Novel High Performance Computational Aspects of the Shell Model Approach for Medium Nuclei

Size: px
Start display at page:

Download "Novel High Performance Computational Aspects of the Shell Model Approach for Medium Nuclei"

Transcription

1 Novel High Performance Computational Aspects of the Shell Model Approach for Medium Nuclei Mihai Horoi Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA Collaborators: R. Senkov, M. Scott, V. Zelevinsky, B.A. Brown Support by NSF grant PHY , and DOE grant DF-FC02-09ER41584 UNEDF

2 Overview New shell model ideas for the low-lying states Novel developments with shell model nuclear level densities Potential impact of the shell model nuclear level densities for nuclear astrophysics predictions

3 0 ω 1 ω (0 + 2) ω (1+ 3) ω Nuclear Configuration Interaction H'= H + β(h CoM 3/2 ω) Ψ (J ) = [Φ CoM (NL)Φ (J') int ] (J ) (J ) Φ CoM (00)Φ int N max Center-of-mass spurious states pf d = 2 (2 j + 1) H = ε K a + k a k + 1 k 2 V kl;mn a + k a + l a n a m + k l m n sd α α >= C i i(jt) > i α α >= C i i(jt z ) > i α α >= C i i(mt z ) > i JT-scheme: OXBASH, NuShell J-scheme: NATHAN, NuShellX M-scheme: Oslo-code, Antoine, MFDN, MSHELL, CMichSM, j α α < i H j > C j = E α C i Lanczos algorithm: provides few lower energies, especially the M-scheme codes.

4 p s sd s pf s pf 5/2 g 9/ g 7/2 sdh 11/2-5x Example: 76 Sr pf 5/2 g 9/2 dimension Current limit: > np valence s.p. states Extensions: Truncations, Exponential Convergence Method, Coupled Clusters, Projected CI,

5 Effective Hamiltonians QP = 0 pf sd pf QQ PQ = 0 H Δ 3-body > two-body core polarization: Phys.Rep. 261, 125 (1995) PRC 74, (2006), 78, (2008) 531 excited states RMS: sd, N3LO ME 2 RMS st order 2nd order 2nd + A-dep 2nd + d3s1 USDA USDB

6

7

8 GXPF1A Effective Interaction: f 7/2 p 3/2 p 1/2 f 5/2 Renormalized G-matrix GXPF1 Phys.Rev. C 69, (2004) 699 energies, 87 nuclei, rms=168 kev GXPF1 GXPF1A M. Honma et al, ENAM04 5 matrix elements adjusted for N=34 56 Ni states J #

9 Koeln Low Spin States in 56 Ni: complete spectroscopy Configuration Interaction (CI) M. Horoi et al., Phys.Rev. C 73, (R) (2006) J 6 Exp. Koeln Theo: CI GXPF1A LBNL high spin D.Rudolf et al.,prl 88,1999 M. Horoi et al., in preparation p e eff n =1.5 e eff = 0.5

10 Angular Momentum Projected CI (PCI) Deformed Slater Determinant Deformed Nilsson Single Particle operator Spherical H.O. Nuclear State Wave-function: Shell Model Hamiltonian Angular Momentum Projection

11 Extension of PCI: Gao, Horoi PRC 79, (2009); PRC 80, (2009). Interaction taken from: K. Kaneko, M. Hasegawa, and T. Mizusaki, Phys. Rev. C 70, (R) (2004). n=20, E cut =1keV Conclusions: 1, The physics of shape coexistence in 68 Se can be clearly seen from the PCI basis. 2, With new method of basis selection the PCI energies are very close to those of full CI for both positive parity and negative parity states.

12 Nuclear Level Densities (NLD) E x E r ρ(e x,j,π) (n,γ), (n,xn), (n, ʹ n ), (n, p), (n, f ), A X + ( p,n) Hauser and Feshbach, Phys. Rev 87, 366 (1952) J 2 π 2 A +1 Y J 1 π 1 J 0 π 0 T m (E,J,π) = E max E min T(E,J,π;E x,j x,π x )ρ(e x,j x,π x ) de x

13 Where are NLD Needed: Nuclear Astrophysics Binary stars XRB: Sirius o SN 1987 A o

14 The Back-Shifted Fermi Gas Model for Rauscher at al, Phys. Rev. C 56, 1613 (1997) Nuclear Level Density δ = Δ( Z, N)

15 The Spin Cutoff Parameter 28 Si, USD T. von Egidy & D. Bucurescu, Phys.Rev. C 80, (2009) Horoi, Ghita, Zelevinsky, Nucl. Phys. A 758, 142 (2005)

16 Other Models of Nuclear Level Densities ρ(e x, J, π) = (1/2) F(U, J) ρ FG (U) U = E x - Δ HF+BCS -> ρ HF+BCS (U) - Goriely Nucl. Phys. A605, (1996) Demetriou and Goriely, Nucl. Phys. A695 (2001) HFB+Combinatorial: ρ(e x, J, π) - S. Hilaire, J.P. Delaroche and A.J. Koning, Nucl. Phys. A632, 417 (1998). - S. Hilaire, J.P. Delaroche and M. Girod, Eur. Phys. J. A12 (2001) S. Hilaire and S. Goriely, Nucl. Phys. A779 (2006)

17 Experimental Data Sc 50 V, 51 V 56 Fe, 57 Fe 93 Mo, 94 Mo, 95 Mo, 96 Mo, 97 Mo, 98 Mo 148 Sm, 149 Sm 160 Dy, 161 Dy, 162 Dy 167 Er, 168 Er 47 Ti 56 Fe, 57 Fe 60 Ni, 60 Co PRC 74, (2006) 56 Fe 170 Yb, 171 Yb, 172 Yb

