 3 Electromagnetic transitions 4 Spectroscopic factors 5 Two-nucleon transfer/

More information

ab-initio alpha-alpha scattering

ab-initio alpha-alpha scattering ab-initio alpha-alpha scattering Elhatisari et al., Nature 528, 111 (215) http://www.nature.com/nature/journal/v528/n758/full/nature1667.html http://www.nature.com/nature/journal/v528/n758/abs/52842a.html

More information

New simple form for phenomenological nuclear potential. Abstract

New simple form for phenomenological nuclear potential. Abstract New simple form for phenomenological nuclear potential P. Salamon, T. Vertse Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen, P. O. Box 51, University of Debrecen, Faculty

More information

Computational approaches to many-body dynamics of unstable nuclear systems

Computational approaches to many-body dynamics of unstable nuclear systems Computational approaches to many-body dynamics of unstable nuclear systems Alexander Volya Florida State University Physics and mathema.cs of instability and decay Zeno paradox of arrow (490 430 BC)! The

More information

New Frontiers in Nuclear Structure Theory

New Frontiers in Nuclear Structure Theory New Frontiers in Nuclear Structure Theory From Realistic Interactions to the Nuclear Chart Robert Roth Institut für Kernphysik Technical University Darmstadt Overview Motivation Nucleon-Nucleon Interactions

More information

Can the shell model be truly ab initio? and other questions

Can the shell model be truly ab initio? and other questions Canada s national laboratory for particle and nuclear physics and accelerator-based science Can the shell model be truly ab initio? and other questions Ragnar Stroberg TRIUMF The tower of effective field

More information

Structure of near-threshold s-wave resonances

Structure of near-threshold s-wave resonances Structure of near-threshold s-wave resonances Tetsuo Hyodo Yukawa Institute for Theoretical Physics, Kyoto 203, Sep. 0th Introduction Structure of hadron excited states Various excitations of baryons M

More information

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar Evolution Of Shell Structure, Shapes & Collective Modes Dario Vretenar vretenar@phy.hr 1. Evolution of shell structure with N and Z A. Modification of the effective single-nucleon potential Relativistic

More information

The shell model as an ab initio tool: effective interactions and operators from IM-SRG

The shell model as an ab initio tool: effective interactions and operators from IM-SRG Canada s national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucleaire et en physique des particules U = eη The shell model as an ab initio

More information

Three-cluster dynamics within an ab initio framework

Three-cluster dynamics within an ab initio framework Three-cluster dynamics within an ab initio framework Universality in Few-Body Systems: Theoretical Challenges and New Directions INT 14-1, March 26, 2014 S. Quaglioni Collaborators: C. Romero-Redondo (TRIUMF)

More information

Ab initio effective interactions and operators from IM-SRG

Ab initio effective interactions and operators from IM-SRG Canada s national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucleaire et en physique des particules U = eη b initio effective interactions

More information

Evolution of shell structure in neutron-rich calcium isotopes

Evolution of shell structure in neutron-rich calcium isotopes Evolution of shell structure in neutron-rich calcium isotopes G. Hagen,, M. Hjorth-Jensen,, G. R. Jansen, R. Machleidt, 5 and T. Papenbrock, Physics Division, Oak Ridge National Laboratory, Oak Ridge,

More information

A microscopic approach to nuclear dynamics. Cédric Simenel CEA/Saclay, France

A microscopic approach to nuclear dynamics. Cédric Simenel CEA/Saclay, France A microscopic approach to nuclear dynamics Cédric Simenel CEA/Saclay, France Introduction Quantum dynamics of complex systems (nuclei, molecules, BEC, atomic clusters...) Collectivity: from vibrations

More information

Coupled-cluster theory for nuclei

Coupled-cluster theory for nuclei Coupled-cluster theory for nuclei Thomas Papenbrock and G. Hagen D. J. Dean M. Hjorth-Jensen B. Velamur Asokan INT workshop Weakly-bound systems in atomic and nuclear physics Seattle, March 8-12, 2010

