Cluster-orbital shell model approach for unstable nuclei and the developments

Size: px
Start display at page:

Download "Cluster-orbital shell model approach for unstable nuclei and the developments"

Transcription

1 CANHP2015 (week 6), Oct. 2015, Kyoto, Japan Cluster-orbital shell model approach for unstable nuclei and the developments Hiroshi MASUI Kitami Institute of Technology

2 Outline of my talk 1. Cluster-orbital shell model approach 2. Comparison with Gamow shell model 3. Radius of oxygen isotopes

3 0. Basic motivation

4 Nuclear structure and the size Halo nuclei I. Tanihata, H. Savajols, R. Kanungo, PPNP68 (2013)

5 The typical halo nuclei: 11 Li ( 9 Li+2n) Loosely bound valence-nucleon above the core nucleus n n 9 Li I. Tanihata, H. Savajols, R. Kanungo, PPNP68 (2013)

6 We want to study these nuclei on the same footing Core Valence Core Valence Cluster-orbital shell model (COSM) Y. Suzuki and K. Ikeda, PRC38 (1988)

7 1. Cluster-orbital shell model

8 Cluster-orbital shell model approach Hamiltonian CoM motion is removed from the Hamiltonian Y. Suzuki and K. Ikeda, PRC38 (1988) Ĥ = ĥ i + i i< j ( p i p j A C + v ij ) r 2 Core-N (1-body) N-N (2-body) r 1 r N An/-symmetriza/on with the nucleons in the core Core nucleus Orthogonality Condi/on Model (OCM) ˆΛ λ F.S. F.S. λ (F.S. : Pauli-forbidden states)

9 Basis function (For N-valence nucleon system) Eigenfunction: Gaussian expansion (GEM) Not eigenfunctions of the core+n sub-system Width parameter: Geometrical progression E. Hiyama, Y. Kino, and M. Kamimura, Prog. Part. Nucl. Phys. 51, 223 (2003). S. Aoyama, T. Myo, K. Kato, and K. Ikeda, Prog. Theor. Phys. 116, 1 (2006). T. Myo, Y. Kikuchi, H. M and K. Kato, Prog. Part. Nucl. Phys. 79, 1 (2014).

10 Combined with the Complex scaling method (CSM) Complex-scaled eigenvalues on the physical Riemann sheet T. Myo, Y. Kikuchi, H. M and K. Kato, Prog. Part. Nucl. Phys. 79, 1 (2014).

11 2. Comparison with Gamow shell model

12 Complex k-plane Im.k Bound states Continua Re. k Anti-bound states (Virtual states) Resonant states

13 Complex scaling method Resolution of the identity

14 Gamow shell model approach N. Michel, W. Nazarewicz, M. Płoszajczak, and K. Bennaceur, Phys. Rev. Lett. 89, (2002) R. Id Betan, R. J. Liotta, N. Sandulescu, and T. Vertse, Phys. Rev. Lett. 89, (2002) N. Michel, W. Nazarewicz, M. Płoszajczak, and J. Okołowicz, Phys. Rev. C 67, (2003) N. Michel, W. Nazarewicz, and M. Płoszajczak, Phys. Rev. C70, (2004). K. Fossez, N. Michel, M. Płoszajczak, Y. Jaganathen, and R. M. Id Betan Phys. Rev. C 91, (2015)

15 Gamow shell model Single-particle states Berggren basis G. Papadimitriou, J. Rotureau, N. Michel, M. Płoszajczak,and B. R. Barrett, Phys. Rev. C 88, (2013).

16 Basis function GEM with CS and GSM GEM with CS GSM

17 2-Steps for the comparison with GSM H.M, K. Kato, K. Ikeda, PRC75(2007) Prepare the single-particle complete set with the complex scaling 2. Expand the many-body state with the complex-scaled single-particle states

18 Comparison with the Gamow shell model Two examples: H.M, K. Kato, K. Ikeda, PRC75(2007) O ( 16 O+2n) : Stable nucleus Bound, narrow resonant states, continua 6 He ( 4 He+2n) : Halo nucleus Resonant states, continua

19 Interac/on Oxygen systems Core N: Semi-microscopic poten/al [3] Adjusted to 17 O (5/2 +, 1/2 +, 3/2 + ) N-N : Volkov No.2 [4] (M=0.58, B=H=0.07) Adjusted to 18 O (0 + ) Size parameter of the core 16 O core (h.o.): fixed size as R rms ( 16 O) = 2.54 fm (b = fm) [3] T. Kaneko, M. LeMere, and Y. C. Tang, PRC44 (1991) [4] A. B. Volkov, NPA74 (1965).

20 Results for the oxygen isotopes Energy and R rms of O Energy levels of 18 O GSM: N. Michel, W. Nazarewicz, M. Płoszajczak, and J. Okołowicz, Phys. Rev. C 67, (2003)

21 Energy levels of 19 O Energy levels of 20 O GSM: N. Michel, W. Nazarewicz, M. Płoszajczak, and J. Okołowicz, Phys. Rev. C 67, (2003)

22 Expansion with the single-particle states for 18 O Although the NN-int. are different, COSM and GSM give almost the same result.

23 Interac/on Helium systems Core N: Semi-microscopic poten/al [5] Reproduce the phase-shie of 4 He+n N-N : Minnesota [6] (u=1.0) Effec/ve 3-body force[7] Adjusted to 6 He ground state [5] H. Kanada, T. Kaneko, S. Nagata, andm. Nomoto, Prog. Theor. Phys. 61, 1327 (1979). [6] D. R. Thompson, M. LeMere, and Y. C. Tang, Nucl. Phys. A286, 53 (1977). [7] T. Myo, K. Kato, S. Aoyama, and K. Ikeda, Phys. Rev. C 63, (2001).

24 Results for the Helium isotopes Energy of Helium isotopes R rms of Helium isotopes GSM[14]: N. Michel, W. Nazarewicz, M. Płoszajczak, and J. Okołowicz, Phys. Rev. C 67, (2003) GSM[19]: G. Hagen, M. Hjorth-Jensen, and J. S. Vaagen, Phys. Rev. C 71, (2005). [42] F. Ajzenberg-Selove, NPA490, 1 (1988). [43] I. Tanihata, NPA478, 795c (1998). [44] I. Tanihata et al., PLB289, 261 (1992). [45] G. D. Alkhazov et al., PRL78, 2313 (1997).

25 Expansion with the single-particle states for 6 He (p 3/2 )-contribution for 6-8 He GSM[14]: N. Michel, W. Nazarewicz, M. Płoszajczak, and J. Okołowicz, Phys. Rev. C 67, (2003) GSM[19]: G. Hagen, M. Hjorth-Jensen, and J. S. Vaagen, Phys. Rev. C 71, (2005).

