Continuum Shell Model

Size: px
Start display at page:

Download "Continuum Shell Model"

Transcription

1 Continuum Shell Model Alexander Volya Florida State University This work was done with Vladimir Zelevinsky Supported by DOE and NSF.

2 Outline Continuum Shell Model Basic Theory Reaction Formalism One-body and Two-Body decays Applications of CSM Two-body decay of 11 Li Study of isotope chains Other applications

3 Basic Theory [1] C. Mahaux and H. Weidenmüller, Shell-model approach to nuclear reactions, North-Holland Publishing, Amsterdam 1969

4

5 Non-Hermitian eigenvalue problem Breaking of T-invariance Right eigenvalue Left Eigenvalue Same Energy Momentum k ~ Momentum k=-k T-conjugated states are not degenerate (left and right) Q-space outgoing waves Normalization and expectation values

6 Complex energy: meaningful or meaningless? Eigenvalue problem has only complex (E>threshold) roots but E is real? Definitions of resonance Gamow: poles of scattering matrix Eigenvalue proglem with regular inside outgoing outside boundary condition discrete resonant states + complex energies Breit-Wigner: Find roots on real axis Cross section peaks and lifetimes

7 Interpretation of complex energies For isolated narrow resonances all definitions agree Real Situation Many-body complexity High density of states Large decay widths Result: Overlapping, interference, width redistribution Resonance and width are definition dependent Non-exponential decay Solution: Cross section is a true observable (S-matrix )

8 Continuum Shell Model Hamiltonian PHP Internal, one-body + two-body Original shell model, adjusted, tested (USD and others) Exact shell model for bound states E<threshold QHQ - External, one-body (presently) kinetic energy + long range interaction, (plane waves or Bessel functions, Coulomb functions) QHP Cross space, one-body + two-body Responsible for coupling of spaces

9 One-body decay Continuum channel State α in N-1 nucleon daughter Particle in continuum state j Energy E=E α +ε j Transition Amplitude

10 Single-particle scattering problem The same non-hermitian eigenvalue problem Internal states: External states: Single-particle decay amplitude Single particle decay width: (requires definition and solution for resonance energy)

11 Study of square well Poles of scattering matrix Evolution of poles Low-energy limit: (l>0)

12 Scattering calculation using Woods-Saxon with size parameters adjusted for 16 O One-body decay realistic one-body potential

13 Properties on W General properties Energy dependent Not reducible to one or two body operator Due to symmetry one-body is diagonal (general matrix W is factorizable) If decay dominated by one final state If decay is weak do perturbation theory for W (diagonalize real part only)

14 Two-body decay: sequential Mediated by s.p. part of QHP Virtual N-1 state from previous solution Width at low energy

15 Two-body decay: Direct Mediated by 2-body part of QHP V(r,r ) effective pair potential Width at low energy

16 11 Li model Dynamics of two states coupled to a common decay channel Model H Mechanism of binding by Hermitian interaction

17 11 Li model; energy-dependent widths Coupling to continuum is parameterized Squeezing of phase-space volume in s and p waves, Threshold E c =0 Model parameters: ε 1 =100, ε 2 =200, A 1 =7.1 A 2 =3.1 (red); α=1, β=0.05 (blue) (in units based on kev) Upper panel: Energies with A 1 =A 2 =0 (black)

18 Scattering and cross section near threshold Scattering Matrix Solution in two-level model Cross section

19 Realistic Shell Model Example Interaction PHP Shell model Hamiltonian, USD interaction Assume that USD includes Hermitian QHQ and QHP one-body Woods-Saxon potential QHP two-body phenomenological parameterization Solution From 4 He up to 10 He From 16 O up to 28 O Given guess energy E for state α, W(E) is constructed by considering all open channels. Non-Hermitian Hamiltonian is solved for iteratively for new E (Breit-Wigner resonance condition)

20 CSM calculations for He Interaction in PP space CKIHE PRC37, 2220 (1988).

21 Oxygen Isotopes Continuum Shell Model Calculation sd space, USD interaction single-nucleon reactions

22 Comparison with experiment A J p Experiment CSM calculation E(MeV) G (kev) E(MeV) G (kev) 17 O 3/ O O 3/ Features No free parameters Bound states identical to SM Decaying states shift and acquire width

23 Features of Continuum Shell Model Extension of traditional shell model Non-Hermitian and energy-dependent effective Hamiltonian: Self-consistency Decay chains Open channels Many-body structure Reaction theory New phenomena Superradiance and narrow resonances

24 References A. Volya and V. Zelevinsky, Phys. Rev. C 67 (2003) N. Auerbach, V. Zelevinsky, and A. Volya, Phys. Lett. B 590 (2004) 45 V. Zelevinsky and A. Volya, nucl-th/ A. Volya and V. Zelevinsky, J. Opt. B. 5 (2003) S450

