Quantum Chaos as a Practical Tool in Many-Body Physics

Size: px
Start display at page:

Download "Quantum Chaos as a Practical Tool in Many-Body Physics"

Transcription

1 Quantum Chaos as a Practical Tool in Many-Body Physics Vladimir Zelevinsky NSCL/ Michigan State University Supported by NSF Statistical Nuclear Physics SNP2008 Athens, Ohio July 8, 2008

2 THANKS B. Alex Brown (NSCL, MSU) Mihai Horoi (Central Michigan University) Declan Mulhall (Scranton University) Alexander Volya (Florida State University) Njema Frazier (NNSA)

3 ONE-BODY CHAOS SHAPE (BOUNDARY CONDITIONS) MANY-BODY CHAOS INTERACTION BETWEEN PARTICLES Nuclear Shell Model realistic testing ground Fermi system with mean field and strong interaction Exact solution in finite space Good agreement with experiment Conservation laws and symmetry classes Variable parameters Sufficiently large dimensions (statistics) Sufficiently low dimensions Observables: energy levels (spectral statistics) wave functions (complexity) transitions (correlations) destruction of symmetries cross sections (correlations) Heavy nuclei dramatic growth of dimensions

4 MANY-BODY QUANTUM CHAOS AS AN INSTRUMENT SPECTRAL STATISTICS signature of chaos - missing levels - purity of quantum numbers - statistical weight of subsequences - presence of time-reversal invariance EXPERIMENTAL TOOL unresolved fine structure - width distribution - damping of collective modes NEW PHYSICS - statistical enhancement of weak perturbations (parity violation in neutron scattering and fission) - mass fluctuations - chaos on the border with continuum THEORETICAL CHALLENGES - order our of chaos - chaos and thermalization - development of computational tools - new approximations in many-body problem

5 TYPICAL COMPUTATIONAL PROBLEM DIAGONALIZATION OF HUGE MATRICES (dimensions dramatically grow with the particle number) Practically we need not more than few dozens is the rest just useless garbage? Process of progressive truncation * how to order? * is it convergent? * how rapidly? * in what basis? * which observables? Do we need the exact energy values? Mass predictions Rotational and vibrational spectra Drip line position Level density Astrophysical applications

6 Banded GOE Full GOE GROUND STATE ENERGY OF RANDOM MATRICES EXPONENTIAL CONVERGENCE SPECIFIC PROPERTY of RANDOM MATRICES?

7 ENERGY CONVERGENCE in SIMPLE MODELS Tight binding model Shifted harmonic oscillator

8 REALISTIC SHELL MODEL EXCITED STATES 51Sc 1/2-, 3/2- Faster convergence: E(n) = E + exp(-an) a ~ 6/N

9 REALISTIC SHELL 48 Cr MODEL Excited state J=2, T=0 EXPONENTIAL CONVERGENCE! E(n) = E + exp(-an) n ~ 4/N

10 28 Si Diagonal matrix elements of the Hamiltonian in the mean-field representation J=2+, T=0 Partition structure in the shell model (a) All 3276 states ; (b) energy centroids

11 28Si Energy dispersion for individual states is nearly constant (result of geometric chaoticity!)

12 IDEA of GEOMETRIC CHAOTICITY Angular momentum coupling as a random process Bethe (1936) j(a) + j(b) = J(ab) + j(c) = J(abc) + j(d) = J(abcd) Many quasi-random paths = J Statistical theory of parentage coefficients? Effective Hamiltonian of classes Interacting boson models, quantum dots,

13 From turbulent to laminar level dynamics

14 NEAREST LEVEL SPACING DISTRIBUTION at interaction strength 0.2 of the realistic value WIGNER-DYSON distribution (the weakest signature of quantum chaos)

15 Nuclear Data Ensemble 1407 resonance energies 30 sequences For 27 nuclei Neutron resonances Proton resonances (n,gamma) reactions Regular spectra = L/15 (universal for small L) R. Haq et al SPECTRAL RIGIDITY Chaotic spectra = a log L +b for L>>1

16 Spectral rigidity (calculations for 40Ca in the region of ISGQR) [Aiba et al. 2003] Critical dependence on interaction between 2p-2h states

17 Purity? Mixing levels? 235U, J=3 or 4, 960 lowest levels f=0.44 Data agree with f=(7/16)=0.44 0, 4% and 10% missing D and 4% missing levels D. Mulhall et al.2007

18 Shell Model 28Si Level curvature distribution for different interaction strengths

19 EXPONENTIAL DISTRIBUTION : Nuclei (various shell model versions), atoms, IBM

20

21 Information entropy is basis-dependent - special role of mean field

22 INFORMATION ENTROPY AT WEAK INTERACTION

23 INFORMATION ENTROPY of EIGENSTATES (a) function of energy; (b) function of ordinal number ORDERING of EIGENSTATES of GIVEN SYMMETRY SHANNON ENTROPY AS THERMODYNAMIC VARIABLE

24 12 C 1183 states Smart information entropy (separation of center-of-mass excitations of lower complexity shifted up in energy) CROSS-SHELL MIXING WITH SPURIOUS STATES

25 1.44 NUMBER of PRINCIPAL COMPONENTS

26 l=k l=k l=k+10 l=k+100 l=k Correlation functions of the weights W(k)W(l) in comparison with GOE

27 N - scaling N large number of simple components in a typical wave function Q simple operator Single particle matrix element Between a simple and a chaotic state Between two fully chaotic states