26 (p 3/2 )- and (p 1/2 )-contributions for 6 He (L max =5) (L=1) (L=1) When the model space is the same, results becomes similar GSM[19]: G. Hagen, M. Hjorth-Jensen, and J. S. Vaagen, Phys. Rev. C 71, (2005).

27 C n 2 = (p 3 / 2 ) 2 R rms E C n 2 = (p 1/ 2 ) 2 L max =5 L max =5 ϕ ϕ : L = j ±1/2 Ψ = C n Φ n Although the number of channel increases, contributions of (p 3/2 ) 2 and (p 1/2 ) 2 are almost the same

28 Correlation of valence nucleons Energy of 6 He V-base ECM (T-base) is important S. Aoyama et al. PTP93 (1995) T-base

29 Details of poles and continua 2 C n = Pole + S1+ S2 (p 3/2 ) 2 Pole C n 2 = (p 3 / 2 ) 2 (p 1/2 ) 2 Pole S2 C n 2 = (p 1/ 2 ) 2 S2 S1 S1

30 Precise comparison between GEM with CS and GSM

31

32 Precise comparison between two criteria [Gaussian expansion/slater basis] with complex scaling Gamow shell model

33 Hamiltonian One-body part Two-body part KKNN-poten/al ˆΛ i F.S. F.S. i

34 Interac/on 4 He+pp/nn systems Core N: Semi-microscopic poten/al [5] Reproduce the phase-shie of 4 He+n N-N : Minnesota [6] (u=1.0) Effec/ve 3-body force[7] Adjusted to 6 He ground state Core-N Coulomb pot. [5] H. Kanada, T. Kaneko, S. Nagata, andm. Nomoto, Prog. Theor. Phys. 61, 1327 (1979). [6] D. R. Thompson, M. LeMere, and Y. C. Tang, Nucl. Phys. A286, 53 (1977). [7] T. Myo, K. Kato, S. Aoyama, and K. Ikeda, Phys. Rev. C 63, (2001).

35 TBMEs Gaussian/Slater basis (basis functions are analytic function) TBMEs can be calculated analytically Gamow shell model (sinle-particle states are solved numerically) Numerically obtained w.f. : Expanded with analytical func. Re.k Im. k

36 Energy of 6 He (0 + and 2 + ) H. M, K. Kato, N. Michel, M. Płoszajczak, Phys. Rev. C 89 (2014)

37 Energy of 6 Be (0 + and 2 + ) H. M, K. Kato, N. Michel, M. Płoszajczak, Phys. Rev. C 89 (2014)

38 Convergence of the calculation and the related parameters Complex rota/on/berggren basis func/on {α+iβ} {α+iβ} {α-iβ} {α+iβ} Non-Hermi/an (complex symmetric Hamiltonian matrix elements) varia/onal problem Generalized varia/onal problem Ĥ Ĥ Model space Model space

39 Variational parameters GEM + CS Gaussian width parameters: b, N max Complex rotation angle:θ GSM Discretization of continuum and the contour Parameters in H.O. expansion: hω, N max

40 Convergence of resonant poles of 6 He (2 + )

41 Nuclear three-body problem in the complex energy plane: Complex-scaling Slater method A. T. Kruppa, G. Papadimitriou,W. Nazarewicz, and N.Michel,Phys. Rev. C 89, (2014).

42 3. Radius of oxygen isotopes

43 Matter radius of nuclei near the drip-lines A. Ozawa (2001)

44 19 C 11 Li 6 He Relation for the S n and (R rms /A 1/3 ) 11 Be 23 O 26 F 8 He 24 O Large S n Large R rms F-isotopes O-isotopes C-isotopes

45 Reaction cross-section of O-isotopes A. Ozawa et al. NPA693 (2001) R. Kanungo et al. PRC84 (2011) R. Kanungo et al. PRC84 (2011)

46 16 O+XN systems Interac/on H. M, K. Kato and K. Ikeda, PRC73, (2006) Core N: Semi-microscopic poten/al [3] Adjusted to 17 O (5/2 +, 1/2 +, 3/2 + ) N-N : Volkov No.2 [4] (M=0.58, B=H=0.07) Adjusted to 18 O (0 + ) Size parameter of the core 16 O core (h.o.): fixed size as R rms ( 16 O) = 2.54 fm (b = fm) [3] T. Kaneko, M. LeMere, and Y. C. Tang, PRC44 (1991) [4] A. B. Volkov, NPA74 (1965).

47 Core-size dependence 16 O-core Core-N Core configuration: h.o. wave function E(b) = E(b) Core + E(b) Valence Op/mum b might be different in isotopes/isotones

48 16 O-core part Energy of 16 O-core with effective NN-int. [5] Energy of 16 O (additional 3-body force) Volkov No.2 (M=0.58) [5] T. Ando, K. Ikeda, and A. Tohsaki-Suzuki, PTP64 (1980).

49 The core-n part Core-N Hamiltonian: Change of b-parapeter: Strength of the potential

50 Inclusion of the dynamics of the core: R rms are improved H. M, K. Kato and K. Ikeda, PRC73, (2006)

51 Our approaches I) Role of many valence neutrons 16 O+Xn model m-scheme COSM + Gaussian basis II) Role of last one- or two-neutrons Core + n or Core +2n model Coupled-channel model for the core

52 16 O+XN systems Interac/on H. M, K. Kato and K. Ikeda, EPJA42 (2009) Core N: Semi-microscopic Adjusted to 17 O (5/2 +, 1/2 +, 3/2 + ) N-N : Volkov No.2 (M=0.58, B=H=0.07, 0.25) Adjusted to 18 O (0 + ), drip-line at 25 O Size parameter of the core 16 O core (h.o.): fixed size, A 1/6

53 Wave function Φ = m Radial part c m F m (r 1,r 2,...,r N ) (M M T ) m F m (r 1,r 2,...,r N ) = ( g(r 1 ) g(r 2 ) g(r N )) m Product of Gaussian with polynomial Spin-isospin part (M M T ) m Total M and M T are fixed M = m 1 + m m N M T = m T1 + m T m TN We check the expectation value of the total J as <J 2 >

54 B=H=0.07 S n of O-isotopes B=H=0.25 < B=H=0.07 Amrac/on

55 R rms of O-isotopes B=H=0.07 B=H=0.25 Fixed-core Expanded-core b~a 1/6 b: (fm)

56 Comparison with other approaches Expr.: A. Ozawa et al, NPA693 (2001) : m-cosm with b A 1/6 : fixed-b b A 1/6 Fixed-b : H. Nakada, NPA764 (2006) : B. Ab-Ibrahim et al., JPSJ 78 (2009)