18 Experimental Data: Neutron Resonances ρ(b n ) = 1000 D 0 f rms ~ 2 Hilaire and Goriely, NPA 799, 63 (2006)

19 Accurate Nuclear Level Densities Comparison of: 1. CI, 2. HF+BCS www-astro.ulb.ac.be/html/nld.html 3. experimental data 28 Si Complete spectroscopy: sdshell nuclei Conclusions: - HF+BCS overestimates the data 26 Al - CI accurately describes the data

20 M. Horoi et al. : PRC 67, (2003), PRC 69, (R) (2004), NPA 785, 142 (2005). PRL 98, (2007) NLD and Statistical Spectroscopy Configurations: e.g. 4 particles in sd d3 d5 s preserve rotational invariance and parity ( ) ρ(e x,j,π) = D c (J,π)G FR E,E c (J),σ c (J) c conf E c (J),σ c (J) Tr SDc < M H q M > SDc E x = E E g.s. E c (J), σ c (J): computational intensive Configurations can be calculated in parallel 28 Si π = + staircase: CI, USD E g.s. from CI, PCI, Exponential Convergence Method (PRL 82, 2064 (1999)), CC, etc.

21 Fixed J Configura tion Centroids and Widths C. Jacquemin, Z. Phys. A 303, 135 (1981) D k (n m M) = ( 1) t k M. Horoi D((n CMU t)( k t n t 1 + +t k =t m t 1 U 1 t k U k )(M t 1 m k1 t k m kk ))

22 ( ) ρ(e x,j,π) = D c (J,π)G FR E,E c (J),σ c (J) c conf Study of Errors E c ησ c E c + ησ c E c ε rms = exp 1 N N i ln ρ MOM i CI ρ i 2 1 error relative to CI η = 2.6

23 NLD Comparison: CI, Moments, HF+BCS

24 NLD of 56 Fe: CI, Moments, HF+BCS Ohio data: PRC 74, (2006) Theory: pf model space, GXPF1A interaction

25 Ratio of unnatural to natural NLD of different parities at low energies ρ(e x, J, π) = (1/2) F(U, J) ρ FG (U) U = E x - Δ Equal contribution to both parities Remedy by Alhassid, Bertsch, Liu, Nakada, PRL 84, 4313 (2000) + Basel group (Rauscher) HF+BCS moments CI (NuShellX) Configurations: e.g. 4 particles in fpg f5 p3 p1 g9 π preserve rotational invariance and parity

26 NLD for the rp-process f 5/2 p g 9/2 model space

27 Scaling of the MPI JMOMENTS Code Domain decomposition: many-body configurations Algorithm: Dynamical Load Balancing Machine: Franklin/NERSC Nucleus / model space Isospin configs PN - configs 52Fe/pf Fe/pf Ge/pfg9/ Strong scaling t

28 M. Horoi et al. : PRC 67, (2003), PRC 69, (R) (2004), NPA 785, 142 (2005). PRL 98, (2007) NLD and Statistical Spectroscopy: PN Formalism ( ) ρ(e x,j,π) = D c (J,π)G FR E,E c (J),σ c (J) c conf Configurations: e.g. 4P and 4N in pf model space Pf7 Pp3 Pf5 Pp1 Nf7 Np3 Nf5 Np preserve rotational invariance and parity E c (J),σ c (J) Tr SDc < M H q M > SDc E x = E E g.s. E c (J), σ c (J): computational intensive Many more configurations, which can be more efficiently be calculated in parallel E g.s. from CI, PCI, Exponential Convergence Method (PRL 82, 2064 (1999)), CC, etc, or determined. D k (PN m M) = M P +M N =M D k P (P m M P )D k N (N m M N )

29 JMOMENTS PN Code for Nuclear Level Density Domain decomposition: many-body configurations Algorithm: Dynamical Load Balancing Machine: Franklin/NERSC Strong scaling T calc = 1 min!!! waiting point nuclei

30 Results E gs (pf) = MeV E gs (pf+g9/2) t = MeV E gs (pf+g9/2) s = MeV 2.5 MeV E gs (pf) = MeV E gs (pf+g9/2) s = MeV

31 NLD and Hauser-Feshbach From A. Voinov et al., PRC 76, (2007) θ = He + 58 Fe E 3 He =10 MeV 61 Ni * compund θ =150 0 d + 59 Co E d = 7.5 MeV

32 talys 1.2 : NLD and Hauser-Feshbach 58 Fe( 3 He, α) θ = Co( d, α) θ =150 0

33 NLD: reaction rates talys 1.2 : Rauscher & Thielemann ADNDT 75, 1 (2000) G(T) = ( 2I µ +1) /( 2I 0 +1)e E x µ / kt 2I π +1 µ I,π ( ) / 2I 0 +1 ( )ρ(e x,i,π)e E x / kt 50

34 NLD: rp-process See also PRC 75, (R) (2007) From. P. Shury et al., PRC 75, (2007) Rauscher & Thielemann ADNDT 75, 1 (2000)

35 Removal of Spurious Center-of-Mass Excitations H'= H + β {(H CM 3/2 ω) } ρ(e, J, 0+2): total density in a model space including all 0+2 h.o. excitations ρ nsp (E, J, 0+2): center-of-mass excitations removed ρ nsp (E,J = 2, 0 + 2) = ρ(e,2,0 + 2) 2 2+J K ρ nsp (E,J',0) ρ nsp (E,J',1) J K = 0 step 2 J '= 2 J K 3 J'=1 10 B: 10 particles in s-p-sd-pf shell model space Horoi and Zelevinsky, PRL 98, (2007)

36 Fixed J Restricted Configuration Widths i j i j r D, D, D i j r s

37 Moments method with restricted configurations Si in sd model space: only 4p-4p configurations included J = 0 J =1 J = 2 J = 3 J = 4 J = 5 J = 6 J = 7 J = 8

38 Extreme Computing Goals Reaction DB TENDL-2009: MCNPX: mcnpx.lanl.gov

39 Summary and Outlook Shell model techniques describe and predict a large number of data in medium and heavy nuclei. BSFG and mean-field models describe the existing data within a factor of 10 (average 2), but they can calculate NLD for all nuclei. CI J-dependent NLD seem to be more accurate, but can only be obtained for a limited number of nuclei. J-dependent moments method reproduces very well the CI J-dependent NLD and could provide accurate NLD for a much larger class of nuclei. Work to integrated SM NLD with reaction codes is in progress.

