Auxiliary-field quantum Monte Carlo methods in heavy nuclei

Size: px
Start display at page:

Download "Auxiliary-field quantum Monte Carlo methods in heavy nuclei"

Transcription

1 Mika Mustonen and Yoram Alhassid (Yale University) Introduction Auxiliary-field quantum Monte Carlo methods in heavy nuclei Auxiliary-field Monte Carlo (AFMC) methods at finite temperature Sign problem and good-sign interactions Circumventing the odd particle-number sign problem Heavy nuclei Nuclear deformation in the spherical shell model: quadrupole distributions in the laboratory frame and in the intrinsic frame Possible application of AFMC to neutrinoless double beta decay Recent review: Y. Alhassid, arxiv:17.187, a chapter in a book edited by K.D. Launey (217)

2 Introduction The challenge: microscopic calculations of nuclear properties from underlying effective interactions Ab initio methods have been developed: Green function Monte Carlo No-core shell model Lattice effective field theory Coupled cluster (CC) method However, they are mostly limited to light nuclei or to nuclei near shell closure (CC). Most microscopic treatments of mid-mass and heavy nuclei are based on mean-field methods, e.g., density functional theory. However, important correlations can be missed.

3 The configuration-interaction (CI) shell model takes into account correlations beyond the mean-field but the combinatorial increase of the dimensionality of its model space has hindered its applications in mid-mass and heavy nuclei. Conventional diagonalization methods for the shell model are limited to spaces of dimensionality ~ The auxiliary-field Monte Carlo (AFMC method) enables microscopic calculations in spaces that are many orders of magnitude larger (~ 1 ) than those that can be treated by conventional methods. Also known in nuclear physics as the shell model Monte Carlo (SMMC) method. G.H. Lang, C.W. Johnson, S.E. Koonin, W.E. Ormand, PRC 48, 1518 (199); Y. Alhassid, D.J. Dean, S.E. Koonin, G.H. Lang, W.E. Ormand, PRL 72, 1 (1994).

4 Hubbard-Stratonovich (HS) transformation Assume an effective Hamiltonian in Fock space with a one-body part and a two-body interaction : i are single-particle energies and densities. ˆ ij = a i a j R Ĥ = P i iˆn i ˆ P v ˆ 2 are linear combinations of one-body The HS transformation describes the Gibbs ensemble at inverse temperature β = 1/T as a path integral over time-dependent auxiliary fields e β H = D σ G σ U σ G = e 1 2 v 2 ( )d is a Gaussian weight and U σ is a one-body propagator of non-interacting nucleons in time-dependent auxiliary fields Û = T e R ĥ ( )d e β H ( ) with a one-body Hamiltonian ĥ ( ) = P i iˆn i + P s v ( )ˆ s =1 for v <, and s = i for v >

5 Thermal expectation values of observables hôi = Tr (Ôe Ĥ ) Tr (e Ĥ ) = R D[ ]G h Ôi Tr Û R D[ ]G Tr Û where hôi Tr (ÔÛ )/Tr Û Grand canonical quantities in the integrands can be expressed in terms of the single-particle representation matrix U of the propagator : Tr Û =det(1 + U ) ha i a ji Tr (a i a jû ) Tr Û = h 1 1+U 1 iji Canonical (i.e., fixed N,Z) quantities are calculated by an exact particle-number projection (using a discrete Fourier transform). The integrand reduces to matrix algebra in the single-particle space (of typical dimension ~1).