57

58 A schematic figure to illustrate the change of the radius of 22 O (fm) 22 O 23 O 24 O R rms [1] 2.88± ± ±0.13 [1] A. Ozawa et al, NPA693 (2001)

59 Inclusion of the core excitation a coupled-channel picture for 16 O H.M, K. Kato, K. Ikeda, NPA895 (2012) 0p-0h 1/ 6 b A 2p-2h ex. b : Fixed Radius : large (0s) 4 (0p) 12 Radius : small [(1s 1/2 ) π (1s 1/2 ) ν ] S=1,T=0 Mean-field-like core [(0 p 1/2 ) π (0p 1/2 ) ν ] S=1,T=0

60 2p-2h ex. b : Fixed TOSM 4P-1 (Myo) Tensor-op/mized shell model T. Myo et al.,ptp117 (2007) Coupling to the higher orbits High-momentum components Radius : small Small b-parameter Op/mized b-parameter for 4 He

61 Inclusion of the core excitation TOSM in 9 Li T. Myo, K. Kato, H. Toki and K. Ikeda, PRC76(2007) 1. Different size for each orbit 2. Specific configura/ons are suppressed due to the Pauli-blocking effect

62 [2p2h excita/ons] 0d 3/2 1s 1/2 0d 5/2 0d 3/2 1s 1/2 0d 5/2 [XpXh excita/ons] 0d 3/2 1s 1/2 0d 5/2

63 A coupled-channel approach Hamiltonian: " $ # T 1 +V 1 Δ 12 T 2 +V 2 + ΔE Δ 21 %" ' $ &# φ 1 φ 2 % " ' = E φ 1 $ & # φ 2 % ' & 1ch (0p0h) 2ch (2p2h) b = 1.1A 1/6 (fm) 1s 1/2 is allowed b = 1.5(fm) : fixed 1s 1/2 is forbidden Coupling term Δ 12 = Δ 21 = -2MeV Energy difference of the core ΔE = 2.5, 5, 7.5, 10 (MeV)

64 17 O (5/2 + ) 0d 3/2 0d 3/2 1s 1/2 1s 1/2 0d 5/2 0d 5/2 19 O (5/2 + ) 16 O-core (0p0h) 16 O-core (2p2h) 0d 3/2 0d 3/2 1s 1/2 1s 1/2 0d 5/2 0d 5/2 18 O-core (0p0h) 18 O-core (2p2h)

65 21 O (5/2 + ) 0d 3/2 0d 3/2 1s 1/2 1s 1/2 0d 5/2 0d 5/2 20 O-core (0p0h) 20 O-core (2p2h) 23 O (1/2 + ) Pauli-forbidden 0d 3/2 0d 3/2 1s 1/2 1s 1/2 0d 5/2 0d 5/2 22 O-core (0p0h) 22 O-core (2p2h)

66 Results for a coupled-channel core+n model approach S n (MeV) Fimed 20 O+n 16 O+n 18 O+n S n are almost reproduced 22 O+n

67 Results for a coupled-channel core+n model approach R rms (fm) A. Ozawa et al. NPA693 (2001) R. Kanungo et al. PRC84 (2011) Mean-field-like core 16 O+n 18 O+n 20 O+n 22 O+n Fixed core

68 Summary Comparison between GEM+CS and GSM Different procedures for preparing the complete set of the basis function They give numerically the same result (at least) for core+2n systems Generalized variational parameters should be optimized carefully Rrms 23 O and 24 O 16 O(fixed size) +Xn : failed to reproduce the experiment Modification of the core is important [An attempt to reproduce the Rrms] Coupled-channel picture (Shrunk core) + (Broad core) is a possible way

Many-Body Resonances of Nuclear Cluster Systems and Unstable Nuclei

Many-Body Resonances of Nuclear Cluster Systems and Unstable Nuclei Many-Body Resonances of Nuclear Cluster Systems and Unstable Nuclei Contents of the lecture 1. Resonances and complex scaling method 2. Many-body resonances of He-isotopes and their mirror nuclei 3. Coulomb

More information

Tensor-optimized antisymmetrized molecular dynamics (TOAMD) with bare forces for light nuclei

Tensor-optimized antisymmetrized molecular dynamics (TOAMD) with bare forces for light nuclei Tensor-optimized antisymmetrized molecular dynamics (TOAMD) with bare forces for light nuclei Takayuki MYO Mengjiao LYU (RCNP) Masahiro ISAKA (RCNP) Hiroshi TOKI (RCNP) Hisashi HORIUCHI (RCNP) Kiyomi IKEDA

More information

Continuum States in Drip-line Oxygen isotopes

Continuum States in Drip-line Oxygen isotopes Continuum States in Drip-line Oxygen isotopes EFES-NSCL WORKSHOP, Feb. 4-6, 2010 @ MSU Department of Physics The University of Tokyo Koshiroh Tsukiyama *Collaborators : Takaharu Otsuka (Tokyo), Rintaro

More information

Cluster-gas-like states and monopole excitations. T. Yamada

Cluster-gas-like states and monopole excitations. T. Yamada Cluster-gas-like states and monopole excitations T. Yamada Cluster-gas-like states and monopole excitations Isoscalar monopole excitations in light nuclei Cluster-gas-likes states: C, 16 O, 11 B, 13 C

More information

The Nuclear Many-Body problem. Lecture 3

The Nuclear Many-Body problem. Lecture 3 The Nuclear Many-Body problem Lecture 3 Emergent phenomena at the drip lines. How do properties of nuclei change as we move towards the nuclear driplines? Many-body open quantum systems. Unification of

More information

Multi-cluster problems: resonances, scattering and condensed states

Multi-cluster problems: resonances, scattering and condensed states Journal of Physics: Conference Series OPEN ACCESS Multi-cluster problems: resonances, scattering and condensed states To cite this article: K Kat et al 2013 J. Phys.: Conf. Ser. 436 012026 View the article

More information

Structures and Transitions in Light Unstable Nuclei

Structures and Transitions in Light Unstable Nuclei 1 Structures and Transitions in Light Unstable Nuclei Y. Kanada-En yo a,h.horiuchi b and A, Doté b a Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba-shi

More information

Nuclear electric dipole moment in the Gaussian expansion method

Nuclear electric dipole moment in the Gaussian expansion method Nuclear electric dipole moment in the Gaussian expansion method Nodoka Yamanaka (ithes Group, RIKEN) In collaboration with E. Hiyama (RIKEN), T. Yamada (Kanto-Gakuin Univ.), Y. Funaki (RIKEN) 2015/10/12

More information

Hybridization of tensor-optimized and high-momentum antisymmetrized molecular dynamics for light nuclei with bare interaction

Hybridization of tensor-optimized and high-momentum antisymmetrized molecular dynamics for light nuclei with bare interaction Prog. Theor. Exp. Phys. 2015, 00000 (10 pages) DOI: 10.1093/ptep/0000000000 Hybridization of tensor-optimized and high-momentum antisymmetrized molecular dynamics for light nuclei with bare interaction

More information

Title. Author(s)Itagaki, N.; Oertzen, W. von; Okabe, S. CitationPhysical Review C, 74: Issue Date Doc URL. Rights.