Computational approaches to many-body dynamics of unstable nuclear systems

Computational approaches to many-body dynamics of unstable nuclear systems Computational approaches to many-body dynamics of unstable nuclear systems Alexander Volya Florida State University Physics and mathema.cs of instability and decay Zeno paradox of arrow (490 430 BC)! The

More information

The Nuclear Many-Body problem. Lecture 3

The Nuclear Many-Body problem. Lecture 3 The Nuclear Many-Body problem Lecture 3 Emergent phenomena at the drip lines. How do properties of nuclei change as we move towards the nuclear driplines? Many-body open quantum systems. Unification of

More information

Nuclear Structure Theory II

Nuclear Structure Theory II uclear Structure Theory II The uclear Many-body Problem Alexander Volya Florida State University Physics of light nuclei 1 H 4 Li 3 He 2 H 8 7 6 Be 5 Li 4 He 3 B H 10 9 8 7 Be 6 Li 5 He 4 B H 12 11 10

More information

Introduction to NUSHELLX and transitions

Introduction to NUSHELLX and transitions Introduction to NUSHELLX and transitions Angelo Signoracci CEA/Saclay Lecture 4, 14 May 213 Outline 1 Introduction 2 β decay 3 Electromagnetic transitions 4 Spectroscopic factors 5 Two-nucleon transfer/

More information

Features of nuclear many-body dynamics: from pairing to clustering

Features of nuclear many-body dynamics: from pairing to clustering Features of nuclear many-body dynamics: from pairing to clustering Alexander Volya Florida State University Collaborators: K. Kravvaris, Yu. Tchuvil sky Outline Configuration interaction approach SU(3)

More information

A simple effective interaction for 9 He, and Gamow-SRG

A simple effective interaction for 9 He, and Gamow-SRG A simple effective interaction for 9 He, and Gamow-SRG Kévin Fossez February 28, 218 FRIB, MSU FRIB, MSU - Kévin Fossez Work supported by: DOE: DE-SC1336 (Michigan State University) DOE: DE-SC17887 (Michigan

More information

arxiv: v1 [nucl-th] 5 Nov 2018

arxiv: v1 [nucl-th] 5 Nov 2018 Neutron width statistics using a realistic description of the neutron channel P. Fanto, G. F. Bertsch 2, and Y. Alhassid Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New

More information

arxiv:nucl-th/ v1 18 Jan 2006

arxiv:nucl-th/ v1 18 Jan 2006 Continuum Coupling and Spectroscopic Properties of Nuclei arxiv:nucl-th/655v 8 Jan 26 N. Michel,,2,3 W. Nazarewicz,,2,4 M. P loszajczak, 5 and J. Rotureau,2,3 Department of Physics and Astronomy, University

More information

Shells Orthogonality. Wave functions

Shells Orthogonality. Wave functions Shells Orthogonality Wave functions Effect of other electrons in neutral atoms Consider effect of electrons in closed shells for neutral Na large distances: nuclear charge screened to 1 close to the nucleus:

More information

Complex 2D Matrix Model and Internal Structure of Resonances

Complex 2D Matrix Model and Internal Structure of Resonances Complex 2D Matrix Model and Internal Structure of Resonances Kanabu Nawa (RIKEN) In collaboration with Sho Ozaki, Hideko Nagahiro, Daisuke Jido and Atsushi Hosaka [arxiv:1109.0426[hep-ph]] CONTENTS * Nature

More information

Continuum States in Drip-line Oxygen isotopes

Continuum States in Drip-line Oxygen isotopes Continuum States in Drip-line Oxygen isotopes EFES-NSCL WORKSHOP, Feb. 4-6, 2010 @ MSU Department of Physics The University of Tokyo Koshiroh Tsukiyama *Collaborators : Takaharu Otsuka (Tokyo), Rintaro

More information

Scattering theory I: single channel differential forms

Scattering theory I: single channel differential forms TALENT: theory for exploring nuclear reaction experiments Scattering theory I: single channel differential forms Filomena Nunes Michigan State University 1 equations of motion laboratory Center of mass

More information

An Introduction to. Nuclear Physics. Yatramohan Jana. Alpha Science International Ltd. Oxford, U.K.