Accurate Description of the Spinand Parity-Dependent Nuclear Level Densities

Accurate Description of the Spinand Parity-Dependent Nuclear Level Densities Accurate Description of the Spinand Parity-Dependent Nuclear Level Densities Mihai Horoi Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA Nuclear Level Densities

More information

Comparison of Nuclear Configuration Interaction Calculations and Coupled Cluster Calculations

Comparison of Nuclear Configuration Interaction Calculations and Coupled Cluster Calculations Comparison of Nuclear Configuration Interaction Calculations and Coupled Cluster Calculations Mihai Horoi Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA Support

More information

Mihai Horoi, Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA

Mihai Horoi, Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA Mihai Horoi Deartment of Physics Central Michigan University Mount Pleasant Michigan 48859 USA Suort from NSF grant PHY-0-44453 is acknowledged INT October 8 004 Mihai Horoi - Central Michigan Univ Part

More information

Matrix elements for processes that could compete in double beta decay

Matrix elements for processes that could compete in double beta decay Matrix elements for processes that could compete in double beta decay Mihai Horoi Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA Ø Support from NSF grant PHY-106817

More information

Statistical properties of nuclei by the shell model Monte Carlo method

Statistical properties of nuclei by the shell model Monte Carlo method Statistical properties of nuclei by the shell model Monte Carlo method Introduction Yoram Alhassid (Yale University) Shell model Monte Carlo (SMMC) method Circumventing the odd particle-number sign problem

More information

The shell model Monte Carlo approach to level densities: recent developments and perspectives

The shell model Monte Carlo approach to level densities: recent developments and perspectives The shell model Monte Carlo approach to level densities: recent developments and perspectives Yoram Alhassid (Yale University) Introduction: the shell model Monte Carlo (SMMC) approach Level density in

More information

Probing shell evolution with large scale shell model calculations

Probing shell evolution with large scale shell model calculations Probing shell evolution with large scale shell model calculations Yutaka Utsuno Advanced Science Research Center, Japan Atomic Energy Agency Center for Nuclear Study, University of Tokyo Nuclear structure

More information

Nuclear structure input for rp-process rate calculations in the sd shell

Nuclear structure input for rp-process rate calculations in the sd shell Nuclear structure input for rp-process rate calculations in the sd shell W A RICHTER ITHEMBA LABS UNIVERSITY OF THE WESTERN CAPE B A BROWN NSCL, MICHIGAN STATE UNIVERSITY This work is supported by the

More information

Statistical Approach to Nuclear Level Density

Statistical Approach to Nuclear Level Density Statistical Approach to Nuclear Level Density R. A. Sen kov,v.g.zelevinsky and M. Horoi Department of Physics, Central Michigan University, Mount Pleasant, MI 889, USA Department of Physics and Astronomy

More information

Large scale shell model calculations for neutron rich fp-shell nuclei

Large scale shell model calculations for neutron rich fp-shell nuclei Large scale shell model calculations for neutron rich fp-shell nuclei Physical Research Laboratory, Ahmedabad-380 009, India Collaborators: I. Mehrotra (Allahabad) P.Van Isacker (GANIL, France) V.K.B.

More information

Shell model description of dipole strength at low energy

Shell model description of dipole strength at low energy Shell model description of dipole strength at low energy Kamila Sieja Institut Pluridisciplinaire Hubert Curien, Strasbourg 8-12.5.217 Kamila Sieja (IPHC) 8-12.5.217 1 / 18 Overview & Motivation Low energy

More information

Particle-number projection in finite-temperature mean-field approximations to level densities

Particle-number projection in finite-temperature mean-field approximations to level densities Particle-number projection in finite-temperature mean-field approximations to level densities Paul Fanto (Yale University) Motivation Finite-temperature mean-field theory for level densities Particle-number

More information

Mass and energy dependence of nuclear spin distributions

Mass and energy dependence of nuclear spin distributions Mass and energy dependence of nuclear spin distributions Till von Egidy Physik-Department, Technische Universität München, Germany Dorel Bucurescu National Institute of Physics and Nuclear Engineering,

More information

Microscopic cross sections : an utopia? S. Hilaire 1, A.J. Koning 2 & S. Goriely 3.

Microscopic cross sections : an utopia? S. Hilaire 1, A.J. Koning 2 & S. Goriely 3. Microscopic cross sections : an utopia? S. Hilaire 1, A.J. Koning 2 & S. Goriely 3 www.talys.eu 1 CEA,DAM,DIF - France 2 Nuclear Research and Consultancy Group, Petten, The Netherlands 3 Institut d Astronomie

More information

Auxiliary-field quantum Monte Carlo methods for nuclei and cold atoms

Auxiliary-field quantum Monte Carlo methods for nuclei and cold atoms Introduction Auxiliary-field quantum Monte Carlo methods for nuclei and cold atoms Yoram Alhassid (Yale University) Auxiliary-field Monte Carlo (AFMC) methods at finite temperature Sign problem and good-sign

More information

arxiv: v1 [nucl-th] 4 Feb 2011

arxiv: v1 [nucl-th] 4 Feb 2011 High-Performance Algorithm for Calculating Non-Spurious Spin- and Parity-Dependent Nuclear Level Densities R.A. Sen kov 1, M. Horoi 1, and V.G. Zelevinsky 2 1 Department of Physics, Central Michigan University,

More information

Physics Letters B 702 (2011) Contents lists available at ScienceDirect. Physics Letters B.