Title. Author(s)Itagaki, N.; Oertzen, W. von; Okabe, S. CitationPhysical Review C, 74: Issue Date Doc URL. Rights. Title Linear-chain structure of three α clusters in 13C Author(s)Itagaki, N.; Oertzen, W. von; Okabe, S. CitationPhysical Review C, 74: 067304 Issue Date 2006-12 Doc URL http://hdl.handle.net/2115/17192

More information

A simple effective interaction for 9 He, and Gamow-SRG

A simple effective interaction for 9 He, and Gamow-SRG A simple effective interaction for 9 He, and Gamow-SRG Kévin Fossez February 28, 218 FRIB, MSU FRIB, MSU - Kévin Fossez Work supported by: DOE: DE-SC1336 (Michigan State University) DOE: DE-SC17887 (Michigan

More information

RPA and QRPA calculations with Gaussian expansion method

RPA and QRPA calculations with Gaussian expansion method RPA and QRPA calculations with Gaussian expansion method H. Nakada (Chiba U., Japan) @ DCEN11 Symposium (YITP, Sep. 6, 11) Contents : I. Introduction II. Test of GEM for MF calculations III. Test of GEM

More information

New simple form for phenomenological nuclear potential. Abstract

New simple form for phenomenological nuclear potential. Abstract New simple form for phenomenological nuclear potential P. Salamon, T. Vertse Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen, P. O. Box 51, University of Debrecen, Faculty

More information

Physics of neutron-rich nuclei

Physics of neutron-rich nuclei Physics of neutron-rich nuclei Nuclear Physics: developed for stable nuclei (until the mid 1980 s) saturation, radii, binding energy, magic numbers and independent particle. Physics of neutron-rich nuclei

More information

Effective Field Theory for light nuclear systems

Effective Field Theory for light nuclear systems Effective Field Theory for light nuclear systems Jimmy Rotureau Chalmers University of Technology, Göteborg, Sweden B. Barrett, University of Arizona, Tucson I. Stetcu, University of Washington, Seattle

More information

Dynamics of nuclear four- and five-body systems with correlated Gaussian method

Dynamics of nuclear four- and five-body systems with correlated Gaussian method Journal of Physics: Conference Series OPEN ACCESS Dynamics of nuclear four- and five-body systems with correlated Gaussian method To cite this article: W Horiuchi and Y Suzuki 214 J. Phys.: Conf. Ser.

More information

Coupled-cluster theory for nuclei

Coupled-cluster theory for nuclei Coupled-cluster theory for nuclei Thomas Papenbrock and G. Hagen D. J. Dean M. Hjorth-Jensen B. Velamur Asokan INT workshop Weakly-bound systems in atomic and nuclear physics Seattle, March 8-12, 2010

More information

Nuclear structure theory

Nuclear structure theory Nuclear structure theory Thomas Papenbrock and Lecture 2: Traditional shell model National Nuclear Physics Summer School 2008 George Washington University Shell structure in nuclei Mass differences: Liquid

More information

Nuclear Structure Study of Two-Proton Halo-Nucleus 17 Ne

Nuclear Structure Study of Two-Proton Halo-Nucleus 17 Ne Nuclear Structure Study of Two-Proton Halo-Nucleus Ne Leave one blank line F. H. M. Salih 1, Y. M. I. Perama 1, S. Radiman 1, K. K. Siong 1* Leave one blank line 1 School of Applied Physics, Faculty of

More information

Cluster Models for Light Nuclei

Cluster Models for Light Nuclei Cluster Models for Light Nuclei N. Itagaki, T. Otsuka, University of Tokyo S. Aoyama, Niigata University K. Ikeda, RIKEN S. Okabe, Hokkaido University Purpose of the present study Cluster model explore

More information

Complex energy methods for structure and reactions. George Papadimitriou

Complex energy methods for structure and reactions. George Papadimitriou Complex energy methods for structure and reactions George Papadimitriou papadimitrio1@llnl.gov YIPQS Long-term and Nishinomiya-Yukawa Memorial International workshop Computational Advances in Nuclear and

More information

Alpha particle condensation in nuclear systems

Alpha particle condensation in nuclear systems Alpha particle condensation in nuclear systems Contents Introduction ncondensate wave function 3system (0 and states ) 4system (05 state) Yasuro Funaki (Kyoto Univ.) Peter Schuck (IPN, Orsay) Akihiro Tohsaki

More information

The Nuclear Many-Body Problem. Lecture 2

The Nuclear Many-Body Problem. Lecture 2 The Nuclear Many-Body Problem Lecture 2 How do we describe nuclei? Shell structure in nuclei and the phenomenological shell model approach to nuclear structure. Ab-initio approach to nuclear structure.

More information

Con$nuum shell model for nuclear structure and reac$ons

Con$nuum shell model for nuclear structure and reac$ons Con$nuum shell model for nuclear structure and reac$ons Marek Ploszajczak GANIL, Caen Content: - Introduc$on and recent advances in nuclear theory - Con$nuum Shell Model and Gamow Shell Model - Interplay

More information

Lisheng Geng. Ground state properties of finite nuclei in the relativistic mean field model

Lisheng Geng. Ground state properties of finite nuclei in the relativistic mean field model Ground state properties of finite nuclei in the relativistic mean field model Lisheng Geng Research Center for Nuclear Physics, Osaka University School of Physics, Beijing University Long-time collaborators

More information

Study of the tensor correlation using a mean-field-type model. Satoru Sugimoto Kyoto University

Study of the tensor correlation using a mean-field-type model. Satoru Sugimoto Kyoto University Study of the tensor correlation using a mean-field-type model Satoru Sugimoto Kyoto University The content. Introduction. Charge- and parity-projected Hartree- Fock method 3. pplication to the sub-closed

More information

New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen

New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen I. General introduction to the atomic nucleus Charge density, shell gaps, shell occupancies, Nuclear forces, empirical monopoles, additivity,