An Introduction to. Nuclear Physics. Yatramohan Jana. Alpha Science International Ltd. Oxford, U.K. An Introduction to Nuclear Physics Yatramohan Jana Alpha Science International Ltd. Oxford, U.K. Contents Preface Acknowledgement Part-1 Introduction vii ix Chapter-1 General Survey of Nuclear Properties

More information

arxiv: v1 [nucl-th] 17 Nov 2015

arxiv: v1 [nucl-th] 17 Nov 2015 Consistent analysis of one-nucleon spectroscopic factors involving weakly- and strongly-bound nucleons arxiv:5.05495v [nucl-th] 7 Nov 205 J. Oko lowicz, Y.H. Lam, 2 M. P loszajczak, 3 A.O. Macchiavelli,

More information

Quantum Chaos as a Practical Tool in Many-Body Physics

Quantum Chaos as a Practical Tool in Many-Body Physics Quantum Chaos as a Practical Tool in Many-Body Physics Vladimir Zelevinsky NSCL/ Michigan State University Supported by NSF Statistical Nuclear Physics SNP2008 Athens, Ohio July 8, 2008 THANKS B. Alex

More information

New theoretical insights on the physics of compound nuclei from laser-nucleus reactions

New theoretical insights on the physics of compound nuclei from laser-nucleus reactions New theoretical insights on the physics of compound nuclei from laser-nucleus reactions Adriana Pálffy Max Planck Institute for Nuclear Physics, Heidelberg, Germany Laser-Driven Radiation Sources for Nuclear

More information

Geometrical Methods for Data Analysis I: Dalitz Plots and Their Uses

Geometrical Methods for Data Analysis I: Dalitz Plots and Their Uses Geometrical Methods for Data Analysis I: Dalitz Plots and Their Uses History of the Dalitz Plot Dalitz s original plot non-relativistic; in terms of kinetic energies applied to the τ-θ puzzle Modern-day

More information

Nuclear structure input for rp-process rate calculations in the sd shell

Nuclear structure input for rp-process rate calculations in the sd shell Nuclear structure input for rp-process rate calculations in the sd shell W A RICHTER ITHEMBA LABS UNIVERSITY OF THE WESTERN CAPE B A BROWN NSCL, MICHIGAN STATE UNIVERSITY This work is supported by the

More information

Systematics of the α-decay fine structure in even-even nuclei

Systematics of the α-decay fine structure in even-even nuclei Systematics of the α-decay fine structure in even-even nuclei A. Dumitrescu 1,4, D. S. Delion 1,2,3 1 Department of Theoretical Physics, NIPNE-HH 2 Academy of Romanian Scientists 3 Bioterra University

More information

Configuration interaction approach to nuclear clustering

Configuration interaction approach to nuclear clustering Configuration interaction approach to nuclear clustering Alexander Volya Florida State University Configuration interaction approach A powerful tool in studies of nuclear many-body problems De-facto most

More information

R-matrix Analysis (I)

R-matrix Analysis (I) R-matrix Analysis (I) GANIL TALENT SchoolTALENT Course 6 Theory for exploring nuclear reaction experiments GANIL 1 st -19 th July Ed Simpson University of Surrey e.simpson@surrey.ac.uk Introduction Why

More information

Configuration interaction studies of pairing and clustering in light nuclei

Configuration interaction studies of pairing and clustering in light nuclei Configuration interaction studies of pairing and clustering in light nuclei Alexander Volya Florida State University DOE support: DE-SC9883 Trento September 216 Questions Description of clustering, from

More information

A K-Matrix Tutorial. Curtis A. Meyer. October 23, Carnegie Mellon University

A K-Matrix Tutorial. Curtis A. Meyer. October 23, Carnegie Mellon University A K-Matrix Tutorial Curtis A. Meyer Carnegie Mellon University October 23, 28 Outline Why The Formalism. Simple Examples. Recent Analyses. Note: See S. U. Chung, et al., Partial wave analysis in K-matrix

More information

Doorway States and the Super- Radiant Mechanism. N.Auerbach, TAU and MSU

Doorway States and the Super- Radiant Mechanism. N.Auerbach, TAU and MSU Doorway States and the Super- Radiant Mechanism N.uerbach, TU and MSU Superradiance,, collectivization by Dicke coherent state N identical two-level atoms coupled via common radiation decay nalog in nuclei

More information

arxiv: v1 [nucl-th] 25 Nov 2008

arxiv: v1 [nucl-th] 25 Nov 2008 November 5, 008 :9 WSPC/INSTRUCTION FILE Paris International Journal of Modern Physics E c World Scientific Publishing Company arxiv:08.05v [nucl-th] 5 Nov 008 COALESCENCE OF TWO EXCEPTIONAL POINTS IN

More information

Spectroscopy of light exotic nuclei using resonance scattering in inverse kinematics.