Physics Letters B 702 (2011) Contents lists available at ScienceDirect. Physics Letters B. Physics Letters B 702 (2011) 413 418 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb High-performance algorithm for calculating non-spurious spin- and parity-dependent

More information

Aligned neutron-proton pairs in N=Z nuclei

Aligned neutron-proton pairs in N=Z nuclei Aligned neutron-proton pairs in N=Z nuclei P. Van Isacker, GANIL, France Motivation Shell-model analysis A model with high-spin bosons Experimental tests Neutron-proton correlations, UHK, Hong Kong, July

More information

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia Commun. Theor. Phys. (Beijing, China) 43 (005) pp. 709 718 c International Academic Publishers Vol. 43, No. 4, April 15, 005 Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

More information

Shell Model Monte Carlo Methods and their Applications to Nuclear Level Densities

Shell Model Monte Carlo Methods and their Applications to Nuclear Level Densities Shell Model Monte Carlo Methods and their Applications to Nuclear Level Densities H. Nakada (Chiba U., Japan) @ RIKEN (Feb. 14, 2013) Contents : I. Introduction II. Shell model Monte Carlo methods III.

More information

QRPA calculations of stellar weak-interaction rates

QRPA calculations of stellar weak-interaction rates QRPA calculations of stellar weak-interaction rates P. Sarriguren Instituto de Estructura de la Materia CSIC, Madrid, Spain Zakopane Conference on Nuclear Physics: Extremes of Nuclear Landscape. August

More information

Correlations between magnetic moments and β decays of mirror nuclei

Correlations between magnetic moments and β decays of mirror nuclei PHYSICAL REVIEW C, (8) Correlations between magnetic moments β decays of mirror nuclei S. M. Perez,, W. A. Richter, B. A. Brown, M. Horoi Department of Physics, University of Cape Town, Private Bag, Rondebosch,

More information

Moment (and Fermi gas) methods for modeling nuclear state densities

Moment (and Fermi gas) methods for modeling nuclear state densities Moment (and Fermi gas) methods for modeling nuclear state densities Calvin W. Johnson (PI) Edgar Teran (former postdoc) San Diego State University supported by grants US DOE-NNSA SNP 2008 1 We all know

More information

Projected shell model for nuclear structure and weak interaction rates

Projected shell model for nuclear structure and weak interaction rates for nuclear structure and weak interaction rates Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China E-mail: sunyang@sjtu.edu.cn The knowledge on stellar weak interaction processes

More information

Shell model Monte Carlo level density calculations in the rare-earth region

Shell model Monte Carlo level density calculations in the rare-earth region Shell model Monte Carlo level density calculations in the rare-earth region Kadir Has University Istanbul, Turkey Workshop on Gamma Strength and Level Density in Nuclear Physics and Nuclear Technology

More information

Three-nucleon forces and shell structure of neutron-rich Ca isotopes

Three-nucleon forces and shell structure of neutron-rich Ca isotopes Three-nucleon forces and shell structure of neutron-rich Ca isotopes Javier Menéndez Institut für Kernphysik (TU Darmstadt) and ExtreMe Matter Institute (EMMI) NUSTAR Week 3, Helsinki, 9 October 13 Outline

More information

Coupled-cluster theory for nuclei

Coupled-cluster theory for nuclei Coupled-cluster theory for nuclei Thomas Papenbrock and G. Hagen D. J. Dean M. Hjorth-Jensen B. Velamur Asokan INT workshop Weakly-bound systems in atomic and nuclear physics Seattle, March 8-12, 2010

More information

Shell-model description for beta decays of pfg-shell nuclei

Shell-model description for beta decays of pfg-shell nuclei Shell-model description for beta decays of pfg-shell nuclei Workshop on New Era of Nuclear Physics in the Cosmos the r-process nucleosynthesis Sep. 25-26, 2008 @RIKEN M. Honma (Univ. of Aizu) T. Otsuka

More information

Shell evolution and pairing in calcium isotopes with two- and three-body forces

Shell evolution and pairing in calcium isotopes with two- and three-body forces Shell evolution and pairing in calcium isotopes with two- and three-body forces Javier Menéndez Institut für Kernphysik, TU Darmstadt ExtreMe Matter Institute (EMMI) with Jason D. Holt, Achim Schwenk and

More information

Some results obtained with Gogny force included in HFB, QRPA as well as in configuration mixing GCM like approach

Some results obtained with Gogny force included in HFB, QRPA as well as in configuration mixing GCM like approach Some results obtained with Gogny force included in HFB, QRPA as well as in configuration mixing GCM like approach Sophie Péru M. Dupuis, S. Hilaire, F. Lechaftois (CEA, DAM), M. Martini (Ghent University,

More information

Nucleon Pair Approximation to the nuclear Shell Model

Nucleon Pair Approximation to the nuclear Shell Model Nucleon Pair Approximation to the nuclear Shell Model Yiyuan Cheng Department of Physics and Astronomy, Shanghai Jiao Tong University, China RCNP, Osaka university, Japan Collaborators: Yu-Min Zhao, Akito

More information

arxiv:nucl-th/ v1 14 Nov 2005

arxiv:nucl-th/ v1 14 Nov 2005 Nuclear isomers: structures and applications Yang Sun, Michael Wiescher, Ani Aprahamian and Jacob Fisker Department of Physics and Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre

More information

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar Evolution Of Shell Structure, Shapes & Collective Modes Dario Vretenar vretenar@phy.hr 1. Evolution of shell structure with N and Z A. Modification of the effective single-nucleon potential Relativistic

More information

Short-Ranged Central and Tensor Correlations. Nuclear Many-Body Systems. Reaction Theory for Nuclei far from INT Seattle

