Fine structure of nuclear spin-dipole excitations in covariant density functional theory

Size: px
Start display at page:

Download "Fine structure of nuclear spin-dipole excitations in covariant density functional theory"

Transcription

1 1 o3iø(œ April 12 16, 2012, Huzhou, China Fine structure of nuclear spin-dipole excitations in covariant density functional theory ùíî (Haozhao Liang) ŒÆÔnÆ 2012 c 4 13 F ÜŠöµ Š # Ç!Nguyen Van Giai Ç!ë+ Æ

2 Outline 1 Introduction 2 Theoretical Framework Relativistic Hartree-Fock theory Random Phase Approximation RHF+RPA 3 GT and SD Resonances 4 Fine structure of SD excitations in 16 O 5 Summary

3 Outline 1 Introduction 2 Theoretical Framework Relativistic Hartree-Fock theory Random Phase Approximation RHF+RPA 3 GT and SD Resonances 4 Fine structure of SD excitations in 16 O 5 Summary

4 Nuclear spin-isospin resonances Nuclear charge-exchange excitations β-decay charge-exchange reactions These excitations play important roles in spin and isospin properties of the in-medium nuclear interaction neutron skin thickness Krasznahorkay:1999PRL, Vretenar:2003PRL, Yako:2006PRC β-decay rates of nuclei in r-process path Engel:1999PRC, Borzov:2006NPA ββ-decay rates Ejiri:2000PhysRep, Avignone:2008RMP inclusive neutrino-nucleus cross sections Kolbe:2003JPG, Vogel:2006NPA isospin corrections for superallowed β deacys Towner & Hardy:2010RPP, HZL:2009PRC... Nuclear spin-isospin resonances become one of the central topics in nuclear physics, particle physics, and astrophysics.

5 SD excitations and resolving different J π components Spin-dipole (SD) excitations with S = 1 and L = 1 have attracted more and more attentions due to their connection with neutron-skin thickness Krasznahorkay:1999PRL cross section of neutrino-nucleus scattering Kolbe:2003JPG, Vogel:2006NPA ββ-decay rates Ejiri:2000PhysRep Different from Gamow-Teller (GT) excitations having single J π = 1 + component, SD excitations are composed of three collective components with spin-parity J π = 0, 1 and 2. Resolving the J π = 0, 1, 2 components is crucial to understand strengths of the nucleon-nucleon effective tensor interactions Bai:2010PRL,2011PRC multipole-dependent effects on the neutrino-nucleus scattering Lazauskas:2007NPA and the 0νββ decays Šimkovic:2008PRC, Fang:2011PRC

6 Microscopic theories for SD excitations Shell models (A 60) Caurier:2005RMP Random Phase Approximation (RPA) based on density functional theories traditional (non-relativistic) density functional Auerbach:1984PRC, Bai:2010RPL,2011PRC covariant (relativistic) density functional RHF+RPA Excellent agreement with the GT resonances data was obtained without any readjustment of the covariant density functional. HZL, Giai, Meng, PRL 101, (2008)

7 In this work In this work Self-consistent RPA approach based on the RHF theory will be applied to investigate the SD excitations. Results will be compared to the fine structure provided by the most up-to-date experiments in 16 O. RH+RPA results will be also shown to present the effects of the exchange terms.

8 Outline 1 Introduction 2 Theoretical Framework Relativistic Hartree-Fock theory Random Phase Approximation RHF+RPA 3 GT and SD Resonances 4 Fine structure of SD excitations in 16 O 5 Summary

9 Relativistic Hartree-Fock theory Covariant density functional theory RHF theory Effective Lagrangian density Bouyssy:1987PRC, Long:2006PLB ( L = [iγ ψ µ µ M g σ σ γ µ g ω ω µ + g ρ τ ρ µ + e 1 τ ) 3 A µ f ] π γ 5 γ µ µ π τ 2 m π µ σ µ σ 1 2 m2 σσ Ωµν Ω µν m2 ωω µ ω µ 1 4 R µν R µν m2 ρ ρ µ ρ µ µ π µ π 1 2 m2 π π π 1 4 F µν F µν (1) ψ Energy functional of the system E = Φ 0 H Φ 0 = E k + E D σ + E D ω + E D ρ + E D A +E E σ + E E ω + E E ρ + E E π + E E A (2)

10 Random Phase Approximation Random Phase Approximation RPA equations Ring & Schuck:1980 A B B A X Y = ω ν X Y (3) where the matrix elements of particle-hole residual interactions read A = (E A E a )δ AB δ ab (E α E a )δ αβ δ ab + f Af b V f B f a f a f B f A f b V f β f a f a f β, f α f b V f B f a f a f B f α f b V f β f a f a f β B = f Af B V f b f a f a f b f A f β V f b f a f a f b f α f B V f b f a f a f b f α f β V f b f a f a f b (4a) (4b) Particle-hole (ph) residual interactions in self-consistent RPA derived from the second derivative of the energy functional with rearrangement terms, if the meson-nucleon couplings are density-dependent

11 RHF+RPA RHF+RPA in charge-exchange channel Particle-hole residual interactions σ-meson: V σ (1, 2) = [g σ γ 0 ] 1 [g σ γ 0 ] 2 D σ (1, 2) (5a) ω-meson: V ω (1, 2) = [g ω γ 0 γ µ ] 1 [g ω γ 0 γ µ ] 2 D ω (1, 2) (5b) ρ-meson: V ρ (1, 2) = [g ρ γ 0 γ µ τ] 1 [g ρ γ 0 γ µ τ] 2 D ρ (1, 2) (5c) pseudovector π-n coupling: V π (1, 2) = [ f π m π τγ 0 γ 5 γ k k ] 1 [ f π m π τγ 0 γ 5 γ l l ] 2 D π (1, 2) (5d) zero-range counter-term of π-meson: V πδ (1, 2) = g [ f π m π τγ 0 γ 5 γ] 1 [ f π m π τγ 0 γ 5 γ] 2 δ(r 1 r 2 ), g = 1/3 (5e) π-meson is included naturally. g = 1/3 in the zero-range counter-term of π-meson is maintained for the sake of self-consistency.