28 STATISTICAL ENHANCEMENT Parity nonconservation in scattering of slow polarized neutrons up to 10% Coherent part of weak interaction Single-particle mixing Chaotic mixing Neutron resonances in heavy nuclei Kinematic enhancement

29 235 U Los Alamos data E=63.5 ev 10.2 ev -0.16(0.08)% (0.37) (0.40) * (0.86) (0.11) (1.30) (0.86) Transmission coefficients for two helicity states (longitudinally polarized neutrons)

30 Parity nonconservation in fission Correlation of neutron spin and momentum of fragments Transfer of elementary asymmetry to ALMOST MACROSCOPIC LEVEL What about 2 nd law of thermodynamics? Statistical enhancement hot stage ~ - mixing of parity doublets Angular asymmetry cold stage, - fission channels, memory preserved Complexity refers to the natural basis (mean field)

31 Parity violating asymmetry Parity preserving asymmetry [Grenoble] A. Alexandrovich et al Parity non-conservation in fission by polarized neutrons on the level up to 0.001

32 Fission of 233 U by cold polarized neutrons, (Grenoble) A. Koetzle et al Asymmetry determined at the hot chaotic stage

33

34 AVERAGE STRENGTH FUNCTION Breit-Wigner fit (solid) Gaussian fit (dashed) Exponential tails

35

36 52 Cr Ground and excited states 56 Ni Superdeformed headband

37 OTHER OBSERVABLES? Occupation numbers Add a new partition of dimension d, Corrections to wave functions where Occupation numbers are diagonal in a new partition The same exponential convergence:

38 EXPONENTIAL CONVERGENCE OF SINGLE-PARTICLE OCCUPANCIES (first excited state J=0) 52 Cr Orbitals f5/2 and f7/2

39 Convergence exponents 10 particles on 10 doubly-degenerate orbitals 252 s=0 states Fast convergence at weak interaction G Pairing phase transition at G=0.25

40

41 CONVERGENCE REGIMES Fast convergence Exponential convergence Power law Divergence

42 CHAOS versus THERMALIZATION L. BOLTZMANN Stosszahlansatz = MOLECULAR CHAOS N. BOHR - Compound nucleus = MANY-BODY CHAOS N. S. KRYLOV - Foundations of statistical mechanics L. Van HOVE Quantum ergodicity L. D. LANDAU and E. M. LIFSHITZ Statistical Physics Average over the equilibrium ensemble should coincide with the expectation value in a generic individual eigenstate of the same energy the results of measurements in a closed system do not depend on exact microscopic conditions or phase relationships if the eigenstates at the same energy have similar macroscopic properties TOOL: MANY-BODY QUANTUM CHAOS

43 CLOSED MESOSCOPIC SYSTEM at high level density Two languages: individual wave functions thermal excitation * Mutually exclusive? * Complementary? * Equivalent? Answer depends on thermometer

44 J=0 J=2 J=9 Single particle occupation numbers Thermodynamic behavior identical in all symmetry classes FERMI-LIQUID PICTURE

45 J=0 Artificially strong interaction (factor of 10) Single-particle thermometer cannot resolve spectral evolution

46 Off-diagonal matrix elements of the operator n between the ground state and all excited states J=0, s=0 in the exact solution of the pairing problem for 114Sn

47 Temperature T(E) T(s.p.) and T(inf) = for individual states!

48 Gaussian level density 839 states (28 Si) EFFECTIVE TEMPERATURE of INDIVIDUAL STATES From occupation numbers in the shell model solution (dots) From thermodynamic entropy defined by level density (lines)

49 Exp (S) Various measures Level density Information Entropy in units of S(GOE) Single-particle entropy of Fermi-gas Interaction:

50 STATISTICAL MECHANICS of CLOSED MESOSCOPIC SYSTEMS * SPECIAL ROLE OF MEAN FIELD BASIS (separation of regular and chaotic motion; mean field out of chaos) * CHAOTIC INTERACTION as HEAT BATH * SELF CONSISTENCY OF mean field, interaction and thermometer * SIMILARITY OF CHAOTIC WAVE FUNCTIONS * SMEARED PHASE TRANSITIONS * CONTINUUM EFFECTS (IRREVERSIBLE DECAY) new effects when widths are of the order of spacings restoration of symmetries super-radiant and trapped states conductance fluctuations

51 GLOBAL PROBLEMS 1. Do we understand the role of incoherent interactions in many-body physics? 2. Correlations between classes of states with different symmetry governed by the same Hamiltonian 3. New approach to many-body theory for mesoscopic systems instead of blunt diagonalization - mean field out of chaos, coherent modes plus thermalized chaotic background 4. Internal and external chaos 5. Chaos-free scalable quantum computing

52 B. V. CHIRIKOV : The source of new information is always chaotic. Assuming farther that any creative activity, science including, is supposed to be such a source, we come to an interesting conclusion that any such activity has to be (partly!) chaotic. This is the creative side of chaos.