Short-Ranged Central and Tensor Correlations. Nuclear Many-Body Systems. Reaction Theory for Nuclei far from INT Seattle Short-Ranged Central and Tensor Correlations in Nuclear Many-Body Systems Reaction Theory for Nuclei far from Stability @ INT Seattle September 6-, Hans Feldmeier, Thomas Neff, Robert Roth Contents Motivation

More information

Shell model calculation ー from basics to the latest methods ー

Shell model calculation ー from basics to the latest methods ー Shell model calculation ー from basics to the latest methods ー Takahiro Mizusaki Senshu university / CNS, the univ. of Tokyo Basics What we will learn? What is Shell Model? Shell model basis states M-scheme

More information

Shell model approach to N Z medium-heavy nuclei using extended P+QQ interaction

Shell model approach to N Z medium-heavy nuclei using extended P+QQ interaction Shell model approach to N Z medium-heavy nuclei using extended PQQ interaction M. Hasegawa Topics: Structure of N Z medium-heavy nuclei, Large-scale shell model calculations, Extended PQQ interaction (EPQQ).

More information

The nuclear shell-model: from single-particle motion to collective effects

The nuclear shell-model: from single-particle motion to collective effects The nuclear shell-model: from single-particle motion to collective effects 1. Nuclear forces and very light nuclei 2. Independent-particle shell model and few nucleon correlations 3. Many-nucleon correlations:

More information

Recent developments in the nuclear shell model and their interest for astrophysics

Recent developments in the nuclear shell model and their interest for astrophysics Recent developments in the nuclear shell model and their interest for astrophysics Kamila Sieja Institut Pluridisciplinaire Hubert Curien, Strasbourg FUSTIPEN topical meeting "Recent Advances in the Nuclear

More information

Neutrino-Nucleus Reactions Based on Recent Progress of Shell Model Calculations

Neutrino-Nucleus Reactions Based on Recent Progress of Shell Model Calculations Neutrino-Nucleus Reactions Based on Recent Progress of Shell Model Calculations Toshio Suzuki (Nihon University) New shell model calculations in p-shell modified shell model Hamiltonian (SFO) with improved

More information

Asymmetry dependence of Gogny-based optical potential

Asymmetry dependence of Gogny-based optical potential Asymmetry dependence of Gogny-based optical potential G. Blanchon, R. Bernard, M. Dupuis, H. F. Arellano CEA,DAM,DIF F-9297 Arpajon, France March 3-6 27, INT, Seattle, USA / 32 Microscopic ingredients

More information

Giant Resonances Wavelets, Scales and Level Densities

Giant Resonances Wavelets, Scales and Level Densities Giant resonances Damping mechanisms, time and energy scales Fine structure Wavelets and characteristic scales Application: GQR TU DARMSTADT Many-body nuclear models and damping mechanisms Relevance of

More information

Nucleon Pair Approximation to the nuclear Shell Model

Nucleon Pair Approximation to the nuclear Shell Model Nucleon Pair Approximation to the nuclear Shell Model Yu-Min Zhao (Speaker: Yi-Yuan Cheng) 2 nd International Workshop & 12 th RIBF Discussion on Neutron-Proton Correlations, Hong Kong July 6-9, 2015 Outline

More information

Physik-Department, Technische Universität München, D Garching, Germany

Physik-Department, Technische Universität München, D Garching, Germany Physik-Department, Technische Universität München, D-8578 Garching, Germany E-mail: egidy@ph.tum.de H.-F. Wirth Physik-Department, Technische Universität München, D-8578 Garching, Germany E-mail: wirth@tum.de

More information

Ab Initio Theory for All Medium-Mass Nuclei

Ab Initio Theory for All Medium-Mass Nuclei Canada s national laboratory for particle and nuclear physics and accelerator-based science Ab Initio Theory for All Medium-Mass Nuclei Jason D. Holt INPC September 12, 2016 Collaborators S. R. Stroberg

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1 2358-19 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 1 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

Oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes

Oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes Oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes Andreas Görgen Service de Physique Nucléaire CEA Saclay Sunniva Siem Department of Physics University of Oslo 1 Context

More information

Level density for reaction cross section calculations

Level density for reaction cross section calculations Level density for reaction cross section calculations Edwards Accelerator Laboratory, Department Physics and Astronomy, Ohio University Motivation The problem: Level density is the most uncertain Input

More information

ISSN : Asian Journal of Engineering and Technology Innovation 02 (03) 2014 (08-13) QR Code for Mobile users

ISSN : Asian Journal of Engineering and Technology Innovation 02 (03) 2014 (08-13) QR Code for Mobile users ISSN : 2347-7385 Calculation of the Energy Levels of 25Na-27Na Isotopes S. Mohammadi, Sima Zamani Department of Physics, Payame Noor University, PO BOX 19395-3697 Tehran, Iran. Received on: 09-03-2014

More information

Towards a universal nuclear structure model. Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 2017

Towards a universal nuclear structure model. Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 2017 Towards a universal nuclear structure model Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 217 1 Table of contents: Brief presentation of the group Motivation Model and selected

More information

Determination of radiative strength functions

Determination of radiative strength functions Determination of radiative strength functions and level density Andreas Schiller, Ohio U Motivation Discrete spectroscopy Continuous spectroscopy Energies of discrete [2 +, 3 -, etc.] levels Level density,

More information

Beyond mean-field study on collective vibrations and beta-decay

Beyond mean-field study on collective vibrations and beta-decay Advanced many-body and statistical methods in mesoscopic systems III September 4 th 8 th, 2017, Busteni, Romania Beyond mean-field study on collective vibrations and beta-decay Yifei Niu Collaborators:

More information

arxiv: v1 [nucl-th] 5 Apr 2017

arxiv: v1 [nucl-th] 5 Apr 2017 Quantum phase transitions and collective enhancement of level density in odd-a and odd-odd nuclei S. Karampagia a,, A. Renzaglia b, V. Zelevinsky a,b arxiv:174.161v1 [nucl-th] 5 Apr 217 a National Superconducting