12 Outline 1 Introduction 2 Theoretical Framework Relativistic Hartree-Fock theory Random Phase Approximation RHF+RPA 3 GT and SD Resonances 4 Fine structure of SD excitations in 16 O 5 Summary

13 RHF+RPA for Gamow-Teller resonances Gamow-Teller resonances in 48 Ca, 90 Zr, and 208 Pb GTR excitation energies can be reproduced in a fully self-consistent way HZL, Giai, Meng, PRL 101, (2008)

14 Physical mechanisms of GTR RH+RPA no contribution from isoscalar mesons (σ, ω), because exchange terms are missing. π-meson is dominant in this resonance. g has to be refitted to reproduce the experimental data RHF+RPA isoscalar mesons (σ, ω) play an essential role via the exchange terms. π-meson plays a minor role. g = 1/3 is kept for self-consistency. HZL, Giai, Meng, PRL 101, (2008)

15 Spin-dipole resonances Main peak can be reproduced by RHF+RPA exp. Yako:2006PRC Energy hierarchy RHF+RPA: E(2 ) < E(1 ) < E(0 ) agree with SHF+RPA Fracasso:2007PRC RH+RPA: E(2 ) < E(0 ) < E(1 ) Separating experimentally the different components from the total transition strength would be helpful to evaluate the theoretical predictive power, e.g., SDR in 208 Pb Wakasa:2010arXiv and 16 O Wakasa:2011PRC

16 Outline 1 Introduction 2 Theoretical Framework Relativistic Hartree-Fock theory Random Phase Approximation RHF+RPA 3 GT and SD Resonances 4 Fine structure of SD excitations in 16 O 5 Summary

17 Fine structure of GT and SD excitations in 16 O A most recent 16 O( p, n) 16 F experiment Wakasa et al., PRC 84, (2011) SHF+RPA calculations: Bai et al., PRC 84, (2011)

18 Spin-dipole excitations by RHF+RPA HZL, Zhao, Meng, arxiv: [nucl-th] SDR in T channel by RHF+RPA, the lowest RPA state as the reference of E x. exp. Wasaka:2011PRC In general, the 0, 1, and 2 excitations are well reproduced. The 0 1, 1 1, and 2 1 triplets are found at E x 0 MeV. The shoulder at E x 6 MeV and giant resonance at E x 7.5 MeV are nicely reproduced. In particular, the shoulder state cannot be described by shell model calculations.

19 Spin-dipole excitations by RHF+RPA HZL, Zhao, Meng, arxiv: [nucl-th] SDR in T channel by RHF+RPA, the lowest RPA state as the reference of E x. exp. Wasaka:2011PRC The broad resonances at E x 9.5 and MeV are understood as the mixture of the J π = 1 and 2 excitations, and the former one is dominant by 2 component, whereas the latter one is dominant by 1 component. The 0 resonances are predicted to be fragmented at MeV with the peak at E x 14.5 MeV.

20 SD excitations by RHF+RPA and RH+RPA RH+RPA results The general pattern of 2 excitations are similar to that of RHF+RPA calculations, except the peak at E x 9.5 MeV is missing. The 1 resonances are predicted at MeV, somehow too high in energy by comparing to data. The 0 resonances are predicted to be centralized at MeV, but not seen in experiments yet. Conclusion By comparing with the experimental date, it is found that the self-consistent RHF+RPA calculations are more favored.

21 Unperturbed and collective excitations R - (fm 2 /M e V ) R - (fm 2 /M e V ) R - (fm 2 /M e V ) P K O 1 H a r tr e e -F o c k R P A J = 0 - J = J = E x ( M e V ) D D - M E 2 H a r tr e e R P A J = 0 - J = 1 - J = E x ( M e V ) HZL, Zhao, Meng, arxiv: [nucl-th]

22 Diagonal matrix elements of ph interactions d i a g o n a l m a t r i x e l e m e n t s ( M e V ) J = 0-1 /2 πs 1 /2 J = 1-1 /2 πs 1 /2 J = 2-1 /2 πd 5 /2 P K O 1 3 /2 πd 3 /2 3 /2 πd 5 /2 3 /2 πd 5 /2 3 /2 πd 3 /2 3 /2 πs 1 /2 J = 0-1 /2 πs 1 /2 J = 1-1 /2 πs 1 /2 J = 2-1 /2 πd 5 /2 D D -M E 2 3 /2 πd 3 /2 3 /2 πd 5 /2 3 /2 πd 5 /2 t o t a l σ + ω ρ π P V π Z R 3 /2 πd 3 /2 3 /2 πs 1 /2 HZL, Zhao, Meng, arxiv: [nucl-th]

23 Spin-dipole excitations in T + channel by RHF+RPA HZL, Zhao, Meng, arxiv: [nucl-th] SDR in T + channel by RHF+RPA, the lowest RPA state as the reference of E x. exp. Hicks:1991PRC The 0 1, 1 1, and 2 1 triplets are found at E x = 0 2 MeV. The main resonance at E x 8.3 MeV is nicely reproduced, where the 2 component is predicted as the dominant component. A shoulder structure at E x 6.5 MeV is mainly formed by the 2 excitations.

24 Spin-dipole excitations in T + channel by RHF+RPA HZL, Zhao, Meng, arxiv: [nucl-th] SDR in T + channel by RHF+RPA, the lowest RPA state as the reference of E x. exp. Hicks:1991PRC Giant resonances at E x = MeV are also reproduced. It is predicted that these resonances mainly consist of 1 and 2 excitations, and the 1 component is the dominant component. The 0 resonances are predicted to be fragmented at E x = MeV.