More information

1. Introduction. 2. Recent results of various studies of K pp. 3. Variational cal. vsfaddeev

1. Introduction. 2. Recent results of various studies of K pp. 3. Variational cal. vsfaddeev Theoretical studies of K - pp Akinobu Doté (KEK Theory Center) 1. Introduction 2. Recent results of various studies of K pp DHW (Variational with Chiral-based) vs AY (Variational with phenomenological)

More information

Reaction Cross Sections and Nucleon Density Distributions of Light Nuclei. Maya Takechi

Reaction Cross Sections and Nucleon Density Distributions of Light Nuclei. Maya Takechi Reaction Cross Sections and Nucleon Density Distributions of Light Nuclei Maya Takechi Collaborators Introduction Sizes of Unstable Nuclei? ~ Measurements of σ R ~ σ R σ tot σ el ρ r ρ Glauber Calculation

More information

Di-neutron correlation in Borromean nuclei

Di-neutron correlation in Borromean nuclei Di-neutron correlation in Borromean nuclei K. Hagino (Tohoku University) H. Sagawa (University of Aizu) 11 Li, 6 He What is the spatial structure of valence neutrons? Compact? Or Extended? 1. Introduction:

More information

The Nuclear Many Body Problem Lecture 3

The Nuclear Many Body Problem Lecture 3 The Nuclear Many Body Problem Lecture 3 Shell structure in nuclei and the phenomenological shell model approach to nuclear structure Ab initio approach to nuclear structure. Green's function Monte Carlo

More information

Atomic Nuclei: Many-Body Open Quantum Systems

Atomic Nuclei: Many-Body Open Quantum Systems Atomic Nuclei: Many-Body Open Quantum Systems Witold Nazarewicz (UTK/ORNL) INT Program INT-13-1a: Computational and Theoretical Advances for Exotic Isotopes in the Medium Mass Region Seattle, April 5 OUTLINE

More information

arxiv: v1 [nucl-th] 25 Nov 2008

arxiv: v1 [nucl-th] 25 Nov 2008 November 5, 008 :9 WSPC/INSTRUCTION FILE Paris International Journal of Modern Physics E c World Scientific Publishing Company arxiv:08.05v [nucl-th] 5 Nov 008 COALESCENCE OF TWO EXCEPTIONAL POINTS IN

More information

arxiv: v1 [nucl-th] 12 Dec 2008

arxiv: v1 [nucl-th] 12 Dec 2008 A simple and efficient numerical scheme to integrate non-local potentials N. Michel CEA, Centre de Saclay, IRFU/Service de Physique Nucléaire, F-91191 Gif sur Yvette, France Abstract arxiv:812.237v1 [nucl-th]

More information

Coupled-cluster theory for medium-mass nuclei

Coupled-cluster theory for medium-mass nuclei Coupled-cluster theory for medium-mass nuclei Thomas Papenbrock and G. Hagen (ORNL) D. J. Dean (ORNL) M. Hjorth-Jensen (Oslo) A. Nogga (Juelich) A. Schwenk (TRIUMF) P. Piecuch (MSU) M. Wloch (MSU) Seattle,

More information

Citation PHYSICAL REVIEW C (2006), 74(5) RightCopyright 2006 American Physical So

Citation PHYSICAL REVIEW C (2006), 74(5)   RightCopyright 2006 American Physical So Title alphac-12 in angular distri 12(O-2()) Author(s) Takashina, M; Sakuragi, Y Citation PHYSICAL REVIEW C (2006), 74(5) Issue Date 2006-11 URL http://hdl.handle.net/2433/50458 RightCopyright 2006 American

More information

Chiral effective field theory on the lattice: Ab initio calculations of nuclei

Chiral effective field theory on the lattice: Ab initio calculations of nuclei Chiral effective field theory on the lattice: Ab initio calculations of nuclei Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Dean Lee (NC State)

More information

Continuum Level Density of a Coupled-Channel System in the Complex Scaling Method

Continuum Level Density of a Coupled-Channel System in the Complex Scaling Method 949 Progress of Theoretical Physics, Vol. 9, No. 6, June 2008 Continuum Level Density of a Coupled-Channel System in the Complex Scaling Method Ryusuke Suzuki,, ) András T. Kruppa, 2, ) Bertrand G. Giraud

More information

Structure of halo nuclei and transfer reactions

Structure of halo nuclei and transfer reactions Structure of halo nuclei and transfer reactions F. Barranco and G. Potel Sevilla University R.A. Broglia Milano University and INFN The Niels Bohr Institute, Copenhagen E. Vigezzi INFN Milano DCEN 2011,

More information

arxiv: v1 [nucl-th] 9 Mar 2010

arxiv: v1 [nucl-th] 9 Mar 2010 Ab-initio computation of the 17 F proton-halo state and resonances in A = 17 nuclei G. Hagen, 1 T. Papenbrock,,1 and M. Hjorth-Jensen 1 Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 781,

More information

GSI. SINAP W. Xu, G.W. Fan (HIMAC) :,,,

GSI. SINAP W. Xu, G.W. Fan (HIMAC) :,,, :,,, :, GSI :, :,,, SINAP W. Xu, G.W. Fan : (HIMAC) :,,, 12 C "R(E) Glauber Calculation, & )/! R = " db 1# exp #" d 2 P r! NN ( E)$ i T % z (r)$z j I. ( (r - b) + 1 -. ' i,j * 01 σi can be uniquely calculated

More information

Application of the complex scaling method to hadronic resonances Λ(1405) and K - pp resonances

Application of the complex scaling method to hadronic resonances Λ(1405) and K - pp resonances Application of the complex scaling method to hadronic resonances Λ(1405) and K - pp resonances Akinobu Doté (KEK Theory Center, IPS / J-PARC branch) Takashi Inoue (ihon university) Takayuki Myo (Osaka

More information

Nuclear Landscape not fully known

Nuclear Landscape not fully known Nuclear Landscape not fully known Heaviest Elements? Known Nuclei Limit of proton rich nuclei? Fission Limit? Possible Nuclei Limit of Neutron Rich Nuclei? Nuclear Radii Textbooks: R = r 00 A 1/3 1/3 I.