More information

ab-initio alpha-alpha scattering

ab-initio alpha-alpha scattering ab-initio alpha-alpha scattering Elhatisari et al., Nature 528, 111 (215) http://www.nature.com/nature/journal/v528/n758/full/nature1667.html http://www.nature.com/nature/journal/v528/n758/abs/52842a.html

More information

Introduction to NUSHELLX and transitions

Introduction to NUSHELLX and transitions Introduction to NUSHELLX and transitions Angelo Signoracci CEA/Saclay Lecture 4, 14 May 213 Outline 1 Introduction 2 β decay 3 Electromagnetic transitions 4 Spectroscopic factors 5 Two-nucleon transfer/

More information

Test of nuclear level density inputs for Hauser-Feshbach model calculations

Test of nuclear level density inputs for Hauser-Feshbach model calculations PHYSICAL REVIEW C 76, 044602 (2007) Test of nuclear level density inputs for Hauser-Feshbach model calculations A. V. Voinov, 1,* S. M. Grimes, 1 C. R. Brune, 1 M. J. Hornish, 1 T. N. Massey, 1 and A.

More information

Benchmarking the Hartree-Fock and Hartree-Fock-Bogoliubov approximations to level densities. G.F. Bertsch, Y. Alhassid, C.N. Gilbreth, and H.

Benchmarking the Hartree-Fock and Hartree-Fock-Bogoliubov approximations to level densities. G.F. Bertsch, Y. Alhassid, C.N. Gilbreth, and H. Benchmarking the Hartree-Fock and Hartree-Fock-Bogoliubov approximations to level densities G.F. Bertsch, Y. Alhassid, C.N. Gilbreth, and H. Nakada 5th Workshop on Nuclear Level Density and Gamma Strength,

More information

Probing the evolution of shell structure with in-beam spectroscopy

Probing the evolution of shell structure with in-beam spectroscopy Probing the evolution of shell structure with in-beam spectroscopy Alexandra Gade National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy at Michigan State University, East

More information

QRPA calculations of stellar weak decay rates

QRPA calculations of stellar weak decay rates QRPA calculations of stellar weak decay rates P. Sarriguren Instituto de Estructura de la Materia CSIC, Madrid, Spain E. Moya de Guerra, R. Alvarez-Rodriguez, O. Moreno Universidad Complutense Madrid International

More information

Subbarrier fusion of carbon isotopes ~ from resonance structure to fusion oscillations ~

Subbarrier fusion of carbon isotopes ~ from resonance structure to fusion oscillations ~ Subbarrier fusion of carbon isotopes ~ from resonance structure to fusion oscillations ~ Kouichi Hagino, Tohoku University Neil Rowley, IPN Orsay 1. Introduction: 12 C + 12 C fusion 2. Molecular resonances

More information

RPA and QRPA calculations with Gaussian expansion method

RPA and QRPA calculations with Gaussian expansion method RPA and QRPA calculations with Gaussian expansion method H. Nakada (Chiba U., Japan) @ DCEN11 Symposium (YITP, Sep. 6, 11) Contents : I. Introduction II. Test of GEM for MF calculations III. Test of GEM

More information

shell Advanced Science Research Center, Japan Atomic Energy Agency

shell Advanced Science Research Center, Japan Atomic Energy Agency Role of shell evolution in the structure of exotic nuclei in the sd pf shell Yutaka Utsuno Advanced Science Research Center, Japan Atomic Energy Agency National Superconducting Cyclotron Laboratory, Michigan

More information

Medium polarization effects and pairing interaction in finite nuclei

Medium polarization effects and pairing interaction in finite nuclei Medium polarization effects and pairing interaction in finite nuclei S. Baroni, P.F. Bortignon, R.A. Broglia, G. Colo, E. Vigezzi Milano University and INFN F. Barranco Sevilla University Commonly used

More information

Coupled-cluster theory for medium-mass nuclei

Coupled-cluster theory for medium-mass nuclei Coupled-cluster theory for medium-mass nuclei Thomas Papenbrock and G. Hagen (ORNL) D. J. Dean (ORNL) M. Hjorth-Jensen (Oslo) A. Nogga (Juelich) A. Schwenk (TRIUMF) P. Piecuch (MSU) M. Wloch (MSU) Seattle,

More information

Nuclear Reaction Rates for Astrophysical Nucleosynthesis

Nuclear Reaction Rates for Astrophysical Nucleosynthesis Nuclear Reaction Rates for Astrophysical Nucleosynthesis Department of Physics, Central Michigan University, Mt. Pleasant, MI 48859, USA E-mail: palum1a@cmich.edu D. Galaviz Centro de Fisica Nuclear da

More information

New T=1 effective interactions for the f 5/2 p 3/2 p 1/2 g 9/2 model space: Implications for valence-mirror symmetry and seniority isomers

New T=1 effective interactions for the f 5/2 p 3/2 p 1/2 g 9/2 model space: Implications for valence-mirror symmetry and seniority isomers PHYSICAL REVIEW C 70, 044314 (2004) New T=1 effective interactions for the f 5/2 p 3/2 p 1/2 g 9/2 model space: Implications for valence-mirror symmetry and seniority isomers A. F. Lisetskiy, 1 B. A. Brown,

More information

NEW ADVANCES IN SHELL MODEL CALCULATIONS: APPLICATIONS AROUND

NEW ADVANCES IN SHELL MODEL CALCULATIONS: APPLICATIONS AROUND NEW ADVANCES IN SHELL MODEL CALCULATIONS: APPLICATIONS AROUND DOUBLY MAGIC NUCLEI 40 Ca AND 132 Sn Houda NAÏDJA IPHC Strasbourg, France GSI Darmstadt, Germany. LPMS, Université Constantine 1, Algeria.