25 Outline 1 Introduction 2 Theoretical Framework Relativistic Hartree-Fock theory Random Phase Approximation RHF+RPA 3 GT and SD Resonances 4 Fine structure of SD excitations in 16 O 5 Summary

26 Summary SD excitations have been investigated with the fully self-consistent RPA based on the covariant density functional theory. The fine structure of SD excitations in the most up-to-date 16 O( p, n) 16 F experiment is excellently reproduced without any readjustment in the functional. The characteristics of SD excitations are understood with the delicate balance between the σ- and ω-meson fields via the exchange terms. The fine structure of SD excitations for 16 O(n, p) 16 N channel has also been predicted for future experiments.

Self-consistent study of spin-isospin resonances and its application in astrophysics

Self-consistent study of spin-isospin resonances and its application in astrophysics Tensor Interaction in Nuclear and Hadron Physics November 1 3, Beihang University, Beijing, China Self-consistent study of spin-isospin resonances and its application in astrophysics Haozhao Liang School

More information

Localized form of Fock terms in nuclear covariant density functional theory

Localized form of Fock terms in nuclear covariant density functional theory Computational Advances in Nuclear and Hadron Physics September 21 October 3, 215, YITP, Kyoto, Japan Localized form of Fock terms in nuclear covariant density functional theory Haozhao Liang ùíî RIKEN

More information

Localized form of Fock terms in nuclear covariant density functional theory

Localized form of Fock terms in nuclear covariant density functional theory Nuclear Structure and Astrophysical Applications July 8-12, 213, ECT*, Trento, Italy Localized form of Fock terms in nuclear covariant density functional theory Haozhao Liang ùíî RIKEN Nishina Center,

More information

Nuclear collective vibrations in hot nuclei and electron capture in stellar evolution

Nuclear collective vibrations in hot nuclei and electron capture in stellar evolution 2012 4 12 16 Nuclear collective vibrations in hot nuclei and electron capture in stellar evolution Yifei Niu Supervisor: Prof. Jie Meng School of Physics, Peking University, China April 12, 2012 Collaborators:

More information

Brief introduction Motivation and present situation: example GTR Propose new fitting protocols

Brief introduction Motivation and present situation: example GTR Propose new fitting protocols Towards the improvement of spin-isospin properties in nuclear energy density functionals Xavier Roca-Maza Dipartimento di Fisica, Università degli Studi di Milano and INFN, via Celoria 16, I-20133 Milano,

More information

Spin-Parity Decomposition of Spin Dipole Resonances and Tensor Interaction Effects. Tomotsugu Wakasa. Department of Physics, Kyushu University

Spin-Parity Decomposition of Spin Dipole Resonances and Tensor Interaction Effects. Tomotsugu Wakasa. Department of Physics, Kyushu University Spin-Parity Decomposition of Spin Dipole Resonances and Tensor Interaction Effects Tomotsugu Wakasa Department of Physics, Kyushu University Outline Residual interaction effects of spin-isospin responses

More information

Functional Orsay

Functional Orsay Functional «Theories» @ Orsay Researchers: M. Grasso, E. Khan, J. Libert, J. Margueron, P. Schuck. Emeritus: N. Van Giai. Post-doc: D. Pena-Arteaga. PhD: J.-P. Ebran, A. Fantina, H. Liang. Advantages of

More information

Towards a universal nuclear structure model. Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 2017

Towards a universal nuclear structure model. Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 2017 Towards a universal nuclear structure model Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 217 1 Table of contents: Brief presentation of the group Motivation Model and selected

More information

QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates. N. Paar

QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates. N. Paar Strong, Weak and Electromagnetic Interactions to probe Spin-Isospin Excitations ECT*, Trento, 28 September - 2 October 2009 QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates N.

More information

Nuclear Structure for the Crust of Neutron Stars

Nuclear Structure for the Crust of Neutron Stars Nuclear Structure for the Crust of Neutron Stars Peter Gögelein with Prof. H. Müther Institut for Theoretical Physics University of Tübingen, Germany September 11th, 2007 Outline Neutron Stars Pasta in

More information

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments)

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments) T Symmetry EDM s Octupole Deformation Other Nuclei Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments) J. Engel University of North Carolina June 16, 2005 T

More information

Spin and Isospin excitations in Nuclei Some general comments on EDFs Motivation and present situation: example GTR Propose new fitting protocols

Spin and Isospin excitations in Nuclei Some general comments on EDFs Motivation and present situation: example GTR Propose new fitting protocols Towards the improvement of spin-isospin properties in nuclear energy density functionals Xavier Roca-Maza Dipartimento di Fisica, Università degli Studi di Milano and INFN, via Celoria 16, I-2133 Milano,

More information

Beyond mean-field study on collective vibrations and beta-decay

Beyond mean-field study on collective vibrations and beta-decay Advanced many-body and statistical methods in mesoscopic systems III September 4 th 8 th, 2017, Busteni, Romania Beyond mean-field study on collective vibrations and beta-decay Yifei Niu Collaborators:

More information

Relativistic mean-field description of collective motion in nuclei: the pion field

Relativistic mean-field description of collective motion in nuclei: the pion field Z. Phys. A 354, 375 380 1996) ZEITSCHRIFT FÜR PHYSIK A c Springer-Verlag 1996 Relativistic mean-field description of collective motion in nuclei: the pion field B. Podobnik 1, D. Vretenar 1, P. Ring 1

More information

Neutron Halo in Deformed Nuclei

Neutron Halo in Deformed Nuclei Advances in Nuclear Many-Body Theory June 7-1, 211, Primosten, Croatia Neutron Halo in Deformed Nuclei Ó Li, Lulu Ò School of Physics, Peking University June 8, 211 Collaborators: Jie Meng (PKU) Peter

More information

in covariant density functional theory.

in covariant density functional theory. Nuclear Particle ISTANBUL-06 Density vibrational Functional coupling Theory for Excited States. in covariant density functional theory. Beijing, Sept. 8, 2011 Beijing, May 9, 2011 Peter Peter Ring Ring