Spectroscopy of light exotic nuclei using resonance scattering in inverse kinematics. Spectroscopy of light exotic nuclei using resonance scattering in inverse kinematics. Grigory Rogachev RESOLUT: a new radioactive beam facility at FSU Solenoid 2 Magnetic Spectrograph Magnetic Spectrograph

More information

Lecture 5. Hartree-Fock Theory. WS2010/11: Introduction to Nuclear and Particle Physics

Lecture 5. Hartree-Fock Theory. WS2010/11: Introduction to Nuclear and Particle Physics Lecture 5 Hartree-Fock Theory WS2010/11: Introduction to Nuclear and Particle Physics Particle-number representation: General formalism The simplest starting point for a many-body state is a system of

More information

Nucleon Pair Approximation to the nuclear Shell Model

Nucleon Pair Approximation to the nuclear Shell Model Nucleon Pair Approximation to the nuclear Shell Model Yiyuan Cheng Department of Physics and Astronomy, Shanghai Jiao Tong University, China RCNP, Osaka university, Japan Collaborators: Yu-Min Zhao, Akito

More information

Doorway States and the Super- Radiant Mechanism. N.Auerbach, TAU and MSU

Doorway States and the Super- Radiant Mechanism. N.Auerbach, TAU and MSU Doorway States and the Super- Radiant Mechanism N.uerbach, TU and MSU Coherence in Spontaneous Radiation Process R.H.Dicke, Phys.Rev. 93, 99 (1954) In the usual treatment of spontaneous radiation by a

More information

RG & EFT for nuclear forces

RG & EFT for nuclear forces RG & EFT for nuclear forces Andreas Nogga, Forschungszentrum Jülich ECT* school, Feb/March 2006 Low momentum interactions: Using the RG to simplify the nuclear force for many-body calculations. Application

More information

Robert Charity Washington University in St. Louis, USA. Rewriting Nuclear Physics Textbooks 30 years with radioactive Ion Beam Physics

Robert Charity Washington University in St. Louis, USA. Rewriting Nuclear Physics Textbooks 30 years with radioactive Ion Beam Physics Resonance phenomena: from compound nucleus decay to proton radioactivity Robert Charity Washington University in St. Louis, USA Rewriting Nuclear Physics Textbooks 30 years with radioactive Ion Beam Physics

More information

QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates. N. Paar

QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates. N. Paar Strong, Weak and Electromagnetic Interactions to probe Spin-Isospin Excitations ECT*, Trento, 28 September - 2 October 2009 QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates N.

More information

The many facets of breakup reactions with exotic beams

The many facets of breakup reactions with exotic beams Angela Bonaccorso The many facets of breakup reactions with exotic beams G Blanchon, DM Brink, F Carstoiu, A Garcia-Camacho, R Kumar, JMargueron, N Vinh Mau JAPAN-ITALY EFES Workshop on Correlations in

More information

CLUSTERING AND THE NUCLEAR MANY- BODY PROBLEM

CLUSTERING AND THE NUCLEAR MANY- BODY PROBLEM CLUSTERING AND THE NUCLEAR MANY- BODY PROBLEM Alexander Volya Florida State University In collaboration with K. Kravvaris DOE support: DE-SC0009883 SOTANCP4, TX Clustering in light nuclei 2 3.0 4 11.4

More information

New T=1 effective interactions for the f 5/2 p 3/2 p 1/2 g 9/2 model space: Implications for valence-mirror symmetry and seniority isomers

New T=1 effective interactions for the f 5/2 p 3/2 p 1/2 g 9/2 model space: Implications for valence-mirror symmetry and seniority isomers PHYSICAL REVIEW C 70, 044314 (2004) New T=1 effective interactions for the f 5/2 p 3/2 p 1/2 g 9/2 model space: Implications for valence-mirror symmetry and seniority isomers A. F. Lisetskiy, 1 B. A. Brown,

More information

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup Dominic Rossi for the LAND collaboration GSI Helmholtzzentrum für Schwerionenforschung GmbH D 64291 Darmstadt, Germany

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1 2358-19 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 1 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

Higher-order exceptional points

Higher-order exceptional points Higher-order exceptional points Ingrid Rotter Max Planck Institute for the Physics of Complex Systems Dresden (Germany) Mathematics: Exceptional points Consider a family of operators of the form T(κ) =

More information

Open quantum systems

Open quantum systems Open quantum systems Wikipedia: An open quantum system is a quantum system which is found to be in interaction with an external quantum system, the environment. The open quantum system can be viewed as

More information

Other electrons. ε 2s < ε 2p ε 3s < ε 3p < ε 3d

Other electrons. ε 2s < ε 2p ε 3s < ε 3p < ε 3d Other electrons Consider effect of electrons in closed shells for neutral Na large distances: nuclear charge screened to 1 close to the nucleus: electron sees all 11 protons approximately:!!&! " # $ %

More information

Critical Behavior of Electron Impact Ionization of Atoms

Critical Behavior of Electron Impact Ionization of Atoms Critical Behavior of Electron Impact Ionization of Atoms IMAD LADADWA, 1,2 SABRE KAIS 1 1 Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 2 Department of Physics, University of