More information

RG & EFT for nuclear forces

RG & EFT for nuclear forces RG & EFT for nuclear forces Andreas Nogga, Forschungszentrum Jülich ECT* school, Feb/March 2006 Low momentum interactions: Using the RG to simplify the nuclear force for many-body calculations. Application

More information

Modeling the Atomic Nucleus. Theoretical bag of tricks

Modeling the Atomic Nucleus. Theoretical bag of tricks Modeling the Atomic Nucleus Theoretical bag of tricks The nuclear many-body problem The Nuclear Many-Body Problem H ˆ = T ˆ + V ˆ ˆ T = A 2 p ˆ " i, V ˆ = 2m i i=1 one-body H ˆ " = E" " V ˆ 2b (i, j) +

More information

The Nuclear Many-Body Problem. Lecture 2

The Nuclear Many-Body Problem. Lecture 2 The Nuclear Many-Body Problem Lecture 2 How do we describe nuclei? Shell structure in nuclei and the phenomenological shell model approach to nuclear structure. Ab-initio approach to nuclear structure.

More information

Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them

Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them Introduction Yoram Alhassid (Yale University) Finite-temperature auxiliary-field Monte Carlo methods in Fock

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1 2358-19 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 1 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

Nuclear structure theory

Nuclear structure theory Nuclear structure theory Thomas Papenbrock and Lecture 2: Traditional shell model National Nuclear Physics Summer School 2008 George Washington University Shell structure in nuclei Mass differences: Liquid

More information

Current status and challenges of ab-initio computations of nuclei

Current status and challenges of ab-initio computations of nuclei Current status and challenges of ab-initio computations of nuclei Gaute Hagen Oak Ridge National Laboratory INT workshop on Nuclear Physics from Lattice QCD INT, May 5th, 2016 Computing real nuclei from

More information

Theory of neutron-rich nuclei and nuclear radii Witold Nazarewicz (with Paul-Gerhard Reinhard) PREX Workshop, JLab, August 17-19, 2008

Theory of neutron-rich nuclei and nuclear radii Witold Nazarewicz (with Paul-Gerhard Reinhard) PREX Workshop, JLab, August 17-19, 2008 Theory of neutron-rich nuclei and nuclear radii Witold Nazarewicz (with Paul-Gerhard Reinhard) PREX Workshop, JLab, August 17-19, 2008 Introduction to neutron-rich nuclei Radii, skins, and halos From finite

More information

Microscopically Based Energy Functionals. S.K. Bogner (NSCL/MSU)

Microscopically Based Energy Functionals. S.K. Bogner (NSCL/MSU) Microscopically Based Energy Functionals S.K. Bogner (NSCL/MSU) Dream Scenario: From QCD to Nuclei 2 SciDAC 2 Project Building a Universal Nuclear Energy Density Functional See http://undef.org for details

More information

Doorway States and the Super- Radiant Mechanism. N.Auerbach, TAU and MSU

Doorway States and the Super- Radiant Mechanism. N.Auerbach, TAU and MSU Doorway States and the Super- Radiant Mechanism N.uerbach, TU and MSU Coherence in Spontaneous Radiation Process R.H.Dicke, Phys.Rev. 93, 99 (1954) In the usual treatment of spontaneous radiation by a

More information

Status report and plans from OSU and MSU

Status report and plans from OSU and MSU Status report and plans from OSU and MSU Validated(Nuclear( Interac/ons( +(MSU,(ORNL,UT,ANL,ORNL( fusion( Stellar(burning( Structure(and(Reac/ons:( Light(and(Medium(Nuclei( Ab-ini/o' RGM' CI' Chiral'EFT'

More information

Coupled-Cluster Theory. Nuclear Structure

Coupled-Cluster Theory. Nuclear Structure Coupled-Cluster Theory! for Nuclear Structure!!!! Sven Binder INSTITUT FÜR KERNPHYSIK! 1 Nuclear Interactions from Chiral EFT NN 3N 4N NLO LO N 2 LO +... N 3 LO +... +... +... 2 Nuclear Interactions from