More information

Covariant density functional Theory: a) The impact of pairing correlations on the fission barriers b) The role of pion. Georgios Lalazissis

Covariant density functional Theory: a) The impact of pairing correlations on the fission barriers b) The role of pion. Georgios Lalazissis Covariant density functional Theory: a) The impact of pairing correlations on the fission barriers b) The role of pion Georgios Lalazissis Aristotle University of Thessaloniki 2 3 4 5 Covariant density

More information

Probing the Nuclear Symmetry Energy and Neutron Skin from Collective Excitations. N. Paar

Probing the Nuclear Symmetry Energy and Neutron Skin from Collective Excitations. N. Paar Calcium Radius Experiment (CREX) Workshop at Jefferson Lab, March 17-19, 2013 Probing the Nuclear Symmetry Energy and Neutron Skin from Collective Excitations N. Paar Physics Department Faculty of Science

More information

Nuclear symmetry energy deduced from dipole excitations: comparison with other constraints

Nuclear symmetry energy deduced from dipole excitations: comparison with other constraints Nuclear symmetry energy deduced from dipole excitations: a comparison with other constraints G. Colò June 15th, 2010 This work is part of a longer-term research plan. The goal is: understanding which are

More information

Double Charge-Exchange Reactions and Double Beta- Decay. N. Auerbach, Tel Aviv University and Michigan State University

Double Charge-Exchange Reactions and Double Beta- Decay. N. Auerbach, Tel Aviv University and Michigan State University Double Charge-Exchange Reactions and Double Beta- Decay N. Auerbach, Tel Aviv University and Michigan State University D.C. Zheng, L. Zamick and NA, Annals of Physics 197, 343 (1990). Nuclear Structure

More information

The Nuclear Equation of State

The Nuclear Equation of State The Nuclear Equation of State Theoretical models for nuclear structure studies Xavier Roca-Maza Università degli Studi di Milano e INFN, sezione di Milano Terzo Incontro Nazionale di Fisica Nucleare LNF,

More information

Charge exchange reactions and photo-nuclear reactions

Charge exchange reactions and photo-nuclear reactions Charge exchange reactions and photo-nuclear reactions σ( 7 Li, 7 Be) and σ(γ,n) S. Nakayama (Univ of Tokushima) Determination of σ(γ,n) from CE reactions (CE reaction = Charge Exchange reaction) Application

More information

Motivation Density functional theory H(F) RPA Skyrme, Gogny or Relativistic

Motivation Density functional theory H(F) RPA Skyrme, Gogny or Relativistic New Skyrme energy density functional for a better description of spin-isospin resonances Xavier Roca-Maza Dipartimento di Fisica, Università degli Studi di Milano and INFN, via Celoria 16, I-2133 Milano,

More information

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Mean-field concept (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Static Hartree-Fock (HF) theory Fundamental puzzle: The

More information

Nuclear Landscape not fully known

Nuclear Landscape not fully known Nuclear Landscape not fully known Heaviest Elements? Known Nuclei Limit of proton rich nuclei? Fission Limit? Possible Nuclei Limit of Neutron Rich Nuclei? Nuclear Radii Textbooks: R = r 00 A 1/3 1/3 I.

More information

Nuclear Matter Incompressibility and Giant Monopole Resonances

Nuclear Matter Incompressibility and Giant Monopole Resonances Nuclear Matter Incompressibility and Giant Monopole Resonances C.A. Bertulani Department of Physics and Astronomy Texas A&M University-Commerce Collaborator: Paolo Avogadro 27th Texas Symposium on Relativistic

More information

Toward a unified description of equilibrium and dynamics of neutron star matter

Toward a unified description of equilibrium and dynamics of neutron star matter Toward a unified description of equilibrium and dynamics of neutron star matter Omar Benhar INFN and Department of Physics Sapienza Università di Roma I-00185 Roma, Italy Based on work done in collaboration

More information

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar Evolution Of Shell Structure, Shapes & Collective Modes Dario Vretenar vretenar@phy.hr 1. Evolution of shell structure with N and Z A. Modification of the effective single-nucleon potential Relativistic

More information

RPA CORRELATIONS AND NUCLEAR DENSITIES IN RELATIVISTIC MEAN FIELD APPROACH

RPA CORRELATIONS AND NUCLEAR DENSITIES IN RELATIVISTIC MEAN FIELD APPROACH Romanian Reports in Physics, Vol. 59, No. 2, P. 693 706, 2007 Dedicated to Prof. Dorin N. Poenaru s 70th Anniversary RPA CORRELATIONS AND NUCLEAR DENSITIES IN RELATIVISTIC MEAN FIELD APPROACH N. VAN GIAI

More information

PARTICLE-NUMBER CONSERVING

PARTICLE-NUMBER CONSERVING PARTICLE-NUMBER CONSERVING MICROSCOPIC APPROACH AND APPLICATION TO ISOSPIN MIXING L. Bonneau, J. Le Bloas, H. Naidja, P. Quentin, K. Sieja (CENBG/Université Bordeaux 1) J. Bartel (IPHC/Université Louis

More information

Contents / Key words. Self-consistent deformed pnqrpa for spin-isospin responses

Contents / Key words. Self-consistent deformed pnqrpa for spin-isospin responses Contents / Key words Self-consistent deformed pnqrpa for spin-isospin responses Self-consistency: T=1 pairing and IAS Collectivity of GT giant resonance Possible new type of collective mode: T= proton-neutron

More information

Applications of nuclear physics in neutrino physics

Applications of nuclear physics in neutrino physics Applications of nuclear physics in neutrino physics Emanuel Ydrefors E. Ydrefors (KTH) Neutrino physics 1 / 16 Outline of lecture Brief introduction to neutrinos Nuclear beta decay Neutrino-nucleus scattering