Quantum Chaos as a Practical Tool in Many-Body Physics ESQGP Shuryak fest

Quantum Chaos as a Practical Tool in Many-Body Physics ESQGP Shuryak fest Quantum Chaos as a Practical Tool in Many-Body Physics ESQGP Shuryak fest Vladimir Zelevinsky NSCL/ Michigan State University Stony Brook October 3, 2008 Budker Institute of Nuclear Physics, Novosibirsk

More information

Statistical Approach to Nuclear Level Density

Statistical Approach to Nuclear Level Density Statistical Approach to Nuclear Level Density R. A. Sen kov,v.g.zelevinsky and M. Horoi Department of Physics, Central Michigan University, Mount Pleasant, MI 889, USA Department of Physics and Astronomy

More information

arxiv: v2 [cond-mat.stat-mech] 15 Apr 2016

arxiv: v2 [cond-mat.stat-mech] 15 Apr 2016 Quantum Chaos and Thermalization in Isolated Systems of Interacting Particles F Borgonovi a, F M Izrailev b,d, L F Santos c, V G Zelevinsky d, arxiv:160201874v2 [cond-matstat-mech] 15 Apr 2016 a Dipartimento

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 3 Beforehand Weak Localization and Mesoscopic Fluctuations Today

More information

QUANTUM CHAOS IN NUCLEAR PHYSICS

QUANTUM CHAOS IN NUCLEAR PHYSICS QUANTUM CHAOS IN NUCLEAR PHYSICS Investigation of quantum chaos in nuclear physics is strongly hampered by the absence of even the definition of quantum chaos, not to mention the numerical criterion of

More information

Deexcitation mechanisms in compound nucleus reactions

Deexcitation mechanisms in compound nucleus reactions Deexcitation mechanisms in compound nucleus reactions Curso de Reacciones Nucleares Programa Inter-universitario de Física Nuclear Universidade de Santiago de Compostela March 2008 Contents Elements of

More information

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar Evolution Of Shell Structure, Shapes & Collective Modes Dario Vretenar vretenar@phy.hr 1. Evolution of shell structure with N and Z A. Modification of the effective single-nucleon potential Relativistic

More information

Anderson Localization Looking Forward

Anderson Localization Looking Forward Anderson Localization Looking Forward Boris Altshuler Physics Department, Columbia University Collaborations: Also Igor Aleiner Denis Basko, Gora Shlyapnikov, Vincent Michal, Vladimir Kravtsov, Lecture2

More information

Spectral Fluctuations in A=32 Nuclei Using the Framework of the Nuclear Shell Model

Spectral Fluctuations in A=32 Nuclei Using the Framework of the Nuclear Shell Model American Journal of Physics and Applications 2017; 5(): 5-40 http://www.sciencepublishinggroup.com/j/ajpa doi: 10.11648/j.ajpa.2017050.11 ISSN: 20-4286 (Print); ISSN: 20-408 (Online) Spectral Fluctuations

More information

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 ORIGINS E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 P.W. Anderson, Absence of Diffusion in Certain Random Lattices ; Phys.Rev., 1958, v.109, p.1492 L.D. Landau, Fermi-Liquid

More information

The interacting boson model

The interacting boson model The interacting boson model P. Van Isacker, GANIL, France Dynamical symmetries of the IBM Neutrons, protons and F-spin (IBM-2) T=0 and T=1 bosons: IBM-3 and IBM-4 The interacting boson model Nuclear collective

More information

The 2010 US National Nuclear Physics Summer School and the TRIUMF Summer Institute, NNPSS-TSI June 21 July 02, 2010, Vancouver, BC, Canada

The 2010 US National Nuclear Physics Summer School and the TRIUMF Summer Institute, NNPSS-TSI June 21 July 02, 2010, Vancouver, BC, Canada TU DARMSTADT The 2010 US National Nuclear Physics Summer School and the TRIUMF Summer Institute, NNPSS-TSI June 21 July 02, 2010, Vancouver, BC, Canada Achim Richter ECT* Trento/Italy and TU Darmstadt/Germany

More information

Continuum Shell Model

Continuum Shell Model Continuum Shell Model Alexander Volya Florida State University This work was done with Vladimir Zelevinsky Supported by DOE and NSF. Outline Continuum Shell Model Basic Theory Reaction Formalism One-body

More information

Electronic structure of correlated electron systems. Lecture 2

Electronic structure of correlated electron systems. Lecture 2 Electronic structure of correlated electron systems Lecture 2 Band Structure approach vs atomic Band structure Delocalized Bloch states Fill up states with electrons starting from the lowest energy No

More information

PHYS3113, 3d year Statistical Mechanics Tutorial problems. Tutorial 1, Microcanonical, Canonical and Grand Canonical Distributions

PHYS3113, 3d year Statistical Mechanics Tutorial problems. Tutorial 1, Microcanonical, Canonical and Grand Canonical Distributions 1 PHYS3113, 3d year Statistical Mechanics Tutorial problems Tutorial 1, Microcanonical, Canonical and Grand Canonical Distributions Problem 1 The macrostate probability in an ensemble of N spins 1/2 is

More information

Coupled-cluster theory for nuclei

Coupled-cluster theory for nuclei Coupled-cluster theory for nuclei Thomas Papenbrock and G. Hagen D. J. Dean M. Hjorth-Jensen B. Velamur Asokan INT workshop Weakly-bound systems in atomic and nuclear physics Seattle, March 8-12, 2010

More information

The Nuclear Many-Body Problem. Lecture 2

The Nuclear Many-Body Problem. Lecture 2 The Nuclear Many-Body Problem Lecture 2 How do we describe nuclei? Shell structure in nuclei and the phenomenological shell model approach to nuclear structure. Ab-initio approach to nuclear structure.