More information

Applications of Renormalization Group Methods in Nuclear Physics 2

Applications of Renormalization Group Methods in Nuclear Physics 2 Applications of Renormalization Group Methods in Nuclear Physics 2 Dick Furnstahl Department of Physics Ohio State University HUGS 2014 Outline: Lecture 2 Lecture 2: SRG in practice Recap from lecture

More information

Probing shell evolution with large scale shell model calculations

Probing shell evolution with large scale shell model calculations Probing shell evolution with large scale shell model calculations Yutaka Utsuno Advanced Science Research Center, Japan Atomic Energy Agency Center for Nuclear Study, University of Tokyo Nuclear structure

More information

Ab Initio Nuclear Structure Theory with Chiral NN+3N Interactions. Robert Roth

Ab Initio Nuclear Structure Theory with Chiral NN+3N Interactions. Robert Roth Ab Initio Nuclear Structure Theory with Chiral NN+3N Interactions Robert Roth From QCD to Nuclear Structure Nuclear Structure Low-Energy QCD From QCD to Nuclear Structure Nuclear Structure NN+3N Interaction

More information

Towards first-principle description of electromagnetic reactions in medium-mass nuclei

Towards first-principle description of electromagnetic reactions in medium-mass nuclei Canada s National Laboratory for Particle and Nuclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules Towards first-principle description of

More information

Coupled-cluster computations of neutron-rich nuclei

Coupled-cluster computations of neutron-rich nuclei Coupled-cluster computations of neutron-rich nuclei Gaute Hagen Oak Ridge National Laboratory ECT*, Trento, April 10th, 2017 @ ORNL / UTK: G. R. Jansen, T. Morris, T. Papenbrock, M. Schuster, Z. H. Sun

More information

NON-LOCAL OPTICAL POTENTIALS

NON-LOCAL OPTICAL POTENTIALS NON-LOCAL OPTICAL POTENTIALS Why we should care Filomena Nunes Michigan State University INT, 16 Mar 2017 Supported by: NNSA, NSF, DOE Reaction theory for heavy exotic nuclei 6 Li(d,p) 7 Li 132 Sn(d,p)

More information

From EFTs to Nuclei. Thomas Papenbrock. and. CANHP 2015 Research partly funded by the US Department of Energy

From EFTs to Nuclei. Thomas Papenbrock. and. CANHP 2015 Research partly funded by the US Department of Energy From EFTs to Nuclei Thomas Papenbrock and CANHP 2015 Research partly funded by the US Department of Energy Collaborators @ ORNL / UTK: T. Coello, A. Ekström, G. Hagen, G. R. Jansen, K. Wendt @ ORNL/MSU:

More information

Physics of Finite and Infinite Nuclear Systems Phys. 477 (542)

Physics of Finite and Infinite Nuclear Systems Phys. 477 (542) Physics of Finite and Infinite Nuclear Systems Phys. 477 (542) Class: Tu & Th from 11:30 am to 1:00 pm (Compton 241 mostly) Extra hour: Mo 4 pm make-up hour for planned trips to Tokyo, San Francisco, and

More information

Statistical Approach to Nuclear Level Density

Statistical Approach to Nuclear Level Density Statistical Approach to Nuclear Level Density R. A. Sen kov,v.g.zelevinsky and M. Horoi Department of Physics, Central Michigan University, Mount Pleasant, MI 889, USA Department of Physics and Astronomy

More information

Nuclear forces and their impact on neutron-rich nuclei and neutron-rich matter

Nuclear forces and their impact on neutron-rich nuclei and neutron-rich matter arxiv:158.6893v1 [nucl-th] 27 Aug 215 xxxxxx 215. :1 28 Copyright c 215 by Annual Reviews. All rights reserved Nuclear forces and their impact on neutron-rich nuclei and neutron-rich matter K. Hebeler,

More information

Shell evolution in neutron rich nuclei

Shell evolution in neutron rich nuclei Shell evolution in neutron rich nuclei Gustav R. Jansen 1,2 gustav.jansen@utk.edu 1 University of Tennessee, Knoxville 2 Oak Ridge National Laboratory March 18. 2013 Collaborators and acknowledgements