More information

arxiv:nucl-th/ v1 18 Jan 2006

arxiv:nucl-th/ v1 18 Jan 2006 Continuum Coupling and Spectroscopic Properties of Nuclei arxiv:nucl-th/655v 8 Jan 26 N. Michel,,2,3 W. Nazarewicz,,2,4 M. P loszajczak, 5 and J. Rotureau,2,3 Department of Physics and Astronomy, University

More information

Alpha cluster condensation in 12 C and 16 O

Alpha cluster condensation in 12 C and 16 O Alpha cluster condensation in 12 C and 16 O A. Tohsaki, Department of Fine Materials Engineering, Shinshu University, Ueda 386-8567, Japan H. Horiuchi, Department of Physics, Kyoto University, Kyoto 606-8502,

More information

arxiv: v1 [nucl-th] 1 Nov 2018

arxiv: v1 [nucl-th] 1 Nov 2018 Contact representation of short range correlation in light nuclei studied by the High-Momentum Antisymmetrized Molecular Dynamics arxiv:1811.00271v1 [nucl-th] 1 Nov 2018 Qing Zhao, 1, Mengjiao Lyu, 2,

More information

Formation of Two-Neutron Halo in Light Drip-Line Nuclei from the Low-Energy Neutron-Neutron Interaction

Formation of Two-Neutron Halo in Light Drip-Line Nuclei from the Low-Energy Neutron-Neutron Interaction Formation of Two-Neutron Halo in Light Drip-Line Nuclei from the Low-Energy Neutron-Neutron Interaction Toshio Suzuki 1 Department of Physics, College of Humanities and Sciences, Nihon University Sakurajosui

More information

Nucleon Pair Approximation to the nuclear Shell Model

Nucleon Pair Approximation to the nuclear Shell Model Nucleon Pair Approximation to the nuclear Shell Model Yiyuan Cheng Department of Physics and Astronomy, Shanghai Jiao Tong University, China RCNP, Osaka university, Japan Collaborators: Yu-Min Zhao, Akito

More information

Shell evolution in neutron rich nuclei

Shell evolution in neutron rich nuclei Shell evolution in neutron rich nuclei Gustav R. Jansen 1,2 gustav.jansen@utk.edu 1 University of Tennessee, Knoxville 2 Oak Ridge National Laboratory March 18. 2013 Collaborators and acknowledgements

More information

Structure at and Beyond the Neutron Dripline

Structure at and Beyond the Neutron Dripline Structure at and Beyond the Neutron Dripline Collaboration LPC-CHARISSA CHARISSA-DEMON H Al Falou,, FM Marqués, JL Lecouey, NA Orr, Structure at and Beyond the Neutron Dripline * Motivation Experimental

More information

Interaction cross sections for light neutron-rich nuclei

Interaction cross sections for light neutron-rich nuclei PHYSICAL REVIEW C, VOLUME 65, 014612 Interaction cross sections for light neutron-rich nuclei B. A. Brown and S. Typel Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory,

More information

Shell Eects in Atomic Nuclei

Shell Eects in Atomic Nuclei L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 1/37 Shell Eects in Atomic Nuclei Laurent Gaudefroy 1 Alexandre Obertelli 2 1 CEA, DAM, DIF - France 2 CEA, Irfu - France Shell Eects in Finite Quantum

More information

Eikonal method for halo nuclei

Eikonal method for halo nuclei Eikonal method for halo nuclei E. C. Pinilla, P. Descouvemont and D. Baye Université Libre de Bruxelles, Brussels, Belgium 1. Motivation 2. Introduction 3. Four-body eikonal method Elastic scattering 9

More information

Cluster and shape in stable and unstable nuclei

Cluster and shape in stable and unstable nuclei luster and shape in stable and unstable nuclei Y. Kanada-En yo (Kyoto Univ.) ollaborators: Y. Hidaka (GOE-PD->Riken) F. Kobayashi (D2, Kyoto Univ.) T. Suhara (Kyoto Univ.->Tsukuba Univ.) Y. Taniguchi (Tsukuba

More information

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540 Central density Consider nuclear charge density Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) Central density (A/Z* charge density) about the same for nuclei heavier than 16 O, corresponding

More information

Evolution of shell structure in neutron-rich calcium isotopes

Evolution of shell structure in neutron-rich calcium isotopes Evolution of shell structure in neutron-rich calcium isotopes G. Hagen,, M. Hjorth-Jensen,, G. R. Jansen, R. Machleidt, 5 and T. Papenbrock, Physics Division, Oak Ridge National Laboratory, Oak Ridge,

More information

Study of cluster structure by GCM. Ryosuke Imai and Masaaki Kimura (Hokkaido Univ.)

Study of cluster structure by GCM. Ryosuke Imai and Masaaki Kimura (Hokkaido Univ.) Study of cluster structure by GCM Ryosuke Imai and Masaaki Kimura (Hokkaido Univ.) Energy [ MeV] Introduction Cluster structure and α gas-like states 12 C(3α) 16 O(4α) Recent studies for gas-like states.

More information

Probing shell evolution with large scale shell model calculations

Probing shell evolution with large scale shell model calculations Probing shell evolution with large scale shell model calculations Yutaka Utsuno Advanced Science Research Center, Japan Atomic Energy Agency Center for Nuclear Study, University of Tokyo Nuclear structure

More information

Three-Nucleon Forces and Masses of Neutron-Rich Nuclei Jason D. Holt

Three-Nucleon Forces and Masses of Neutron-Rich Nuclei Jason D. Holt Three-Nucleon Forces and Masses of Neutron-Rich Nuclei Jason D. Holt Drip Lines and Magic Numbers: The Evolving Nuclear Landscape 3N forces important in light nuclei, nuclear matter What are the limits

More information

WEAKLY BOUND NEUTRON RICH C ISOTOPES WITHIN RMF+BCS APPROACH

WEAKLY BOUND NEUTRON RICH C ISOTOPES WITHIN RMF+BCS APPROACH NUCLEAR PHYSICS WEAKLY BOUND NEUTRON RICH C ISOTOPES WITHIN RMF+BCS APPROACH G. SAXENA 1,2, D. SINGH 2, M. KAUSHIK 3 1 Department of Physics, Govt. Women Engineering College, Ajmer-305002 India, E-mail:

More information

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Mean-field concept (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Static Hartree-Fock (HF) theory Fundamental puzzle: The

More information

Quantum Theory of Many-Particle Systems, Phys. 540

Quantum Theory of Many-Particle Systems, Phys. 540 Quantum Theory of Many-Particle Systems, Phys. 540 Questions about organization Second quantization Questions about last class? Comments? Similar strategy N-particles Consider Two-body operators in Fock

More information

Lecture 4: Nuclear Energy Generation

Lecture 4: Nuclear Energy Generation Lecture 4: Nuclear Energy Generation Literature: Prialnik chapter 4.1 & 4.2!" 1 a) Some properties of atomic nuclei Let: Z = atomic number = # of protons in nucleus A = atomic mass number = # of nucleons

More information

Physics Letters B. New excited states in the halo nucleus 6 He

Physics Letters B. New excited states in the halo nucleus 6 He Physics Letters B 718 (2012) 441 446 Contents lists available at SciVerse ScienceDirect Physics Letters B www.elsevier.com/locate/physletb New excited states in the halo nucleus 6 He X. Mougeot a,v.lapoux