More information

H.O. [202] 3 2 (2) (2) H.O. 4.0 [200] 1 2 [202] 5 2 (2) (4) (2) 3.5 [211] 1 2 (2) (6) [211] 3 2 (2) 3.0 (2) [220] ε

H.O. [202] 3 2 (2) (2) H.O. 4.0 [200] 1 2 [202] 5 2 (2) (4) (2) 3.5 [211] 1 2 (2) (6) [211] 3 2 (2) 3.0 (2) [220] ε E/ħω H r 0 r Y0 0 l s l l N + l + l s [0] 3 H.O. ε = 0.75 4.0 H.O. ε = 0 + l s + l [00] n z = 0 d 3/ 4 [0] 5 3.5 N = s / N n z d 5/ 6 [] n z = N lj [] 3 3.0.5 0.0 0.5 ε 0.5 0.75 [0] n z = interaction of

More information

Preface. Preface to the Third Edition. Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Preface. Preface to the Third Edition. Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1 xi Contents Preface Preface to the Third Edition Preface to the Second Edition Preface to the First Edition v vii viii ix 1 Introduction 1 I GENERAL THEORY OF OPEN QUANTUM SYSTEMS 5 Diverse limited approaches:

More information

Quantum Mechanics: Fundamentals

Quantum Mechanics: Fundamentals Kurt Gottfried Tung-Mow Yan Quantum Mechanics: Fundamentals Second Edition With 75 Figures Springer Preface vii Fundamental Concepts 1 1.1 Complementarity and Uncertainty 1 (a) Complementarity 2 (b) The

More information

Lecture 4: Nuclear Energy Generation

Lecture 4: Nuclear Energy Generation Lecture 4: Nuclear Energy Generation Literature: Prialnik chapter 4.1 & 4.2!" 1 a) Some properties of atomic nuclei Let: Z = atomic number = # of protons in nucleus A = atomic mass number = # of nucleons

More information

An Introduction to. Nuclear Physics. Yatramohan Jana. Alpha Science International Ltd. Oxford, U.K.

An Introduction to. Nuclear Physics. Yatramohan Jana. Alpha Science International Ltd. Oxford, U.K. An Introduction to Nuclear Physics Yatramohan Jana Alpha Science International Ltd. Oxford, U.K. Contents Preface Acknowledgement Part-1 Introduction vii ix Chapter-1 General Survey of Nuclear Properties

More information

Study Plan for Ph.D in Physics (2011/2012)

Study Plan for Ph.D in Physics (2011/2012) Plan Study Plan for Ph.D in Physics (2011/2012) Offered Degree: Ph.D in Physics 1. General Rules and Conditions:- This plan conforms to the regulations of the general frame of the higher graduate studies

More information

arxiv: v2 [nucl-th] 8 May 2014

arxiv: v2 [nucl-th] 8 May 2014 Oblate deformation of light neutron-rich even-even nuclei Ikuko Hamamoto 1,2 1 Riken Nishina Center, Wako, Saitama 351-0198, Japan 2 Division of Mathematical Physics, Lund Institute of Technology at the

More information

Nuclear Physics for Applications

Nuclear Physics for Applications Stanley C. Pruss'm Nuclear Physics for Applications A Model Approach BICENTENNIAL WILEY-VCH Verlag GmbH & Co. KGaA VII Table of Contents Preface XIII 1 Introduction 1 1.1 Low-Energy Nuclear Physics for

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 2

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 2 2358-20 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 2 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain Mean field studies of odd mass nuclei and quasiparticle excitations Luis M. Robledo Universidad Autónoma de Madrid Spain Odd nuclei and multiquasiparticle excitations(motivation) Nuclei with odd number

More information

Computational approaches to many-body dynamics of unstable nuclear systems

Computational approaches to many-body dynamics of unstable nuclear systems Computational approaches to many-body dynamics of unstable nuclear systems Alexander Volya Florida State University Physics and mathema.cs of instability and decay Zeno paradox of arrow (490 430 BC)! The

More information

Features of nuclear many-body dynamics: from pairing to clustering

Features of nuclear many-body dynamics: from pairing to clustering Features of nuclear many-body dynamics: from pairing to clustering Alexander Volya Florida State University Collaborators: K. Kravvaris, Yu. Tchuvil sky Outline Configuration interaction approach SU(3)

More information

Thermodynamics of nuclei in thermal contact

Thermodynamics of nuclei in thermal contact Thermodynamics of nuclei in thermal contact Karl-Heinz Schmidt, Beatriz Jurado CENBG, CNRS/IN2P3, Chemin du Solarium B.P. 120, 33175 Gradignan, France Abstract: The behaviour of a di-nuclear system in

More information

Regular & Chaotic. collective modes in nuclei. Pavel Cejnar. ipnp.troja.mff.cuni.cz

Regular & Chaotic. collective modes in nuclei. Pavel Cejnar. ipnp.troja.mff.cuni.cz Pavel Cejnar Regular & Chaotic collective modes in nuclei Institute of Particle and Nuclear Physics Faculty of Mathematics and Physics Charles University, Prague, Czech Republic cejnar @ ipnp.troja.mff.cuni.cz

More information

Nucleon Pair Approximation to the nuclear Shell Model

Nucleon Pair Approximation to the nuclear Shell Model Nucleon Pair Approximation to the nuclear Shell Model Yiyuan Cheng Department of Physics and Astronomy, Shanghai Jiao Tong University, China RCNP, Osaka university, Japan Collaborators: Yu-Min Zhao, Akito

More information

1 Introduction. 2 The hadronic many body problem

1 Introduction. 2 The hadronic many body problem Models Lecture 18 1 Introduction In the next series of lectures we discuss various models, in particluar models that are used to describe strong interaction problems. We introduce this by discussing the