More information

The No Core Shell Model: Its Formulation, Application and Extensions. Bruce R. Barrett University of Arizona,

The No Core Shell Model: Its Formulation, Application and Extensions. Bruce R. Barrett University of Arizona, The No Core Shell Model: Its Formulation, Application and Extensions Bruce R. Barrett University of Arizona, Tucson, INT Spring Program 2011 March 23, 2011 MICROSCOPIC NUCLEAR-STRUCTURE THEORY 1. Start

More information

Quantum Monte Carlo calculations of medium mass nuclei

Quantum Monte Carlo calculations of medium mass nuclei Quantum Monte Carlo calculations of medium mass nuclei Diego Lonardoni FRIB Theory Fellow In collaboration with: J. Carlson, LANL S. Gandolfi, LANL X. Wang, Huzhou University, China A. Lovato, ANL & UniTN

More information

Spectroscopy of light exotic nuclei using resonance scattering in inverse kinematics.

Spectroscopy of light exotic nuclei using resonance scattering in inverse kinematics. Spectroscopy of light exotic nuclei using resonance scattering in inverse kinematics. Grigory Rogachev RESOLUT: a new radioactive beam facility at FSU Solenoid 2 Magnetic Spectrograph Magnetic Spectrograph

More information

Atomic Nuclei: Many-Body Open Quantum Systems

Atomic Nuclei: Many-Body Open Quantum Systems Atomic Nuclei: Many-Body Open Quantum Systems Witold Nazarewicz (UTK/ORNL) INT Program INT-13-1a: Computational and Theoretical Advances for Exotic Isotopes in the Medium Mass Region Seattle, April 5 OUTLINE

More information

Doorway States and the Super- Radiant Mechanism. N.Auerbach, TAU and MSU

Doorway States and the Super- Radiant Mechanism. N.Auerbach, TAU and MSU Doorway States and the Super- Radiant Mechanism N.uerbach, TU and MSU Superradiance,, collectivization by Dicke coherent state N identical two-level atoms coupled via common radiation decay nalog in nuclei

More information

NUCLEAR STRUCTURE AB INITIO

NUCLEAR STRUCTURE AB INITIO December, 6:8 WSPC/Trim Size: 9in x 6in for Proceedings master NUCLEAR STRUCTURE AB INITIO H. FELDMEIER AND T. NEFF Gesellschaft für Schwerionenforschung mbh Planckstr., D-69 Darmstadt, Germany E-mail:

More information

Beyond mean-field study on collective vibrations and beta-decay

Beyond mean-field study on collective vibrations and beta-decay Advanced many-body and statistical methods in mesoscopic systems III September 4 th 8 th, 2017, Busteni, Romania Beyond mean-field study on collective vibrations and beta-decay Yifei Niu Collaborators:

More information

Physics of neutron-rich nuclei

Physics of neutron-rich nuclei Physics of neutron-rich nuclei Nuclear Physics: developed for stable nuclei (until the mid 1980 s) saturation, radii, binding energy, magic numbers and independent particle. Physics of neutron-rich nuclei

More information

Projected shell model for nuclear structure and weak interaction rates

Projected shell model for nuclear structure and weak interaction rates for nuclear structure and weak interaction rates Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China E-mail: sunyang@sjtu.edu.cn The knowledge on stellar weak interaction processes

More information

Towards a universal nuclear structure model. Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 2017

Towards a universal nuclear structure model. Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 2017 Towards a universal nuclear structure model Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 217 1 Table of contents: Brief presentation of the group Motivation Model and selected

More information

The Nuclear Many Body Problem Lecture 3

The Nuclear Many Body Problem Lecture 3 The Nuclear Many Body Problem Lecture 3 Shell structure in nuclei and the phenomenological shell model approach to nuclear structure Ab initio approach to nuclear structure. Green's function Monte Carlo

More information

New Horizons in Ab Initio Nuclear Structure Theory. Robert Roth

New Horizons in Ab Initio Nuclear Structure Theory. Robert Roth New Horizons in Ab Initio Nuclear Structure Theory Robert Roth New Era of Low-Energy Nuclear Physics Experiment new facilities and experiments to produce nuclei far-off stability and study a range of observables