More information

arxiv: v2 [nucl-th] 28 Aug 2014

arxiv: v2 [nucl-th] 28 Aug 2014 Pigmy resonance in monopole response of neutron-rich Ni isotopes? Ikuko Hamamoto 1,2 and Hiroyuki Sagawa 1,3 1 Riken Nishina Center, Wako, Saitama 351-0198, Japan 2 Division of Mathematical Physics, arxiv:1408.6007v2

More information

The 2010 US National Nuclear Physics Summer School and the TRIUMF Summer Institute, NNPSS-TSI June 21 July 02, 2010, Vancouver, BC, Canada

The 2010 US National Nuclear Physics Summer School and the TRIUMF Summer Institute, NNPSS-TSI June 21 July 02, 2010, Vancouver, BC, Canada TU DARMSTADT The 2010 US National Nuclear Physics Summer School and the TRIUMF Summer Institute, NNPSS-TSI June 21 July 02, 2010, Vancouver, BC, Canada Achim Richter ECT* Trento/Italy and TU Darmstadt/Germany

More information

Neutrino-Nucleus Reactions Based on Recent Progress of Shell Model Calculations

Neutrino-Nucleus Reactions Based on Recent Progress of Shell Model Calculations Neutrino-Nucleus Reactions Based on Recent Progress of Shell Model Calculations Toshio Suzuki (Nihon University) New shell model calculations in p-shell modified shell model Hamiltonian (SFO) with improved

More information

Allowed beta decay May 18, 2017

Allowed beta decay May 18, 2017 Allowed beta decay May 18, 2017 The study of nuclear beta decay provides information both about the nature of the weak interaction and about the structure of nuclear wave functions. Outline Basic concepts

More information

Three-nucleon forces and neutron-rich nuclei

Three-nucleon forces and neutron-rich nuclei Three-nucleon forces and neutron-rich nuclei Achim Schwenk Facets of Strong Interaction Physics Hirschegg 40 + Bengt 60, Jan. 18, 2012 Happy Birthday Bengt! Outline Understanding three-nucleon forces Three-body

More information

Effect of Λ(1405) on structure of multi-antikaonic nuclei

Effect of Λ(1405) on structure of multi-antikaonic nuclei 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon, (May 31-June 4, 2010, College of William and Mary, Williamsburg, Virginia) Session 2B Effect of Λ(1405) on structure

More information

Some new developments in relativistic point-coupling models

Some new developments in relativistic point-coupling models Some new developments in relativistic point-coupling models T. J. Buervenich 1, D. G. Madland 1, J. A. Maruhn 2, and P.-G. Reinhard 3 1 Los Alamos National Laboratory 2 University of Frankfurt 3 University

More information

PAIRING PROPERTIES OF SYMMETRIC NUCLEAR MATTER IN RELATIVISTIC MEAN FIELD THEORY

PAIRING PROPERTIES OF SYMMETRIC NUCLEAR MATTER IN RELATIVISTIC MEAN FIELD THEORY International Journal of Modern Physics E Vol. 17, No. 8 (2008) 1441 1452 c World Scientific Publishing Company PAIRING PROPERTIES OF SYMMETRIC NUCLEAR MATTER IN RELATIVISTIC MEAN FIELD THEORY J. LI, B.

More information

Observables predicted by HF theory

Observables predicted by HF theory Observables predicted by HF theory Total binding energy of the nucleus in its ground state separation energies for p / n (= BE differences) Ground state density distribution of protons and neutrons mean

More information

Magnetic Dipole and Quadrupole Transitions in Nuclei Open Problems

Magnetic Dipole and Quadrupole Transitions in Nuclei Open Problems TU DARMSTADT Magnetic Dipole and Quadrupole Transitions in Nuclei Open Problems Qualitative nature of the M1 response Orbital M1 scissors mode: low and high Spin M1 resonance in heavy deformed nuclei Quenching

More information

Schiff Moments. J. Engel. May 9, 2017

Schiff Moments. J. Engel. May 9, 2017 Schiff Moments J. Engel May 9, 2017 Connection Between EDMs and T Violation Consider non-degenerate ground state g.s. : J, M. Symmetry under rotations R y (π) for vector operator like d i e i r i implies:

More information

arxiv: v1 [nucl-th] 22 Apr 2007

arxiv: v1 [nucl-th] 22 Apr 2007 Spin-isospin nuclear response using the existing microscopic Skyrme functionals S. Fracasso and G. Colò Dipartmento di Fisica, Università degli Studi and INFN, Sezione di Milano, 2133 Milano, Italy arxiv:74.2892v1

More information

Pygmy dipole resonances in stable and unstable nuclei

Pygmy dipole resonances in stable and unstable nuclei Pygmy dipole resonances in stable and unstable nuclei Xavier Roca-Maza INFN, Sezione di Milano, Via Celoria 16, I-2133, Milano (Italy) Collaborators: Giacomo Pozzi, Marco Brenna, Kazhuito Mizuyama and

More information

arxiv: v1 [nucl-th] 24 May 2011

arxiv: v1 [nucl-th] 24 May 2011 Tensor effective interaction in self-consistent Random Phase Approximation calculations arxiv:1105.4782v1 [nucl-th] 24 May 2011 M. Anguiano 1, G. Co 2,3, V. De Donno 2,3 and A. M. Lallena 1 1) Departamento

More information

Peter Ring. ISTANBUL-06 New developments in covariant density functional theory. Saariselkä April 20, 2009

Peter Ring. ISTANBUL-06 New developments in covariant density functional theory. Saariselkä April 20, 2009 ISTANBUL-06 New developments in covariant density functional theory Saariselkä April 20, 2009 Peter Ring Technical University Munich Universidad Autónoma de Madrid 1 Content Covariant density functionals

More information

Nuclear and Coulomb excitations of the pygmy dipole resonances

Nuclear and Coulomb excitations of the pygmy dipole resonances SPES Legnaro, 5-7 ovember uclear and oulomb excitations of the pygmy dipole resonances M. V. Andrés a), F. tara b), D. Gambacurta b), A. Vitturi c), E. G. Lanza b) a)departamento de FAM, Universidad de