More information

List of Comprehensive Exams Topics

List of Comprehensive Exams Topics List of Comprehensive Exams Topics Mechanics 1. Basic Mechanics Newton s laws and conservation laws, the virial theorem 2. The Lagrangian and Hamiltonian Formalism The Lagrange formalism and the principle

More information

Topics for the Qualifying Examination

Topics for the Qualifying Examination Topics for the Qualifying Examination Quantum Mechanics I and II 1. Quantum kinematics and dynamics 1.1 Postulates of Quantum Mechanics. 1.2 Configuration space vs. Hilbert space, wave function vs. state

More information

New T=1 effective interactions for the f 5/2 p 3/2 p 1/2 g 9/2 model space: Implications for valence-mirror symmetry and seniority isomers

New T=1 effective interactions for the f 5/2 p 3/2 p 1/2 g 9/2 model space: Implications for valence-mirror symmetry and seniority isomers PHYSICAL REVIEW C 70, 044314 (2004) New T=1 effective interactions for the f 5/2 p 3/2 p 1/2 g 9/2 model space: Implications for valence-mirror symmetry and seniority isomers A. F. Lisetskiy, 1 B. A. Brown,

More information

Compound and heavy-ion reactions

Compound and heavy-ion reactions Compound and heavy-ion reactions Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 March 23, 2011 NUCS 342 (Lecture 24) March 23, 2011 1 / 32 Outline 1 Density of states in a

More information

Quantum Theory of Many-Particle Systems, Phys. 540

Quantum Theory of Many-Particle Systems, Phys. 540 Quantum Theory of Many-Particle Systems, Phys. 540 Questions about organization Second quantization Questions about last class? Comments? Similar strategy N-particles Consider Two-body operators in Fock

More information

Statistical Mechanics

Statistical Mechanics Franz Schwabl Statistical Mechanics Translated by William Brewer Second Edition With 202 Figures, 26 Tables, and 195 Problems 4u Springer Table of Contents 1. Basic Principles 1 1.1 Introduction 1 1.2

More information

Configuration interaction approach to nuclear clustering

Configuration interaction approach to nuclear clustering Configuration interaction approach to nuclear clustering Alexander Volya Florida State University Configuration interaction approach A powerful tool in studies of nuclear many-body problems De-facto most

More information

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form Lecture 6 Page 1 Atoms L6.P1 Review of hydrogen atom Heavy proton (put at the origin), charge e and much lighter electron, charge -e. Potential energy, from Coulomb's law Potential is spherically symmetric.

More information

Nuclear and Particle Physics

Nuclear and Particle Physics Nuclear and Particle Physics W. S. С Williams Department of Physics, University of Oxford and St Edmund Hall, Oxford CLARENDON PRESS OXFORD 1991 Contents 1 Introduction 1.1 Historical perspective 1 1.2

More information

Configuration interaction studies of pairing and clustering in light nuclei

Configuration interaction studies of pairing and clustering in light nuclei Configuration interaction studies of pairing and clustering in light nuclei Alexander Volya Florida State University DOE support: DE-SC9883 Trento September 216 Questions Description of clustering, from

More information

Nuclear vibrations and rotations

Nuclear vibrations and rotations Nuclear vibrations and rotations Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 February 2, 2011 NUCS 342 (Lecture 9) February 2, 2011 1 / 29 Outline 1 Significance of collective

More information

c E If photon Mass particle 8-1

c E If photon Mass particle 8-1 Nuclear Force, Structure and Models Readings: Nuclear and Radiochemistry: Chapter 10 (Nuclear Models) Modern Nuclear Chemistry: Chapter 5 (Nuclear Forces) and Chapter 6 (Nuclear Structure) Characterization

More information

Dissipative nuclear dynamics

Dissipative nuclear dynamics Dissipative nuclear dynamics Curso de Reacciones Nucleares Programa Inter universitario de Fisica Nuclear Universidad de Santiago de Compostela March 2009 Karl Heinz Schmidt Collective dynamical properties

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Chaotic dynamics is one of the most extensively developing subjects in physics. Although

Chaotic dynamics is one of the most extensively developing subjects in physics. Although CHAOS vs THERMALIZATION IN THE NUCLEAR SHELL MODEL Mihai Horoi 1;3, Vladimir Zelevinsky 1;2;4 and B. Alex Brown 1;2 1 National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing,

More information

14. Structure of Nuclei

14. Structure of Nuclei 14. Structure of Nuclei Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 14. Structure of Nuclei 1 In this section... Magic Numbers The Nuclear Shell Model Excited States Dr. Tina Potter 14.

More information

Many-Body Problems and Quantum Field Theory

Many-Body Problems and Quantum Field Theory Philippe A. Martin Francois Rothen Many-Body Problems and Quantum Field Theory An Introduction Translated by Steven Goldfarb, Andrew Jordan and Samuel Leach Second Edition With 102 Figures, 7 Tables and

More information

The shell model Monte Carlo approach to level densities: recent developments and perspectives

The shell model Monte Carlo approach to level densities: recent developments and perspectives The shell model Monte Carlo approach to level densities: recent developments and perspectives Yoram Alhassid (Yale University) Introduction: the shell model Monte Carlo (SMMC) approach Level density in

More information

Particle-number projection in finite-temperature mean-field approximations to level densities

Particle-number projection in finite-temperature mean-field approximations to level densities Particle-number projection in finite-temperature mean-field approximations to level densities Paul Fanto (Yale University) Motivation Finite-temperature mean-field theory for level densities Particle-number