More information

High-resolution study of Gamow- Teller transitions in pf-shell nuclei. Tatsuya ADACHI

High-resolution study of Gamow- Teller transitions in pf-shell nuclei. Tatsuya ADACHI High-resolution study of Gamow- Teller transitions in pf-shell nuclei Tatsuya ADACHI Type II supernova Electron Capture (EC) & β decay Neutrino induced reaction A Z-1X N+1 daughter EC β A ZX N parent (A,Z)

More information

Progress in ab-initio calculations. The nuclear A-body problem

Progress in ab-initio calculations. The nuclear A-body problem 60 50 Progress in ab-initio calculations The nuclear A-body problem A 40 30 20 10 G. Hagen et al., Nature Physics 12, 186 (2016) 0 1980 1990 2000 2010 2020 Year In the early decades, the progress was approximately

More information

Direct reactions methodologies for use at fragmentation beam energies

Direct reactions methodologies for use at fragmentation beam energies 1 Direct reactions methodologies for use at fragmentation beam energies TU Munich, February 14 th 2008 Jeff Tostevin, Department of Physics Faculty of Engineering and Physical Sciences University of Surrey,

More information

Auxiliary-field quantum Monte Carlo methods in heavy nuclei

Auxiliary-field quantum Monte Carlo methods in heavy nuclei Mika Mustonen and Yoram Alhassid (Yale University) Introduction Auxiliary-field quantum Monte Carlo methods in heavy nuclei Auxiliary-field Monte Carlo (AFMC) methods at finite temperature Sign problem

More information

Nuclear Structure Theory II

Nuclear Structure Theory II uclear Structure Theory II The uclear Many-body Problem Alexander Volya Florida State University Physics of light nuclei 1 H 4 Li 3 He 2 H 8 7 6 Be 5 Li 4 He 3 B H 10 9 8 7 Be 6 Li 5 He 4 B H 12 11 10

More information

Introduction to NUSHELLX

Introduction to NUSHELLX Introduction to NUSHELLX Angelo Signoracci CEA/Saclay Lecture 3, 24 April 2012 Outline 1 NUSHELLX shell model code 2 Inputs for calculation 3 Practical Implementation Outline 1 NUSHELLX shell model code

More information

High-resolution Study of Gamow-Teller Transitions

High-resolution Study of Gamow-Teller Transitions High-resolution Study of Gamow-Teller Transitions Yoshitaka Fujita, Osaka Univ. @CNS-SS, 04.Aug.17-20 Nucleus : 3 active interactions out of 4 Strong, Weak, EM Comparison of Analogous Transitions High

More information

Nuclear Matter Incompressibility and Giant Monopole Resonances

Nuclear Matter Incompressibility and Giant Monopole Resonances Nuclear Matter Incompressibility and Giant Monopole Resonances C.A. Bertulani Department of Physics and Astronomy Texas A&M University-Commerce Collaborator: Paolo Avogadro 27th Texas Symposium on Relativistic

More information

Isospin-symmetry breaking in nuclei around the N=Z line

Isospin-symmetry breaking in nuclei around the N=Z line Isospin-symmetry breaking in nuclei around the N=Z line Yang Sun Shanghai Jiao Tong University University of Hong Kong, July. 6-9, 2015 The concept of isospin Isospin of a nucleon: Projection of isospin:

More information

Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them

Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them Introduction Yoram Alhassid (Yale University) Finite-temperature auxiliary-field Monte Carlo methods in Fock

More information

The shape distribution of nuclear level densities in the shell model Monte Carlo method

The shape distribution of nuclear level densities in the shell model Monte Carlo method The shape distribution of nuclear level densities in the shell model Monte Carlo method Introduction Yoram Alhassid (Yale University) Shell model Monte Carlo (SMMC) method and level densities Nuclear deformation

More information

Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy.

Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy. Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy Hiroshi Watanabe Outline Prospects for decay spectroscopy of neutron-rich

More information

Di-neutron correlation in Borromean nuclei

Di-neutron correlation in Borromean nuclei Di-neutron correlation in Borromean nuclei K. Hagino (Tohoku University) H. Sagawa (University of Aizu) 11 Li, 6 He What is the spatial structure of valence neutrons? Compact? Or Extended? 1. Introduction:

More information

Constraining Astrophysical Reaction Rates with Transfer Reactions at Low and Intermediate Energies

Constraining Astrophysical Reaction Rates with Transfer Reactions at Low and Intermediate Energies Constraining Astrophysical Reaction Rates with Transfer Reactions at Low and Intermediate Energies Christoph Langer (JINA/NSCL) INT Workshop: Reactions and Structure of Exotic Nuclei March 2015 1 Understanding

More information

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach A. PETROVICI Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania Outline complex

More information

Pairing Correlations in Nuclei on Neutron Drip Line

Pairing Correlations in Nuclei on Neutron Drip Line Pairing Correlations in Nuclei on Neutron Drip Line INT Workshop on Pairing degrees of freedom in nuclei and the nuclear medium Nov. 14-17, 2005 Hiroyuki Sagawa (University of Aizu) Introduction Three-body

More information

arxiv: v1 [nucl-th] 7 Nov 2016

arxiv: v1 [nucl-th] 7 Nov 2016 Nuclear structure calculations in 20 Ne with No-Core Configuration-Interaction model arxiv:1611.01979v1 [nucl-th] 7 Nov 2016 Maciej Konieczka and Wojciech Satu la Faculty of Physics, University of Warsaw,

More information

Nuclear physics: a laboratory for many-particle quantum mechanics or From model to theory in nuclear structure physics

Nuclear physics: a laboratory for many-particle quantum mechanics or From model to theory in nuclear structure physics Nuclear physics: a laboratory for many-particle quantum mechanics or From model to theory in nuclear structure physics G.F. Bertsch University of Washington Stockholm University and the Royal Institute