More information

Shape of Lambda Hypernuclei within the Relativistic Mean-Field Approach

Shape of Lambda Hypernuclei within the Relativistic Mean-Field Approach Universities Research Journal 2011, Vol. 4, No. 4 Shape of Lambda Hypernuclei within the Relativistic Mean-Field Approach Myaing Thi Win 1 and Kouichi Hagino 2 Abstract Self-consistent mean-field theory

More information

Density dependence of the symmetry energy and the nuclear equation of state : A dynamical and statistical model perspective

Density dependence of the symmetry energy and the nuclear equation of state : A dynamical and statistical model perspective Density dependence of the symmetry energy and the nuclear equation of state : A dynamical and statistical model perspective D. V. Shetty, S. J. Yennello, and G. A. Souliotis The density dependence of the

More information

Tritium β decay in pionless EFT

Tritium β decay in pionless EFT Ohio University June 0, 207 Recipe for EFT(/π) For momenta p < m π pions can be integrated out as degrees of freedom and only nucleons and external currents are left. Write down all possible terms of nucleons

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1 2358-19 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 1 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

Nature of low-energy dipole states in exotic nuclei

Nature of low-energy dipole states in exotic nuclei Nature of low-energy dipole states in exotic nuclei Xavier Roca-Maza Università degli Studi di Milano, Via Celoria 16, I-133, Milano SPES One-day Workshop on "Collective Excitations of Exotic Nuclei" December

More information

Nuclear Symmetry Energy Constrained by Cluster Radioactivity. Chang Xu ( 许昌 ) Department of Physics, Nanjing University

Nuclear Symmetry Energy Constrained by Cluster Radioactivity. Chang Xu ( 许昌 ) Department of Physics, Nanjing University Nuclear Symmetry Energy Constrained by Cluster Radioactivity Chang Xu ( 许昌 ) Department of Physics, Nanjing University 2016.6.13-18@NuSym2016 Outline 1. Cluster radioactivity: brief review and our recent

More information

Calculating β Decay for the r Process

Calculating β Decay for the r Process Calculating β Decay for the r Process J. Engel with M. Mustonen, T. Shafer C. Fröhlich, G. McLaughlin, M. Mumpower, R. Surman D. Gambacurta, M. Grasso June 3, 26 Nuclear Landscape To convincingly locate

More information

Schiff Moments. J. Engel. October 23, 2014

Schiff Moments. J. Engel. October 23, 2014 Schiff Moments J. Engel October 23, 2014 One Way Things Get EDMs Starting at fundamental level and working up: Underlying fundamental theory generates three T -violating πnn vertices: N? ḡ π New physics

More information

Lisheng Geng. Ground state properties of finite nuclei in the relativistic mean field model

Lisheng Geng. Ground state properties of finite nuclei in the relativistic mean field model Ground state properties of finite nuclei in the relativistic mean field model Lisheng Geng Research Center for Nuclear Physics, Osaka University School of Physics, Beijing University Long-time collaborators

More information

Nuclear Physics studied by Neutrino induced Coherent Pion Production

Nuclear Physics studied by Neutrino induced Coherent Pion Production Nuclear Physics studied by Neutrino induced Coherent Pion Production Yasuhiro SAKEMI Research Center for Nuclear Physics (RCNP) Osaka University Motivation from the point of view of nuclear physics. Neutrino-Nucleus

More information

Calculating β Decay for the r Process

Calculating β Decay for the r Process Calculating β Decay for the r Process J. Engel with M. Mustonen, T. Shafer C. Fröhlich, G. McLaughlin, M. Mumpower, R. Surman D. Gambacurta, M. Grasso January 8, 7 R-Process Abundances Nuclear Landscape

More information

Schiff Moments. J. Engel. November 4, 2016

Schiff Moments. J. Engel. November 4, 2016 Schiff Moments J. Engel November 4, 2016 One Way Things Get EDMs Starting at fundamental level and working up: Underlying fundamental theory generates three T-violating πnn vertices: N? ḡ π New physics

More information

1 o3 IØ( Œ ² 2012 fø^ý ƒéø ã oê 3 ŒÆÔnÆ " co 1 / 49

1 o3 IØ( Œ ² 2012 fø^ý ƒéø ã oê 3 ŒÆÔnÆ  co 1 / 49 1 o3iø(œ ² 01 fø^ýƒéø ã oê 3ŒÆÔnÆ " co 1 / 49 Outline 1 Introduction Nuclear magnetic moments Magnetic moments in non-relativistic approach Magnetic moments in relativistic approach Framework Relativistic

More information

Neutrino interactions and cross sections

Neutrino interactions and cross sections Neutrino interactions and cross sections ν scattering on a free nucleon ν electron scattering ν scattering on light nuclei at low energies ν quasielastic scattering ν pion production ν deep inelastic scattering

More information

Cluster-gas-like states and monopole excitations. T. Yamada

Cluster-gas-like states and monopole excitations. T. Yamada Cluster-gas-like states and monopole excitations T. Yamada Cluster-gas-like states and monopole excitations Isoscalar monopole excitations in light nuclei Cluster-gas-likes states: C, 16 O, 11 B, 13 C

More information

Isoscalar dipole mode in relativistic random phase approximation

Isoscalar dipole mode in relativistic random phase approximation Isoscalar dipole mode in relativistic random phase approximation arxiv:nucl-th/0003041v1 20 Mar 2000 D. Vretenar 1,2, A. Wandelt 1, and P. Ring 1 1 Physik-Department der Technischen Universität München,

More information

proton-neutron pairing vibrations

proton-neutron pairing vibrations proton-neutron pairing vibrations Outline of this lecture: Basics of the vibrational modes of excitation in nuclei surface vibration, like-particle pairing vibration, and then Microscopic framework to