More information

APEX CARE INSTITUTE FOR PG - TRB, SLET AND NET IN PHYSICS

APEX CARE INSTITUTE FOR PG - TRB, SLET AND NET IN PHYSICS Page 1 1. Within the nucleus, the charge distribution A) Is constant, but falls to zero sharply at the nuclear radius B) Increases linearly from the centre, but falls off exponentially at the surface C)

More information

Intro to Nuclear and Particle Physics (5110)

Intro to Nuclear and Particle Physics (5110) Intro to Nuclear and Particle Physics (5110) March 13, 009 Nuclear Shell Model continued 3/13/009 1 Atomic Physics Nuclear Physics V = V r f r L r S r Tot Spin-Orbit Interaction ( ) ( ) Spin of e magnetic

More information

Physics 622: Quantum Mechanics -- Part II --

Physics 622: Quantum Mechanics -- Part II -- Physics 622: Quantum Mechanics -- Part II -- Instructors Prof. Seth Aubin Office: room 255, Small Hall, tel: 1-3545 Lab: room 069, Small Hall (new wing), tel: 1-3532 e-mail: saaubi@wm.edu web: http://www.physics.wm.edu/~saubin/index.html

More information

Continuum States in Drip-line Oxygen isotopes

Continuum States in Drip-line Oxygen isotopes Continuum States in Drip-line Oxygen isotopes EFES-NSCL WORKSHOP, Feb. 4-6, 2010 @ MSU Department of Physics The University of Tokyo Koshiroh Tsukiyama *Collaborators : Takaharu Otsuka (Tokyo), Rintaro

More information

T 1, T 2, NOE (reminder)

T 1, T 2, NOE (reminder) T 1, T 2, NOE (reminder) T 1 is the time constant for longitudinal relaxation - the process of re-establishing the Boltzmann distribution of the energy level populations of the system following perturbation

More information

Statistical properties of nuclei by the shell model Monte Carlo method

Statistical properties of nuclei by the shell model Monte Carlo method Statistical properties of nuclei by the shell model Monte Carlo method Introduction Yoram Alhassid (Yale University) Shell model Monte Carlo (SMMC) method Circumventing the odd particle-number sign problem

More information

MIDSUMMER EXAMINATIONS 2001 PHYSICS, PHYSICS WITH ASTROPHYSICS PHYSICS WITH SPACE SCIENCE & TECHNOLOGY PHYSICS WITH MEDICAL PHYSICS

MIDSUMMER EXAMINATIONS 2001 PHYSICS, PHYSICS WITH ASTROPHYSICS PHYSICS WITH SPACE SCIENCE & TECHNOLOGY PHYSICS WITH MEDICAL PHYSICS No. of Pages: 6 No. of Questions: 10 MIDSUMMER EXAMINATIONS 2001 Subject PHYSICS, PHYSICS WITH ASTROPHYSICS PHYSICS WITH SPACE SCIENCE & TECHNOLOGY PHYSICS WITH MEDICAL PHYSICS Title of Paper MODULE PA266

More information

Finite Ring Geometries and Role of Coupling in Molecular Dynamics and Chemistry

Finite Ring Geometries and Role of Coupling in Molecular Dynamics and Chemistry Finite Ring Geometries and Role of Coupling in Molecular Dynamics and Chemistry Petr Pracna J. Heyrovský Institute of Physical Chemistry Academy of Sciences of the Czech Republic, Prague ZiF Cooperation

More information

Valence p-n interactions, shell model for deformed nuclei and the physics of exotic nuclei. Rick Casten WNSL, Dec 9, 2014

Valence p-n interactions, shell model for deformed nuclei and the physics of exotic nuclei. Rick Casten WNSL, Dec 9, 2014 Valence p-n interactions, shell model for deformed nuclei and the physics of exotic nuclei Rick Casten WNSL, Dec 9, 2014 How can we understand nuclear behavior? Two approaches: 1) Nucleons in orbits and

More information

DEPARTMENT OF PHYSICS UNIVERSITY OF PUNE PUNE SYLLABUS for the M.Phil. (Physics ) Course

DEPARTMENT OF PHYSICS UNIVERSITY OF PUNE PUNE SYLLABUS for the M.Phil. (Physics ) Course DEPARTMENT OF PHYSICS UNIVERSITY OF PUNE PUNE - 411007 SYLLABUS for the M.Phil. (Physics ) Course Each Student will be required to do 3 courses, out of which two are common courses. The third course syllabus

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Probing shell evolution with large scale shell model calculations

Probing shell evolution with large scale shell model calculations Probing shell evolution with large scale shell model calculations Yutaka Utsuno Advanced Science Research Center, Japan Atomic Energy Agency Center for Nuclear Study, University of Tokyo Nuclear structure

More information

September 6, 3 7:9 WSPC/Book Trim Size for 9in x 6in book96 7 Quantum Theory of Many-Particle Systems Eigenstates of Eq. (5.) are momentum eigentates.