More information

Quantum three-body calculation of the nonresonant triple-α reaction rate at low temperatures

Quantum three-body calculation of the nonresonant triple-α reaction rate at low temperatures Quantum three-body calculation of the nonresonant triple- reaction rate at low temperatures Kazuyuki Ogata (in collaboration with M. Kan and M. Kamimura) Department of Physics, Kyushu University Kyushu

More information

Chiral interac,ons in nucleonic ma1er and nuclei

Chiral interac,ons in nucleonic ma1er and nuclei Chiral interac,ons in nucleonic ma1er and nuclei Thomas Papenbrock and G. Baardsen, A. Ekström, C. Forssen, G. Hagen, M. Hjorth Jensen, G. R. Jansen, R. Machleidt, W. Nazarewicz, J. Sarich, S. M. Wild

More information

Ab Initio Nuclear Structure Theory

Ab Initio Nuclear Structure Theory Ab Initio Nuclear Structure Theory Lecture 3: Light Nuclei Robert Roth Overview Lecture 1: Hamiltonian Prelude Many-ody Quantum Mechanics Nuclear Hamiltonian Matrix Elements Lecture 2: orrelations Two-ody

More information

Low-energy reactions involving halo nuclei: a microscopic version of CDCC

Low-energy reactions involving halo nuclei: a microscopic version of CDCC Low-energy reactions involving halo nuclei: a microscopic version of CDCC P. Descouvemont Université Libre de Bruxelles, Belgium In collaboration with M.S. Hussein (USP) E.C. Pinilla (ULB) J. Grineviciute

More information

Linking nuclear reactions and nuclear structure to on the way to the drip lines

Linking nuclear reactions and nuclear structure to on the way to the drip lines Linking nuclear reactions and nuclear structure to on the way to the drip lines DREB18 6/5/2018 Motivation Green s functions/propagator method Wim Dickhoff Bob Charity Lee Sobotka Hossein Mahzoon (Ph.D.2015)

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1 2358-19 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 1 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

The structure of neutron deficient Sn isotopes

The structure of neutron deficient Sn isotopes The structure of neutron deficient Sn isotopes arxiv:nucl-th/930007v 5 Oct 993 A. Holt, T. Engeland, M. Hjorth-Jensen and E. Osnes Department of Physics, University of Oslo, N-03 Oslo, Norway February

More information

Quantum Theory of Many-Particle Systems, Phys. 540

Quantum Theory of Many-Particle Systems, Phys. 540 Quantum Theory of Many-Particle Systems, Phys. 540 IPM? Atoms? Nuclei: more now Other questions about last class? Assignment for next week Wednesday ---> Comments? Nuclear shell structure Ground-state

More information

α Particle Condensation in Nuclear systems

α Particle Condensation in Nuclear systems Particle Condensation in Nuclear systems A. Tohsaki, H. Horiuchi, G. Röpke, P. Sch. T. Yamada and Y. Funaki -condensation in matter 8 Be and Hoyle state in 12 C -condensate wave function Effective GPE

More information

Features of nuclear many-body dynamics: from pairing to clustering

Features of nuclear many-body dynamics: from pairing to clustering Features of nuclear many-body dynamics: from pairing to clustering Alexander Volya Florida State University Collaborators: K. Kravvaris, Yu. Tchuvil sky Outline Configuration interaction approach SU(3)

More information

Many-Body Theory of the Electroweak Nuclear Response

Many-Body Theory of the Electroweak Nuclear Response Many-Body Theory of the Electroweak Nuclear Response Omar Benhar INFN and Department of Physics Università La Sapienza, I-00185 Roma Collaborators N. Farina, D. Meloni, H. Nakamura, M. Sakuda, R. Seki

More information

Nuclear Structure and Reactions using Lattice Effective Field Theory

Nuclear Structure and Reactions using Lattice Effective Field Theory Nuclear Structure and Reactions using Lattice Effective Field Theory Dean Lee North Carolina State University Nuclear Lattice EFT Collaboration Frontiers of Nuclear Physics Kavli Institute for Theoretical

More information

Nuclear equation of state with realistic nuclear forces

Nuclear equation of state with realistic nuclear forces Nuclear equation of state with realistic nuclear forces Hajime Togashi (RIKEN) Collaborators: M. Takano, K. Nakazato, Y. Takehara, S. Yamamuro, K. Sumiyoshi, H. Suzuki, E. Hiyama 1:Introduction Outline

More information

Subbarrier fusion of carbon isotopes ~ from resonance structure to fusion oscillations ~

Subbarrier fusion of carbon isotopes ~ from resonance structure to fusion oscillations ~ Subbarrier fusion of carbon isotopes ~ from resonance structure to fusion oscillations ~ Kouichi Hagino, Tohoku University Neil Rowley, IPN Orsay 1. Introduction: 12 C + 12 C fusion 2. Molecular resonances

More information

Unitary-model-operator approach to nuclear many-body problems

Unitary-model-operator approach to nuclear many-body problems Unitary-model-operator approach to nuclear many-body problems in collaboration with Structure calc. for many-nucleon systems Kenji Suzuki (Kyushu Inst. of Tech.) Ryoji kamoto (Kyushu Inst. of Tech.) V

More information

Nuclear Physics from Lattice Effective Field Theory

Nuclear Physics from Lattice Effective Field Theory Nuclear Physics from Lattice Effective Field Theory Dean Lee (NCSU/Bonn) work done in collaboration with Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Ulf-G. Meißner (Bonn/Jülich) Buḡra Borasoy (now

More information

arxiv: v1 [nucl-th] 17 Nov 2015

arxiv: v1 [nucl-th] 17 Nov 2015 Consistent analysis of one-nucleon spectroscopic factors involving weakly- and strongly-bound nucleons arxiv:5.05495v [nucl-th] 7 Nov 205 J. Oko lowicz, Y.H. Lam, 2 M. P loszajczak, 3 A.O. Macchiavelli,

More information

ISSN : Asian Journal of Engineering and Technology Innovation 02 (03) 2014 (08-13) QR Code for Mobile users

ISSN : Asian Journal of Engineering and Technology Innovation 02 (03) 2014 (08-13) QR Code for Mobile users ISSN : 2347-7385 Calculation of the Energy Levels of 25Na-27Na Isotopes S. Mohammadi, Sima Zamani Department of Physics, Payame Noor University, PO BOX 19395-3697 Tehran, Iran. Received on: 09-03-2014