More information

Theoretical Study on Alpha-Decay Chains of

Theoretical Study on Alpha-Decay Chains of Commun. Theor. Phys. 55 (2011) 495 500 Vol. 55, No. 3, March 15, 2011 Theoretical Study on Alpha-Decay Chains of 294 293 177117 and 176 117 SHENG Zong-Qiang (âñö) 1, and REN Zhong-Zhou ( ) 1,2,3 1 School

More information

Nucleon Pair Approximation to the nuclear Shell Model

Nucleon Pair Approximation to the nuclear Shell Model Nucleon Pair Approximation to the nuclear Shell Model Yiyuan Cheng Department of Physics and Astronomy, Shanghai Jiao Tong University, China RCNP, Osaka university, Japan Collaborators: Yu-Min Zhao, Akito

More information

Coupled-cluster theory for medium-mass nuclei

Coupled-cluster theory for medium-mass nuclei Coupled-cluster theory for medium-mass nuclei Thomas Papenbrock and G. Hagen (ORNL) D. J. Dean (ORNL) M. Hjorth-Jensen (Oslo) A. Nogga (Juelich) A. Schwenk (TRIUMF) P. Piecuch (MSU) M. Wloch (MSU) Seattle,

More information

Equations of State of Relativistic Mean-Field Models with Different Parametrisations of Density Dependent Couplings

Equations of State of Relativistic Mean-Field Models with Different Parametrisations of Density Dependent Couplings Equations of State of Relativistic Mean-Field Models with Different Parametrisations of Density Dependent Couplings Stefan Typel 100 7th International Symposium on Nuclear Symmetry Energy GANIL, Caen,

More information

Constraining the symmetry energy based on relativistic point coupling interactions and excitations in finite nuclei

Constraining the symmetry energy based on relativistic point coupling interactions and excitations in finite nuclei 7 th International Symposium on Nuclear Symmetry Energy, GANIL (France) 4-7.9.2017 Constraining the symmetry energy based on relativistic point coupling interactions and excitations in finite nuclei N.

More information

Pairing in Nuclear and Neutron Matter Screening effects

Pairing in Nuclear and Neutron Matter Screening effects Pairing Degrees of Freedom in Nuclei and Nuclear Medium Seattle, Nov. 14-17, 2005 Outline: Pairing in Nuclear and Neutron Matter Screening effects U. Lombardo pairing due to the nuclear (realistic) interaction

More information

Neutrino Interactions in Neutron Star Matter

Neutrino Interactions in Neutron Star Matter Neutrino Interactions in Neutron Star Matter Omar Benhar INFN and Department of Physics Sapienza Università di Roma I-00185 Roma, Italy Based on work done in collaboration with Andrea Cipollone, Alessandro

More information

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach A. PETROVICI Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania Outline complex

More information

Shape Coexistence and Band Termination in Doubly Magic Nucleus 40 Ca

Shape Coexistence and Band Termination in Doubly Magic Nucleus 40 Ca Commun. Theor. Phys. (Beijing, China) 43 (2005) pp. 509 514 c International Academic Publishers Vol. 43, No. 3, March 15, 2005 Shape Coexistence and Band Termination in Doubly Magic Nucleus 40 Ca DONG

More information

Part II Particle and Nuclear Physics Examples Sheet 4

Part II Particle and Nuclear Physics Examples Sheet 4 Part II Particle and Nuclear Physics Examples Sheet 4 T. Potter Lent/Easter Terms 018 Basic Nuclear Properties 8. (B) The Semi-Empirical mass formula (SEMF) for nuclear masses may be written in the form

More information

Covariant density functional theory: The role of the pion

Covariant density functional theory: The role of the pion PHYSICAL REVIEW C 8, 131(R) (9) Covariant density functional theory: The role of the pion G. A. Lalazissis, 1,,3 S. Karatzikos, 1 M. Serra,,* T. Otsuka,,,5 and P. Ring,3 1 Department of Theoretical Physics,

More information

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry:

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry: RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear and Radiochemistry: Chapter 10 (Nuclear Models) Modern Nuclear Chemistry: Chapter 5 (Nuclear Forces) and Chapter 6 (Nuclear

More information

Few Body Methods in Nuclear Physics - Lecture I

Few Body Methods in Nuclear Physics - Lecture I Few Body Methods in Nuclear Physics - Lecture I Nir Barnea The Hebrew University, Jerusalem, Israel Sept. 2010 Course Outline 1 Introduction - Few-Body Nuclear Physics 2 Gaussian Expansion - The Stochastic

More information

Medium polarization effects and pairing interaction in finite nuclei

Medium polarization effects and pairing interaction in finite nuclei Medium polarization effects and pairing interaction in finite nuclei S. Baroni, P.F. Bortignon, R.A. Broglia, G. Colo, E. Vigezzi Milano University and INFN F. Barranco Sevilla University Commonly used

More information

New Frontiers in Nuclear Structure Theory

New Frontiers in Nuclear Structure Theory New Frontiers in Nuclear Structure Theory From Realistic Interactions to the Nuclear Chart Robert Roth Institut für Kernphysik Technical University Darmstadt Overview Motivation Nucleon-Nucleon Interactions

More information

Lesson 5 The Shell Model

Lesson 5 The Shell Model Lesson 5 The Shell Model Why models? Nuclear force not known! What do we know about the nuclear force? (chapter 5) It is an exchange force, mediated by the virtual exchange of gluons or mesons. Electromagnetic

More information

Low-lying dipole response in stable and unstable nuclei

Low-lying dipole response in stable and unstable nuclei Low-lying dipole response in stable and unstable nuclei Marco Brenna Xavier Roca-Maza, Giacomo Pozzi Kazuhito Mizuyama, Gianluca Colò and Pier Francesco Bortignon X. Roca-Maza, G. Pozzi, M.B., K. Mizuyama,

More information

arxiv:nucl-th/ v2 4 Apr 2003

arxiv:nucl-th/ v2 4 Apr 2003 Collective Properties of Low-lying Octupole Excitations in 28 82 Pb 126, 2 Ca 4 and 8 O 2 XR Zhou a,b, EG Zhao a,b,d, BG Dong c, XZ Zhang c, GL Long a,d arxiv:nucl-th/21132v2 4 Apr 23 a Department of Physics,