September 6, 3 7:9 WSPC/Book Trim Size for 9in x 6in book96 7 Quantum Theory of Many-Particle Systems Eigenstates of Eq. (5.) are momentum eigentates. September 6, 3 7:9 WSPC/Book Trim Size for 9in x 6in book96 Chapter 5 Noninteracting Fermi gas The consequences of the Pauli principle for an assembly of fermions that is localized in space has been discussed

More information

Chapter 29. Quantum Chaos

Chapter 29. Quantum Chaos Chapter 29 Quantum Chaos What happens to a Hamiltonian system that for classical mechanics is chaotic when we include a nonzero h? There is no problem in principle to answering this question: given a classical

More information

arxiv:nucl-ex/ v1 29 Apr 1999

arxiv:nucl-ex/ v1 29 Apr 1999 Observation of Thermodynamical Properties in the 162 Dy, 166 Er and 172 Yb Nuclei E. Melby, L. Bergholt, M. Guttormsen, M. Hjorth-Jensen, F. Ingebretsen, S. Messelt, J. Rekstad, A. Schiller, S. Siem, and

More information

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry:

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry: RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear and Radiochemistry: Chapter 10 (Nuclear Models) Modern Nuclear Chemistry: Chapter 5 (Nuclear Forces) and Chapter 6 (Nuclear

More information

PHYSICS. Course Syllabus. Section 1: Mathematical Physics. Subject Code: PH. Course Structure. Electromagnetic Theory

PHYSICS. Course Syllabus. Section 1: Mathematical Physics. Subject Code: PH. Course Structure. Electromagnetic Theory PHYSICS Subject Code: PH Course Structure Sections/Units Topics Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7 Section 8 Mathematical Physics Classical Mechanics Electromagnetic

More information

New theoretical insights on the physics of compound nuclei from laser-nucleus reactions

New theoretical insights on the physics of compound nuclei from laser-nucleus reactions New theoretical insights on the physics of compound nuclei from laser-nucleus reactions Adriana Pálffy Max Planck Institute for Nuclear Physics, Heidelberg, Germany Laser-Driven Radiation Sources for Nuclear

More information

Nuclear Structure (II) Collective models

Nuclear Structure (II) Collective models Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France NSDD Workshop, Trieste, March 2014 TALENT school TALENT (Training in Advanced Low-Energy Nuclear Theory, see http://www.nucleartalent.org).

More information

Electrical Transport in Nanoscale Systems

Electrical Transport in Nanoscale Systems Electrical Transport in Nanoscale Systems Description This book provides an in-depth description of transport phenomena relevant to systems of nanoscale dimensions. The different viewpoints and theoretical

More information

Lecture 4: Nuclear Energy Generation

Lecture 4: Nuclear Energy Generation Lecture 4: Nuclear Energy Generation Literature: Prialnik chapter 4.1 & 4.2!" 1 a) Some properties of atomic nuclei Let: Z = atomic number = # of protons in nucleus A = atomic mass number = # of nucleons

More information

PHL424: Nuclear Shell Model. Indian Institute of Technology Ropar

PHL424: Nuclear Shell Model. Indian Institute of Technology Ropar PHL424: Nuclear Shell Model Themes and challenges in modern science Complexity out of simplicity Microscopic How the world, with all its apparent complexity and diversity can be constructed out of a few

More information

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540 Central density Consider nuclear charge density Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) Central density (A/Z* charge density) about the same for nuclei heavier than 16 O, corresponding

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index 347 Index a AC fields 81 119 electric 81, 109 116 laser 81, 136 magnetic 112 microwave 107 109 AC field traps see Traps AC Stark effect 82, 84, 90, 96, 97 101, 104 109 Adiabatic approximation 3, 10, 32

More information

Emergence of chaotic scattering in ultracold lanthanides.

Emergence of chaotic scattering in ultracold lanthanides. Emergence of chaotic scattering in ultracold lanthanides. Phys. Rev. X 5, 041029 arxiv preprint 1506.05221 A. Frisch, S. Baier, K. Aikawa, L. Chomaz, M. J. Mark, F. Ferlaino in collaboration with : Dy

More information

Quantum mechanics of many-fermion systems

Quantum mechanics of many-fermion systems Quantum mechanics of many-fermion systems Kouichi Hagino Tohoku University, Sendai, Japan 1. Identical particles: Fermions and Bosons 2. Simple examples: systems with two identical particles 3. Pauli principle

More information

B. PHENOMENOLOGICAL NUCLEAR MODELS

B. PHENOMENOLOGICAL NUCLEAR MODELS B. PHENOMENOLOGICAL NUCLEAR MODELS B.0. Basic concepts of nuclear physics B.0. Binding energy B.03. Liquid drop model B.04. Spherical operators B.05. Bohr-Mottelson model B.06. Intrinsic system of coordinates

More information

The Nuclear Many Body Problem Lecture 3

The Nuclear Many Body Problem Lecture 3 The Nuclear Many Body Problem Lecture 3 Shell structure in nuclei and the phenomenological shell model approach to nuclear structure Ab initio approach to nuclear structure. Green's function Monte Carlo

More information

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego Michigan Quantum Summer School Ann Arbor, June 16-27, 2008. Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego 1. Motivation: Quantum superiority in superposition

More information

Theory of Mesoscopic Systems

Theory of Mesoscopic Systems Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 2 08 June 2006 Brownian Motion - Diffusion Einstein-Sutherland Relation for electric

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1 2358-19 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 1 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

The Superfluid Phase s of Helium 3

The Superfluid Phase s of Helium 3 The Superfluid Phase s of Helium 3 DIETER VOLLHARD T Rheinisch-Westfälische Technische Hochschule Aachen, Federal Republic of German y PETER WÖLFL E Universität Karlsruhe Federal Republic of Germany PREFACE

More information

arxiv: v1 [nucl-th] 4 Feb 2008

arxiv: v1 [nucl-th] 4 Feb 2008 Test of a modified BCS theory performance in the Picket Fence Model V.Yu. Ponomarev a,b and A.I. Vdovin b a Institut für Kernphysik, Technische Universität Darmstadt, D 6489 Darmstadt, Germany arxiv:8.454v