More information

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540 Central density Consider nuclear charge density Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) Central density (A/Z* charge density) about the same for nuclei heavier than 16 O, corresponding

More information

Ab Initio Theory Outside the Box. Robert Roth

Ab Initio Theory Outside the Box. Robert Roth Ab Initio Theory Outside the Box Robert Roth Inside the Box this workshop has provided an impressive snapshot of the progress and perspectives in ab initio nuclear theory and its links to experiment definition:

More information

New Horizons in Ab Initio Nuclear Structure Theory. Robert Roth

New Horizons in Ab Initio Nuclear Structure Theory. Robert Roth New Horizons in Ab Initio Nuclear Structure Theory Robert Roth New Era of Nuclear Structure Theory QCD at low energies improved understanding through effective field theories & lattice simulations quantum

More information

Radii and neutron correlations of (6,8)He within the Gamow Shell Model

Radii and neutron correlations of (6,8)He within the Gamow Shell Model University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2011 Radii and neutron correlations of (6,8)He within the Gamow Shell Model

More information

He-Burning in massive Stars

He-Burning in massive Stars He-Burning in massive Stars He-burning is ignited on the He and ashes of the preceding hydrogen burning phase! Most important reaction -triple alpha process 3 + 7.6 MeV Red Giant Evolution in HR diagram

More information

Nuclear structure Anatoli Afanasjev Mississippi State University

Nuclear structure Anatoli Afanasjev Mississippi State University Nuclear structure Anatoli Afanasjev Mississippi State University 1. Nuclear theory selection of starting point 2. What can be done exactly (ab-initio calculations) and why we cannot do that systematically?

More information

Stability Peninsulas at the Neutron Drip Line

Stability Peninsulas at the Neutron Drip Line Stability Peninsulas at the Neutron Drip Line Dmitry Gridnev 1, in collaboration with v. n. tarasov 3, s. schramm, k. A. gridnev, x. viñas 4 and walter greiner 1 Saint Petersburg State University, St.

More information

Ab initio rotational bands in medium and heavy nuclei

Ab initio rotational bands in medium and heavy nuclei Ab initio rotational bands in medium and heavy nuclei Calvin W. Johnson This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under

More information

Frontiers in Ab Initio Nuclear Structure Theory. Robert Roth

Frontiers in Ab Initio Nuclear Structure Theory. Robert Roth Frontiers in Ab Initio Nuclear Structure Theory Robert Roth New Era of Nuclear Structure Theory QCD at low energies improved understanding through effective field theories & lattice simulations New Era

More information

Unitary-model-operator approach to nuclear many-body problems

Unitary-model-operator approach to nuclear many-body problems Unitary-model-operator approach to nuclear many-body problems in collaboration with Structure calc. for many-nucleon systems Kenji Suzuki (Kyushu Inst. of Tech.) Ryoji kamoto (Kyushu Inst. of Tech.) V

More information

Open quantum systems

Open quantum systems Open quantum systems Wikipedia: An open quantum system is a quantum system which is found to be in interaction with an external quantum system, the environment. The open quantum system can be viewed as

More information

Asymmetry dependence of Gogny-based optical potential

Asymmetry dependence of Gogny-based optical potential Asymmetry dependence of Gogny-based optical potential G. Blanchon, R. Bernard, M. Dupuis, H. F. Arellano CEA,DAM,DIF F-9297 Arpajon, France March 3-6 27, INT, Seattle, USA / 32 Microscopic ingredients

More information

Progress in ab-initio calculations. The nuclear A-body problem

Progress in ab-initio calculations. The nuclear A-body problem 60 50 Progress in ab-initio calculations The nuclear A-body problem A 40 30 20 10 G. Hagen et al., Nature Physics 12, 186 (2016) 0 1980 1990 2000 2010 2020 Year In the early decades, the progress was approximately