More information

Coupled-cluster theory for nuclei

Coupled-cluster theory for nuclei Coupled-cluster theory for nuclei Thomas Papenbrock and G. Hagen D. J. Dean M. Hjorth-Jensen B. Velamur Asokan INT workshop Weakly-bound systems in atomic and nuclear physics Seattle, March 8-12, 2010

More information

Allowed beta decay May 18, 2017

Allowed beta decay May 18, 2017 Allowed beta decay May 18, 2017 The study of nuclear beta decay provides information both about the nature of the weak interaction and about the structure of nuclear wave functions. Outline Basic concepts

More information

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain Mean field studies of odd mass nuclei and quasiparticle excitations Luis M. Robledo Universidad Autónoma de Madrid Spain Odd nuclei and multiquasiparticle excitations(motivation) Nuclei with odd number

More information

No-Core Shell Model and Continuum Spectrum States of Light Nuclei

No-Core Shell Model and Continuum Spectrum States of Light Nuclei Applied Mathematics & Information Sciences 3(3) (9), 45 71 An International Journal c 9 Dixie W Publishing Corporation, U. S. A. No-Core Shell Model and Continuum Spectrum States of Light Nuclei A. M.

More information

The Lorentz Integral Transform (LIT) method and its connections with other approaches

The Lorentz Integral Transform (LIT) method and its connections with other approaches The Lorentz Integral Transform (LIT) method and its connections with other approaches First proposed in V. D. Efros, W. Leidemann and G. Orlandini, Phys. Lett. B338, 130 (1994) Recent Topical Review: V.

More information

Many-Body Resonances of Nuclear Cluster Systems and Unstable Nuclei

Many-Body Resonances of Nuclear Cluster Systems and Unstable Nuclei Many-Body Resonances of Nuclear Cluster Systems and Unstable Nuclei Contents of the lecture 1. Resonances and complex scaling method 2. Many-body resonances of He-isotopes and their mirror nuclei 3. Coulomb

More information

Lecture 4: Nuclear Energy Generation

Lecture 4: Nuclear Energy Generation Lecture 4: Nuclear Energy Generation Literature: Prialnik chapter 4.1 & 4.2!" 1 a) Some properties of atomic nuclei Let: Z = atomic number = # of protons in nucleus A = atomic mass number = # of nucleons

More information

Quantum Chaos as a Practical Tool in Many-Body Physics ESQGP Shuryak fest

Quantum Chaos as a Practical Tool in Many-Body Physics ESQGP Shuryak fest Quantum Chaos as a Practical Tool in Many-Body Physics ESQGP Shuryak fest Vladimir Zelevinsky NSCL/ Michigan State University Stony Brook October 3, 2008 Budker Institute of Nuclear Physics, Novosibirsk

More information

The Nuclear Many-Body Problem. Lecture 2

The Nuclear Many-Body Problem. Lecture 2 The Nuclear Many-Body Problem Lecture 2 How do we describe nuclei? Shell structure in nuclei and the phenomenological shell model approach to nuclear structure. Ab-initio approach to nuclear structure.

More information

Quantum Theory of Many-Particle Systems, Phys. 540

Quantum Theory of Many-Particle Systems, Phys. 540 Quantum Theory of Many-Particle Systems, Phys. 540 IPM? Atoms? Nuclei: more now Other questions about last class? Assignment for next week Wednesday ---> Comments? Nuclear shell structure Ground-state

More information

Coupled-cluster theory for medium-mass nuclei

Coupled-cluster theory for medium-mass nuclei Coupled-cluster theory for medium-mass nuclei Thomas Papenbrock and G. Hagen (ORNL) D. J. Dean (ORNL) M. Hjorth-Jensen (Oslo) A. Nogga (Juelich) A. Schwenk (TRIUMF) P. Piecuch (MSU) M. Wloch (MSU) Seattle,

More information

New simple form for phenomenological nuclear potential. Abstract

New simple form for phenomenological nuclear potential. Abstract New simple form for phenomenological nuclear potential P. Salamon, T. Vertse Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen, P. O. Box 51, University of Debrecen, Faculty

More information

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540 Central density Consider nuclear charge density Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) Central density (A/Z* charge density) about the same for nuclei heavier than 16 O, corresponding

More information

Brief Review of the R-Matrix Theory

Brief Review of the R-Matrix Theory Brief Review of the R-Matrix Theory L. C. Leal Introduction Resonance theory deals with the description of the nucleon-nucleus interaction and aims at the prediction of the experimental structure of cross

More information

Solar Fusion Cross Sections for the pp chain and CNO cycles

Solar Fusion Cross Sections for the pp chain and CNO cycles Solar Fusion Cross Sections for the pp chain and CNO cycles Working Group 10: Theoretical Issues (Wick Haxton, Stefan Typel) status of theory at 1997 meeting (Rev. Mod. Phys. 70 (1998) 1265) progress during