More information

Shigeji Fujita and Salvador V Godoy. Mathematical Physics WILEY- VCH. WILEY-VCH Verlag GmbH & Co. KGaA

Shigeji Fujita and Salvador V Godoy. Mathematical Physics WILEY- VCH. WILEY-VCH Verlag GmbH & Co. KGaA Shigeji Fujita and Salvador V Godoy Mathematical Physics WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XIII Table of Contents and Categories XV Constants, Signs, Symbols, and General Remarks

More information

Quantum Confinement in Graphene

Quantum Confinement in Graphene Quantum Confinement in Graphene from quasi-localization to chaotic billards MMM dominikus kölbl 13.10.08 1 / 27 Outline some facts about graphene quasibound states in graphene numerical calculation of

More information

NERS 311 Current Old notes notes Chapter Chapter 1: Introduction to the course 1 - Chapter 1.1: About the course 2 - Chapter 1.

NERS 311 Current Old notes notes Chapter Chapter 1: Introduction to the course 1 - Chapter 1.1: About the course 2 - Chapter 1. NERS311/Fall 2014 Revision: August 27, 2014 Index to the Lecture notes Alex Bielajew, 2927 Cooley, bielajew@umich.edu NERS 311 Current Old notes notes Chapter 1 1 1 Chapter 1: Introduction to the course

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-30 Dr. E. Rizvi Lecture 5 - Quantum Statistics & Kinematics Nuclear Reaction Types Nuclear reactions are often written as: a+x Y+b for accelerated projectile a colliding

More information

UGC ACADEMY LEADING INSTITUE FOR CSIR-JRF/NET, GATE & JAM PHYSICAL SCIENCE TEST SERIES # 4. Atomic, Solid State & Nuclear + Particle

UGC ACADEMY LEADING INSTITUE FOR CSIR-JRF/NET, GATE & JAM PHYSICAL SCIENCE TEST SERIES # 4. Atomic, Solid State & Nuclear + Particle UGC ACADEMY LEADING INSTITUE FOR CSIR-JRF/NET, GATE & JAM BOOKLET CODE PH PHYSICAL SCIENCE TEST SERIES # 4 Atomic, Solid State & Nuclear + Particle SUBJECT CODE 05 Timing: 3: H M.M: 200 Instructions 1.

More information

Breit-Wigner to Gaussian transition in strength functions

Breit-Wigner to Gaussian transition in strength functions Breit-Wigner to Gaussian transition in strength functions V.K.B. Kota a and R. Sahu a,b a Physical Research Laboratory, Ahmedabad 380 009, India b Physics Department, Berhampur University, Berhampur 760

More information

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in LONDON BEIJING HONG TSINGHUA Report and Review in Physics Vol2 PRINCIPLES OF PHYSICS From Quantum Field Theory to Classical Mechanics Ni Jun Tsinghua University, China NEW JERSEY \Hp SINGAPORE World Scientific

More information

TWO CENTER SHELL MODEL WITH WOODS-SAXON POTENTIALS

TWO CENTER SHELL MODEL WITH WOODS-SAXON POTENTIALS Romanian Reports in Physics, Vol. 59, No. 2, P. 523 531, 2007 Dedicated to Prof. Dorin N. Poenaru s 70th Anniversary TWO CENTER SHELL MODEL WITH WOODS-SAXON POTENTIALS M. MIREA Horia Hulubei National Institute

More information

Thermodynamics of the nucleus

Thermodynamics of the nucleus Thermodynamics of the nucleus Hilde-Therese Nyhus 1. October, 8 Hilde-Therese Nyhus Thermodynamics of the nucleus Owerview 1 Link between level density and thermodynamics Definition of level density Level

More information

C.W. Gardiner. P. Zoller. Quantum Nois e. A Handbook of Markovian and Non-Markovia n Quantum Stochastic Method s with Applications to Quantum Optics

C.W. Gardiner. P. Zoller. Quantum Nois e. A Handbook of Markovian and Non-Markovia n Quantum Stochastic Method s with Applications to Quantum Optics C.W. Gardiner P. Zoller Quantum Nois e A Handbook of Markovian and Non-Markovia n Quantum Stochastic Method s with Applications to Quantum Optics 1. A Historical Introduction 1 1.1 Heisenberg's Uncertainty

More information

Lewis 2.1, 2.2 and 2.3

Lewis 2.1, 2.2 and 2.3 Chapter 2(and 3) Cross-Sections TA Lewis 2.1, 2.2 and 2.3 Learning Objectives Understand different types of nuclear reactions Understand cross section behavior for different reactions Understand d resonance

More information

The Nuclear Many-Body Problem

The Nuclear Many-Body Problem The Nuclear Many-Body Problem relativistic heavy ions vacuum electron scattering quarks gluons radioactive beams heavy few nuclei body quark-gluon soup QCD nucleon QCD few body systems many body systems

More information

With Modern Physics For Scientists and Engineers

With Modern Physics For Scientists and Engineers With Modern Physics For Scientists and Engineers Third Edition Richard Wolfson Middlebury College Jay M. Pasachoff Williams College ^ADDISON-WESLEY An imprint of Addison Wesley Longman, Inc. Reading, Massachusetts

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

Auxiliary-field quantum Monte Carlo methods for nuclei and cold atoms

Auxiliary-field quantum Monte Carlo methods for nuclei and cold atoms Introduction Auxiliary-field quantum Monte Carlo methods for nuclei and cold atoms Yoram Alhassid (Yale University) Auxiliary-field Monte Carlo (AFMC) methods at finite temperature Sign problem and good-sign

More information