More information

Neutron Halo in Deformed Nuclei

Neutron Halo in Deformed Nuclei Advances in Nuclear Many-Body Theory June 7-1, 211, Primosten, Croatia Neutron Halo in Deformed Nuclei Ó Li, Lulu Ò School of Physics, Peking University June 8, 211 Collaborators: Jie Meng (PKU) Peter

More information

New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen

New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen I. General introduction to the atomic nucleus Charge density, shell gaps, shell occupancies, Nuclear forces, empirical monopoles, additivity,

More information

SHELL-MODEL RESULTS IN fp AND fpg 9/2 SPACES FOR

SHELL-MODEL RESULTS IN fp AND fpg 9/2 SPACES FOR SHELL-MODEL RESULTS IN fp AND fpg 9/2 SPACES FOR 61,63,65 Co ISOTOPES P.C. Srivastava 1, * 1, ** and V.K.B. Kota 1 Physical Research Laboratory, Ahmedabad, India arxiv:1004.4443v2 [nucl-th] 18 May 2011

More information

Symmetry energy, masses and T=0 np-pairing

Symmetry energy, masses and T=0 np-pairing Symmetry energy, masses and T=0 np-pairing Can we measure the T=0 pair gap? Do the moments of inertia depend on T=0 pairing? Do masses evolve like T(T+1) or T^2 (N-Z)^2? Origin of the linear term in mean

More information

Statistical Theory for the Beta-Delayed Neutron and Gamma-Ray Emission

Statistical Theory for the Beta-Delayed Neutron and Gamma-Ray Emission Statistical Theory for the Beta-Delayed Neutron and Gamma-Ray Emission T. Kawano, P Möller Theoretical Division, Los Alamos National Laboratory LA-UR-13-21895 Slide 1 Combining QRPA Calculation and Statistical

More information

Particle excitations and rotational modes in nuclei with A 70-90

Particle excitations and rotational modes in nuclei with A 70-90 . 4 5 7 / 5-6 4 7 4 5 5 -, 4. 1 I J E J K J B H A H K @ = @ H A F D O I E Particle excitations and rotational modes in nuclei with A 7-9 In nuclei of the mass region with A 7-9 both protons and neutrons

More information

Studies of Gamow-Teller transitions using Weak and Strong Interactions

Studies of Gamow-Teller transitions using Weak and Strong Interactions Studies of Gamow-Teller transitions using Weak and Strong Interactions High-resolution Spectroscopy & Tensor Interaction @ Nakanoshima, Osaka Nov. 16 Nov. 19, 2015 Yoshitaka FUJITA RCNP, Osaka Univ. Neptune

More information

Quantum Chaos as a Practical Tool in Many-Body Physics

Quantum Chaos as a Practical Tool in Many-Body Physics Quantum Chaos as a Practical Tool in Many-Body Physics Vladimir Zelevinsky NSCL/ Michigan State University Supported by NSF Statistical Nuclear Physics SNP2008 Athens, Ohio July 8, 2008 THANKS B. Alex

More information

Charge Exchange and Weak Strength for Astrophysics

Charge Exchange and Weak Strength for Astrophysics Charge Exchange and Weak Strength for Astrophysics Sam Austin STANfest-July 16 2004 Charge Exchange and Weak Strength for Astrophysics Interesting phenomena Electron capture strength (GT) (Langanke talk)

More information

Part III: The Nuclear Many-Body Problem

Part III: The Nuclear Many-Body Problem Part III: The Nuclear Many-Body Problem To understand the properties of complex nuclei from first principles Microscopic Valence- Space Interactions Model spaces Many-body perturbation theory (MBPT) Calculating

More information

E438: Study of Σ-Nucleus Potential by the (π -, K + ) Reaction on Heavy Nuclei

E438: Study of Σ-Nucleus Potential by the (π -, K + ) Reaction on Heavy Nuclei KEK-PS External Review, Jan 22-23, 2008 Seminar Hall, Bldg.4 KEK E438: Study of Σ-Nucleus Potential by the (π -, K + ) Reaction on Heavy Nuclei Hiroyuki Noumi RCNP, Osaka-U for E438 1 Precision Hypernuclear

More information

Configuration interaction studies of pairing and clustering in light nuclei

Configuration interaction studies of pairing and clustering in light nuclei Configuration interaction studies of pairing and clustering in light nuclei Alexander Volya Florida State University DOE support: DE-SC9883 Trento September 216 Questions Description of clustering, from

More information

Modeling the Atomic Nucleus. Theoretical bag of tricks

Modeling the Atomic Nucleus. Theoretical bag of tricks Modeling the Atomic Nucleus Theoretical bag of tricks The nuclear many-body problem The Nuclear Many-Body Problem H ˆ = T ˆ + V ˆ ˆ T = A 2 p ˆ " i, V ˆ = 2m i i=1 one-body H ˆ " = E" " V ˆ 2b (i, j) +

More information

Testing the validity of the Spin-orbit interaction Nuclear forces at the drip-line O. Sorlin (GANIL, Caen, France)

Testing the validity of the Spin-orbit interaction Nuclear forces at the drip-line O. Sorlin (GANIL, Caen, France) PART 1: Testing the validity of the Spin-orbit interaction Nuclear forces at the drip-line O. Sorlin (GANIL, Caen, France) Introduction to the SO interaction Historical picture -> magic numbers The SO

More information

p(p,e + ν)d reaction determines the lifetime of the sun

p(p,e + ν)d reaction determines the lifetime of the sun 2013.12.25 Contents Basic properties of nuclear systems Different aspects in different time scales Symmetry breaking in finite time scale Rapidly rotating nuclei Superdeformation and new type of symmetry

More information

Beta decay for neutron capture Sean Liddick

Beta decay for neutron capture Sean Liddick Beta decay for neutron capture Sean Liddick 6 th Oslo Workshop on Strength and Level Density, May 8-12, 2017 Nuclear Physics Uncertainties for r-process: (n,γ) (n,γ) uncertainties Monte-Carlo variations

More information