More information

Parity-Violating Asymmetry for 208 Pb

Parity-Violating Asymmetry for 208 Pb Parity-Violating Asymmetry for 208 Pb Matteo Vorabbi Dipartimento di Fisica - Università di Pavia INFN - Sezione di Pavia Rome - 2015 January 15 Matteo Vorabbi (Università di Pavia) Parity-Violating Asymmetry

More information

Relativistic point-coupling models for finite nuclei

Relativistic point-coupling models for finite nuclei Relativistic point-coupling models for finite nuclei T. J. Buervenich 1, D. G. Madland 1, J. A. Maruhn 2, and P.-G. Reinhard 3 1 Los Alamos National Laboratory 2 University of Frankfurt 3 University of

More information

Remarks about weak-interaction processes

Remarks about weak-interaction processes Remarks about weak-interaction processes K. Langanke GSI Darmstadt and TUD, Darmstadt March 9, 2006 K. Langanke (GSI and TUD, Darmstadt)Remarks about weak-interaction processes March 9, 2006 1 / 35 Nuclear

More information

The oxygen anomaly F O

The oxygen anomaly F O The oxygen anomaly O F The oxygen anomaly - not reproduced without 3N forces O F without 3N forces, NN interactions too attractive many-body theory based on two-nucleon forces: drip-line incorrect at 28

More information

Introduction to NUSHELLX and transitions

Introduction to NUSHELLX and transitions Introduction to NUSHELLX and transitions Angelo Signoracci CEA/Saclay Lecture 4, 14 May 213 Outline 1 Introduction 2 β decay 3 Electromagnetic transitions 4 Spectroscopic factors 5 Two-nucleon transfer/

More information

Relativistic versus Non Relativistic Mean Field Models in Comparison

Relativistic versus Non Relativistic Mean Field Models in Comparison Relativistic versus Non Relativistic Mean Field Models in Comparison 1) Sampling Importance Formal structure of nuclear energy density functionals local density approximation and gradient terms, overall

More information

BOLOGNA SECTION. Paolo Finelli. University of Bologna.

BOLOGNA SECTION. Paolo Finelli. University of Bologna. MB31 BOLOGNA SECTION Paolo Finelli University of Bologna paolo.finelli@unibo.it INFN-MB31 Collaboration Meeting in Otranto - May 31, 2013 Density Functional Theory Pairing Particle-Vibration Coupling Optical

More information

From few-body to many-body systems

From few-body to many-body systems From few-body to many-body systems Nasser Kalantar-Nayestanaki, KVI-CART, University of Groningen Few-Body Physics: Advances and Prospects in Theory and Experiment 614. WE-Heraeus-Seminar, Bad Honnef April

More information

Shape coexistence and beta decay in proton-rich A~70 nuclei within beyond-mean-field approach

Shape coexistence and beta decay in proton-rich A~70 nuclei within beyond-mean-field approach Shape coexistence and beta decay in proton-rich A~ nuclei within beyond-mean-field approach A. PETROVICI Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania Outline

More information

1 Introduction. 2 The hadronic many body problem

1 Introduction. 2 The hadronic many body problem Models Lecture 18 1 Introduction In the next series of lectures we discuss various models, in particluar models that are used to describe strong interaction problems. We introduce this by discussing the

More information

Candidate multiple chiral doublet bands in A 100 mass region

Candidate multiple chiral doublet bands in A 100 mass region Candidate multiple chiral doublet bands in A 100 mass region Bin Qi (R) School of Space Science and Physics, Shandong University, Weihai Seventh International Symposium on Chiral Symmetry in Hadrons and

More information

Probing proton-neutron pairing with Gamow-Teller strengths in twonucleon

Probing proton-neutron pairing with Gamow-Teller strengths in twonucleon Probing proton-neutron pairing with Gamow-Teller strengths in twonucleon configura8ons Yutaka Utsuno Advanced Science Research Center, Japan Atomic Energy Agency Center for Nuclear Study, University of

More information

The Heavy Quark Spin Symmetry and SU(3)-Flavour Partners of the X(3872)

The Heavy Quark Spin Symmetry and SU(3)-Flavour Partners of the X(3872) The Heavy Quark Spin Symmetry and SU(3)-Flavour Partners of the X(3872) Carlos Hidalgo, J. Nieves and M. Pavón-Valderrama Hypernuclear and Strange Particle Physics 2012 IFIC (CSIC - Universitat de València)

More information

Collective excitations in nuclei away from the valley of stability

Collective excitations in nuclei away from the valley of stability Collective excitations in nuclei away from the valley of stability A. Horvat 1, N. Paar 16.7.14, CSSP 14, Sinaia, Romania 1 Institut für Kernphysik, TU Darmstadt, Germany (for the R3B-LAND collaboration)

More information

The Nuclear Many-Body Problem

The Nuclear Many-Body Problem The Nuclear Many-Body Problem relativistic heavy ions vacuum electron scattering quarks gluons radioactive beams heavy few nuclei body quark-gluon soup QCD nucleon QCD few body systems many body systems

More information

Microscopic approach to NA and AA scattering in the framework of Chiral EFT and BHF theory

Microscopic approach to NA and AA scattering in the framework of Chiral EFT and BHF theory Microscopic approach to NA and AA scattering in the framework of Chiral EFT and BHF theory Masakazu TOYOKAWA ( 豊川将一 ) Kyushu University, Japan Kyushu Univ. Collaborators M. Yahiro, T. Matsumoto, K. Minomo,

More information

Milestones in the history of beta decay

Milestones in the history of beta decay Milestones in the history of beta decay Figure : Continuous spectrum of electrons from the β decay of RadiumE ( 210 Bi), as measured by Ellis and Wooster (1927). Figure : Cloud chamber track of a recoiling

More information