More information

p 3 A = 12 C s A = 16 O s d E η m η (MeV)

p 3 A = 12 C s A = 16 O s d E η m η (MeV) PRODUCTION AND DECAY OF ETA-MESIC NUCLEI A. I. L'VOV P. N. Lebedev Physical Institute, Russian Academy of Sciences Leninsky Prospect 5, Moscow 79, Russia Using the Green function method, binding eects

More information

ATOMIC PARITY VIOLATION

ATOMIC PARITY VIOLATION ATOMIC PARITY VIOLATION OUTLINE Overview of the Atomic Parity Violation Theory: How to calculate APV amplitude? Analysis of Cs experiment and implications for search for physics beyond the Standard Model

More information

Decays, resonances and scattering

Decays, resonances and scattering Structure of matter and energy scales Subatomic physics deals with objects of the size of the atomic nucleus and smaller. We cannot see subatomic particles directly, but we may obtain knowledge of their

More information

Weak interactions. Chapter 7

Weak interactions. Chapter 7 Chapter 7 Weak interactions As already discussed, weak interactions are responsible for many processes which involve the transformation of particles from one type to another. Weak interactions cause nuclear

More information

Few Body Methods in Nuclear Physics - Lecture I

Few Body Methods in Nuclear Physics - Lecture I Few Body Methods in Nuclear Physics - Lecture I Nir Barnea The Hebrew University, Jerusalem, Israel Sept. 2010 Course Outline 1 Introduction - Few-Body Nuclear Physics 2 Gaussian Expansion - The Stochastic

More information

CONTINUUM STATES IN THE SHELL MODEL

CONTINUUM STATES IN THE SHELL MODEL CONTINUUM STATES IN THE SHELL MODEL Andrey Shirokov Skobeltsyn Institute of Nuclear Physics Lomonosov Moscow State University Collaborators: J. Vary, P. Maris (Iowa State University) A. Mazur, I. Mazur

More information

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach A. PETROVICI Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania Outline complex

More information

Direct reactions methodologies for use at fragmentation beam energies

Direct reactions methodologies for use at fragmentation beam energies 1 Direct reactions methodologies for use at fragmentation beam energies TU Munich, February 14 th 2008 Jeff Tostevin, Department of Physics Faculty of Engineering and Physical Sciences University of Surrey,

More information

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION P. W. Atkins and R. S. Friedman Molecular Quantum Mechanics THIRD EDITION Oxford New York Tokyo OXFORD UNIVERSITY PRESS 1997 Introduction and orientation 1 Black-body radiation 1 Heat capacities 2 The

More information

The structure of neutron deficient Sn isotopes

The structure of neutron deficient Sn isotopes The structure of neutron deficient Sn isotopes arxiv:nucl-th/930007v 5 Oct 993 A. Holt, T. Engeland, M. Hjorth-Jensen and E. Osnes Department of Physics, University of Oslo, N-03 Oslo, Norway February

More information

Feynman diagrams in nuclear physics at low and intermediate energies

Feynman diagrams in nuclear physics at low and intermediate energies «Избранные вопросы теоретической физики и астрофизики». Дубна: ОИЯИ, 2003. С. 99 104. Feynman diagrams in nuclear physics at low and intermediate energies L. D. Blokhintsev Skobeltsyn Institute of Nuclear

More information

B K decays in a finite volume

B K decays in a finite volume B K decays in a finite volume Akaki Rusetsky, University of Bonn In collaboration with A. Agadjanov, V. Bernard and U.-G. Meißner arxiv:1605.03386, Nucl. Phys. B (in print) 34th International Symposium

More information

Overview of Light-Hadron Spectroscopy and Exotics

Overview of Light-Hadron Spectroscopy and Exotics Overview of Light-Hadron Spectroscopy and Eotics Stefan Wallner Institute for Hadronic Structure and Fundamental Symmetries - Technical University of Munich March 19, 018 HIEPA 018 E COMPASS 1 8 Introduction

More information

Pion-nucleon scattering around the delta-isobar resonance

Pion-nucleon scattering around the delta-isobar resonance Pion-nucleon scattering around the delta-isobar resonance Bingwei Long (ECT*) In collaboration with U. van Kolck (U. Arizona) What do we really do Fettes & Meissner 2001... Standard ChPT Isospin 3/2 What

More information

arxiv: v2 [nucl-th] 11 Feb 2009

arxiv: v2 [nucl-th] 11 Feb 2009 Resonance parameters from K matrix and T matrix poles R. L. Workman, R. A. Arndt and M. W. Paris Center for Nuclear Studies, Department of Physics The George Washington University, Washington, D.C. 20052

More information

Practical Quantum Mechanics

Practical Quantum Mechanics Siegfried Flügge Practical Quantum Mechanics With 78 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents Volume I I. General Concepts 1. Law of probability