More information

Features of nuclear many-body dynamics: from pairing to clustering

Features of nuclear many-body dynamics: from pairing to clustering Features of nuclear many-body dynamics: from pairing to clustering Alexander Volya Florida State University Collaborators: K. Kravvaris, Yu. Tchuvil sky Outline Configuration interaction approach SU(3)

More information

Configuration interaction approach to nuclear clustering

Configuration interaction approach to nuclear clustering Configuration interaction approach to nuclear clustering Alexander Volya Florida State University Configuration interaction approach A powerful tool in studies of nuclear many-body problems De-facto most

More information

Ab initio description of the unbound 7 He

Ab initio description of the unbound 7 He Canada s national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules Ab initio description of the unbound 7

More information

SciDAC project NUCLE lead PI: Joe Carlson (LA PetaApps award lead PI: Jerry Draayer (L. lead PI: James P Vary (I NERSC

SciDAC project NUCLE lead PI: Joe Carlson (LA   PetaApps award lead PI: Jerry Draayer (L. lead PI: James P Vary (I NERSC Emer in light nucl NCSM and neutrinoless double beta decay James P. Vary, Iowa State University INT/Topical Collaboration Workshop Seattle, Washington, June 20-21, 2017 Neutrinos and Fundamental Symmetries

More information

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Mean-field concept (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Static Hartree-Fock (HF) theory Fundamental puzzle: The

More information

Radioactivity at the limits of nuclear existence

Radioactivity at the limits of nuclear existence Radioactivity at the limits of nuclear existence Zenon Janas Institute of Experimental Physics University of Warsaw Chart of nuclei - stable - β + - β - - α - fission - p p and 2p radioactivty proton radioactivity

More information

Eikonal method for halo nuclei

Eikonal method for halo nuclei Eikonal method for halo nuclei E. C. Pinilla, P. Descouvemont and D. Baye Université Libre de Bruxelles, Brussels, Belgium 1. Motivation 2. Introduction 3. Four-body eikonal method Elastic scattering 9

More information

Nuclear Structure Theory II

Nuclear Structure Theory II uclear Structure Theory II The uclear Many-body Problem Alexander Volya Florida State University Physics of light nuclei 1 H 4 Li 3 He 2 H 8 7 6 Be 5 Li 4 He 3 B H 10 9 8 7 Be 6 Li 5 He 4 B H 12 11 10

More information

Nuclear Forces / DFT for Nuclei III

Nuclear Forces / DFT for Nuclei III Nuclear Forces / DFT for Nuclei III Department of Physics Ohio State University August, 2008 I. Overview of EFT/RG. II. Chiral effective field theory. III. RG for nuclear forces. EFT for many-body systems.

More information

B. PHENOMENOLOGICAL NUCLEAR MODELS

B. PHENOMENOLOGICAL NUCLEAR MODELS B. PHENOMENOLOGICAL NUCLEAR MODELS B.0. Basic concepts of nuclear physics B.0. Binding energy B.03. Liquid drop model B.04. Spherical operators B.05. Bohr-Mottelson model B.06. Intrinsic system of coordinates

More information

Probing Nuclear Structure of Medium and Heavy Unstable Nuclei and Processes with Helium Isotopes

Probing Nuclear Structure of Medium and Heavy Unstable Nuclei and Processes with Helium Isotopes Probing Nuclear Structure of Medium and Heavy Unstable Nuclei and Processes with Helium Isotopes M.K. Gaidarov Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784,

More information

Nucleon Pair Approximation to the nuclear Shell Model

Nucleon Pair Approximation to the nuclear Shell Model Nucleon Pair Approximation to the nuclear Shell Model Yiyuan Cheng Department of Physics and Astronomy, Shanghai Jiao Tong University, China RCNP, Osaka university, Japan Collaborators: Yu-Min Zhao, Akito

More information

(Todays) Progress in coupled cluster compuations of atomic nuclei

(Todays) Progress in coupled cluster compuations of atomic nuclei (Todays) Progress in coupled cluster compuations of atomic nuclei Gaute Hagen Oak Ridge National Laboratory Progress in Ab Initio Techniques in Nuclear Physics TRIUMF, February 26 th, 2019 Collaborators

More information