More information

BINDING ENERGY AND SINGLE-PARTICLE ENERGIES IN THE 16 O REGION

BINDING ENERGY AND SINGLE-PARTICLE ENERGIES IN THE 16 O REGION 4 th Conference on Nuclear and Particle Physict, 11-15 Oct. 0003, Kayoum, Egypt BINDING ENERGY AND SINGLE-PARTICLE ENERGIES IN THE 16 O REGION - - IBIII m i W EG0600138 J.O. Fiase, L. K. Sharma Department

More information

Continuum Shell Model

Continuum Shell Model Continuum Shell Model Alexander Volya Florida State University This work was done with Vladimir Zelevinsky Supported by DOE and NSF. Outline Continuum Shell Model Basic Theory Reaction Formalism One-body

More information

Ab Initio Electromagnetic Transitions with the IMSRG

Ab Initio Electromagnetic Transitions with the IMSRG Ab Initio Electromagnetic Transitions with the IMSRG Nathan Parzuchowski Michigan State University March, 017 1 / 1 Outline IMSRG IMSRG rotates the Hamiltonian into a coordinate system where simple methods

More information

Quasiparticle-Rotor Model Description of Carbon Isotopes

Quasiparticle-Rotor Model Description of Carbon Isotopes Brazilian Journal of Physics, vol. 6, no. 4B, December, 6 49 Quasiparticle-Rotor Model Description of Carbon Isotopes T. Tarutina, A.R. Samana, F. Krmpotić,,4, and M.S. Hussein Departamento de Física Matemática,

More information

Beyond mean-field study on collective vibrations and beta-decay

Beyond mean-field study on collective vibrations and beta-decay Advanced many-body and statistical methods in mesoscopic systems III September 4 th 8 th, 2017, Busteni, Romania Beyond mean-field study on collective vibrations and beta-decay Yifei Niu Collaborators:

More information

Dissociation of deuteron, 6 He and 11 Be from Coulomb dissociation reaction cross-section

Dissociation of deuteron, 6 He and 11 Be from Coulomb dissociation reaction cross-section PRAMANA c Indian Academy of Sciences Vol. 70, No. 5 journal of May 2008 physics pp. 949 953 Dissociation of deuteron, 6 He and 11 Be from Coulomb dissociation reaction cross-section RAMENDRA NATH MAJUMDAR

More information

Neutron Halo in Deformed Nuclei

Neutron Halo in Deformed Nuclei Advances in Nuclear Many-Body Theory June 7-1, 211, Primosten, Croatia Neutron Halo in Deformed Nuclei Ó Li, Lulu Ò School of Physics, Peking University June 8, 211 Collaborators: Jie Meng (PKU) Peter

More information

Complex 2D Matrix Model and Internal Structure of Resonances

Complex 2D Matrix Model and Internal Structure of Resonances Complex 2D Matrix Model and Internal Structure of Resonances Kanabu Nawa (RIKEN) In collaboration with Sho Ozaki, Hideko Nagahiro, Daisuke Jido and Atsushi Hosaka [arxiv:1109.0426[hep-ph]] CONTENTS * Nature

More information

The nuclear shell-model: from single-particle motion to collective effects

The nuclear shell-model: from single-particle motion to collective effects The nuclear shell-model: from single-particle motion to collective effects 1. Nuclear forces and very light nuclei 2. Independent-particle shell model and few nucleon correlations 3. Many-nucleon correlations:

More information

Shell-model description for beta decays of pfg-shell nuclei

Shell-model description for beta decays of pfg-shell nuclei Shell-model description for beta decays of pfg-shell nuclei Workshop on New Era of Nuclear Physics in the Cosmos the r-process nucleosynthesis Sep. 25-26, 2008 @RIKEN M. Honma (Univ. of Aizu) T. Otsuka

More information

Theoretical analysis of resonance states in 4 H, 4 He and arxiv:nucl-th/ v1 20 Dec 2004

Theoretical analysis of resonance states in 4 H, 4 He and arxiv:nucl-th/ v1 20 Dec 2004 Theoretical analysis of resonance states in 4 H, 4 He and arxiv:nucl-th/0412078v1 20 Dec 2004 4 Li above three-cluster threshold V Vasilevsky, F Arickx, J Broeckhove, and VNRomanov Bogolyubov Institute

More information

Momentum Distribution of a Fragment and Nucleon Removal Cross Section in the Reaction of Halo Nuclei

Momentum Distribution of a Fragment and Nucleon Removal Cross Section in the Reaction of Halo Nuclei Commun. Theor. Phys. Beijing, China) 40 2003) pp. 693 698 c International Academic Publishers Vol. 40, No. 6, December 5, 2003 Momentum Distribution of a ragment and Nucleon Removal Cross Section in the

More information

Hartree-Fock-Bogolyubov calculations with Gaussian expansion method arxiv:nucl-th/ v1 15 Aug 2005

Hartree-Fock-Bogolyubov calculations with Gaussian expansion method arxiv:nucl-th/ v1 15 Aug 2005 Hartree-Fock-Bogolyubov calculations with Gaussian expansion method arxiv:nucl-th/050808v1 15 Aug 005 H. Nakada Department of Physics, Faculty of Science, Chiba University, Yayoi-cho 1-33, Inage, Chiba

More information

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach A. PETROVICI Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania Outline complex

More information

RPA calculations with Gaussian expansion method

RPA calculations with Gaussian expansion method RPA calculations with Gaussian expansion method arxiv:94.428v2 [nucl-th] 21 Jul 29 H. Nakada a, K. Mizuyama b, M. Yamagami c, M. Matsuo d a epartment of Physics, Graduate School of Science, Chiba University,

More information

NUCLEAR STRUCTURE AB INITIO

NUCLEAR STRUCTURE AB INITIO December, 6:8 WSPC/Trim Size: 9in x 6in for Proceedings master NUCLEAR STRUCTURE AB INITIO H. FELDMEIER AND T. NEFF Gesellschaft für Schwerionenforschung mbh Planckstr., D-69 Darmstadt, Germany E-mail:

More information

No-Core Shell Model and Continuum Spectrum States of Light Nuclei

No-Core Shell Model and Continuum Spectrum States of Light Nuclei Applied Mathematics & Information Sciences 3(3) (9), 45 71 An International Journal c 9 Dixie W Publishing Corporation, U. S. A. No-Core Shell Model and Continuum Spectrum States of Light Nuclei A. M.

More information

Fine structure of nuclear spin-dipole excitations in covariant density functional theory

Fine structure of nuclear spin-dipole excitations in covariant density functional theory 1 o3iø(œ April 12 16, 2012, Huzhou, China Fine structure of nuclear spin-dipole excitations in covariant density functional theory ùíî (Haozhao Liang) ŒÆÔnÆ 2012 c 4 13 F ÜŠöµ Š # Ç!Nguyen Van Giai Ç!ë+

More information