More information

Protonium Formation in Antiproton Hydrogen Collisions

Protonium Formation in Antiproton Hydrogen Collisions WDS'8 Proceedings of Contributed Papers, Part III, 168 172, 28. ISBN 978-8-7378-67-8 MATFYZPRESS Protonium Formation in Antiproton Hydrogen Collisions J. Eliášek Charles University in Prague, Faculty of

More information

arxiv: v1 [nucl-th] 9 Mar 2010

arxiv: v1 [nucl-th] 9 Mar 2010 Ab-initio computation of the 17 F proton-halo state and resonances in A = 17 nuclei G. Hagen, 1 T. Papenbrock,,1 and M. Hjorth-Jensen 1 Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 781,

More information

Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctions

Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctions Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctions Dresden 011 Microwave billiards and quantum billiards Microwave billiards as a scattering system Eigenvalues and eigenfunctions

More information

ALPHA-DECAY AND SPONTANEOUS FISSION HALF-LIVES OF SUPER-HEAVY NUCLEI AROUND 270Hs

ALPHA-DECAY AND SPONTANEOUS FISSION HALF-LIVES OF SUPER-HEAVY NUCLEI AROUND 270Hs ALPHA-DECAY AND SPONTANEOUS FISSION HALF-LIVES OF SUPER-HEAVY NUCLEI AROUND 270Hs C.I. ANGHEL 1,2, I. SILISTEANU 1 1 Department of Theoretical Physics, IFIN_HH, Bucharest - Magurele, Romania, 2 University

More information

Quark-Hadron Duality: Connecting the Perturbative and Non-Perturbative QCD Regimes

Quark-Hadron Duality: Connecting the Perturbative and Non-Perturbative QCD Regimes Quark-Hadron Duality: Connecting the Perturbative and Non-Perturbative QCD Regimes Simona Malace Norfolk State University Light Cone 2015, September 21-25 2015, INFN Frascati What is Quark-hadron duality?

More information

Physics of neutron-rich nuclei

Physics of neutron-rich nuclei Physics of neutron-rich nuclei Nuclear Physics: developed for stable nuclei (until the mid 1980 s) saturation, radii, binding energy, magic numbers and independent particle. Physics of neutron-rich nuclei

More information

Coherent Neutrino Nucleus Scattering

Coherent Neutrino Nucleus Scattering 1 Coherent Neutrino Nucleus Scattering E.A. Paschos a and A. Kartavtsev b (presented by E.A. Paschos) a Universität Dortmund, D 441 Dortmund, Germany b Rostov State University, Rostov on Don, Russia We

More information

Dynamical coupled channel calculation of pion and omega meson production

Dynamical coupled channel calculation of pion and omega meson production Dynamical coupled channel calculation of pion and omega meson production INT-JLab Workshop on Hadron Spectroscopy 2009/11/11 Mark Paris Center for Nuclear Studies Data Analysis Center George Washington

More information

The Nuclear Many Body Problem Lecture 3

The Nuclear Many Body Problem Lecture 3 The Nuclear Many Body Problem Lecture 3 Shell structure in nuclei and the phenomenological shell model approach to nuclear structure Ab initio approach to nuclear structure. Green's function Monte Carlo

More information

Precision calculations of atoms with few valence electrons

Precision calculations of atoms with few valence electrons Precision calculations of atoms with few valence electrons arxiv:physics/0306061v1 [physics.atom-ph] 7 Jun 2003 M.G.Kozlov Petersburg Nuclear Physics Institute, Gatchina, 188300, Russia E-mail:mgk@MF1309.spb.edu

More information

Nuclear physics around the unitarity limit

Nuclear physics around the unitarity limit Nuclear physics around the unitarity limit Sebastian König Nuclear Theory Workshop TRIUMF, Vancouver, BC February 28, 2017 SK, H.W. Grießhammer, H.-W. Hammer, U. van Kolck, arxiv:1607.04623 [nucl-th] SK,

More information

Isospin symmetry breaking in mirror nuclei

Isospin symmetry breaking in mirror nuclei Isospin symmetry breaking in mirror nuclei Silvia M. Leni Dipartimento di Fisica dell Università and INFN, Padova, Italy Energy scales MED 0-00 kev The Nuclear landscape 87 primordial isotopes exist in

More information

Lecture 4: Nuclear Energy Generation

Lecture 4: Nuclear Energy Generation Lecture 4: Nuclear Energy Generation Literature: Prialnik chapter 4.1 & 4.2!" 1 a) Some properties of atomic nuclei Let: Z = atomic number = # of protons in nucleus A = atomic mass number = # of nucleons

More information

Radiative-capture reactions

Radiative-capture reactions Radiative-capture reactions P. Descouvemont Physique Nucléaire Théorique et Physique Mathématique, CP229, Université Libre de Bruxelles, B1050 Bruxelles - Belgium 1. Introduction, definitions 2. Electromagnetic

More information

Lecture 4: Resonant Scattering

Lecture 4: Resonant Scattering Lecture 4: Resonant Scattering Sep 16, 2008 Fall 2008 8.513 Quantum Transport Analyticity properties of S-matrix Poles and zeros in a complex plane Isolated resonances; Breit-Wigner theory Quasi-stationary

More information

Analyticity and crossing symmetry in the K-matrix formalism.

Analyticity and crossing symmetry in the K-matrix formalism. Analyticity and crossing symmetry in the K-matrix formalism. KVI, Groningen 7-11 September, 21 Overview Motivation Symmetries in scattering formalism K-matrix formalism (K S ) (K A ) Pions and photons

More information

Electromagnetic reactions from few to many-body systems Giuseppina Orlandini

Electromagnetic reactions from few to many-body systems Giuseppina Orlandini Electromagnetic reactions from few to many-body systems Giuseppina Orlandini ECT* Workshop on Recent advances and challenges in the description of nuclear reactions at the limit of stability, March 5-9,

More information

Electromagnetic Response of Light Nuclei with Integral Transforms

Electromagnetic Response of Light Nuclei with Integral Transforms Electromagnetic Response of Light Nuclei with Integral Transforms LIT method Low-energy continuum observables with LIT Resonances S-Factor in presence of Coulomb potential Electron scattering at q 500

More information

On the two-pole interpretation of HADES data

On the two-pole interpretation of HADES data J-PARC collaboration September 3-5, 03 On the two-pole interpretation of HADES data Yoshinori AKAISHI nucl U K MeV 0-50 Σ+ Λ+ -00 K - + p 3r fm Λ(405) E Γ K = -7 MeV = 40 MeV nucl U K MeV 0-50 Σ+ Λ+ -00

More information

Subbarrier fusion of carbon isotopes ~ from resonance structure to fusion oscillations ~

Subbarrier fusion of carbon isotopes ~ from resonance structure to fusion oscillations ~ Subbarrier fusion of carbon isotopes ~ from resonance structure to fusion oscillations ~ Kouichi Hagino, Tohoku University Neil Rowley, IPN Orsay 1. Introduction: 12 C + 12 C fusion 2. Molecular resonances

More information

Non-relativistic scattering

Non-relativistic scattering Non-relativistic scattering Contents Scattering theory 2. Scattering amplitudes......................... 3.2 The Born approximation........................ 5 2 Virtual Particles 5 3 The Yukawa Potential

More information

Atomic Nuclei: Many-Body Open Quantum Systems

Atomic Nuclei: Many-Body Open Quantum Systems Atomic Nuclei: Many-Body Open Quantum Systems Witold Nazarewicz (UTK/ORNL) INT Program INT-13-1a: Computational and Theoretical Advances for Exotic Isotopes in the Medium Mass Region Seattle, April 5 OUTLINE

More information

INTERMEDIATE STRUCTURE AND THRESHOLD PHENOMENA

INTERMEDIATE STRUCTURE AND THRESHOLD PHENOMENA PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 4, Number 3/2003, pp.000-000 INTERMEDIATE STRUCTURE AND THRESHOLD PHENOMENA Cornel HATEGAN* Romanian Academy,

More information

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer Franz Schwabl QUANTUM MECHANICS Translated by Ronald Kates Second Revised Edition With 122Figures, 16Tables, Numerous Worked Examples, and 126 Problems ff Springer Contents 1. Historical and Experimental

More information

Nature of the sigma meson as revealed by its softening process

Nature of the sigma meson as revealed by its softening process Nature of the sigma meson as revealed by its softening process Tetsuo Hyodo a, Daisuke Jido b, and Teiji Kunihiro c Tokyo Institute of Technology a YITP, Kyoto b Kyoto Univ. c supported by Global Center

More information

Structures and Transitions in Light Unstable Nuclei

Structures and Transitions in Light Unstable Nuclei 1 Structures and Transitions in Light Unstable Nuclei Y. Kanada-En yo a,h.horiuchi b and A, Doté b a Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba-shi

More information

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University!

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Overview! Introduction! Basic ideas of EFT! Basic Examples of EFT! Algorithm of EFT! Review NN scattering! NN scattering

More information

arxiv: v1 [nucl-th] 12 Dec 2008

arxiv: v1 [nucl-th] 12 Dec 2008 A simple and efficient numerical scheme to integrate non-local potentials N. Michel CEA, Centre de Saclay, IRFU/Service de Physique Nucléaire, F-91191 Gif sur Yvette, France Abstract arxiv:812.237v1 [nucl-th]

More information