6 Quantum Monte Carlo methods and sign problem σ The high-dimensional integration is done by Monte Carlo methods, sampling the fields according to a weight W G Tr A Û Tr A U / Tr A U is the Monte Carlo sign function. For a generic interaction, the sign can be negative for some of the field configurations. When the average sign is small, the fluctuations become very large the Monte Carlo sign problem. Good-sign Ĥ = P interactions i iˆn i + 1 P We can rewrite 2 v ( + ) where is the time-reversed density. ) Sign rule: when all v <, Tr U > for any configuration and the interaction is known as a good-sign interaction. v < Proof: when all, we have ĥ = P i iˆn i + P (v + v ) and h = h ) the eigenvalues of U appear in complex conjugate pairs and. { i, i } Tr Û = Q i 1+ i 2 >

7 V α (MeV) A practical method for overcoming the sign problem Alhassid, Dean, Koonin, Lang, Ormand, PRL 72, 1 (1994). The dominant collective components of effective nuclear interactions have a good sign Eigenvalues of effective interaction in fp shell K= α A family of good-sign interactions is constructed by multiplying the bad-sign components by a negative parameter g H = H G + gh B g =1 Observables are calculated for 1 <g< and extrapolated to. In the calculation of statistical and collective properties of nuclei, we have used good-sign interactions.

8 Circumventing the odd-particle sign problem in AFMC Mukherjee and Alhassid, PRL 19, 25 (212) Applications of AFMC to odd-even and odd-odd nuclei has been hampered by a sign problem that originates from the projection on odd number of particles. We introduced a method to calculate the ground-state energy of the odd-particle system that circumvents this sign problem. Consider the imaginary-time single-particle Green s functions for even-even nuclei: G Ta a for orbitals =Σ ν = nl j ν( τ) m νm( τ) νm() The energy difference between the lowest energy of the odd-particle system for a given spin j and the ground-state energy of the evenparticle system can be extracted from the slope of ln G ν ( τ ). Minimize Ej ( A± 1) to find the groundstate energy and its spin j. G ν (τ )~ e [ E j ( A±1) E gs ( A)] τ

9 Statistical errors of ground-state energy of Direct AFMC versus Green s function method Green s function method Direct AFMC Green s function method direct SMMC Direct AFMC Pairing gaps in mid-mass nuclei from odd-even mass differences AFMC in the complete fpg 9/2 shell (in good agreement with experiments)

10 Statistical properties in the AFMC method Nakada and Alhassid, PRL 79, 299 (1997) Partition function Calculate the thermal energy E(β) = < H > versus β and integrate ln Z/ β = E( β) to find the partition function Z( β ). Level density The level density (E) Laplace transform: The average state density is found from approximation: ρ ( E) is related to the partition function by an inverse (E) = 1 2i 1 2 2πT C e R i1 i1 d e E Z( ) ( ) S E Z( β ) in the saddle-point S(E) = canonical entropy SE ( ) = lnz+β E C = canonical heat capacity 2 C β E/ = β

11 Heavy nuclei (lanthanides) CI shell model space: protons: 5-82 shell plus 1f 7/2 ; neutrons: shell plus h 11/2 and 1g 9/2 Single-particle Hamiltonian: from Woods-Saxon potential plus spin-orbit Interaction: pairing (g p,g n ) plus multipole-multipole interaction terms quadrupole, octupole, and hexadecupole. Heavy nuclei exhibit various types of collectivity (vibrational, rotational, ) that are well described by empirical models. However, a microscopic description in a CI shell model has been lacking. Can we describe vibrational and rotational collectivity in heavy nuclei using a spherical CI shell model approach in a truncated space?

12 The various types of collectivity are usually identified by their corresponding spectra, but AFMC does not provide detailed spectroscopy. T The behavior of!" 2 J versus is sensitive to the type of collectivity: 12 Dy 12 Dy J!" 2 = E 2 + T!" 2 e E 2 + /T J = is rotational 148 Sm (1 e E 2 + /T ) 2 is vibrational Alhassid, Fang, Nakada, PRL 11, 8251 (28) Ozen, Alhassid, Nakada, PRL 11, 4252 (21)

13 Crossover from vibrational to rotational collectivity in heavy nuclei Ozen, Alhassid, Nakada, PRL 11, 4252 (21) J!" 2 versus T in samarium isotopes Level densities in samarium isotopes Good agreement of AFMC densities with various experimental data sets (level counting, neutron resonance data). ρ(e x ) (MeV -1 ) Level counting n resonance AFMC Sm 15 Sm 152 Sm 154 Sm E x (MeV)

14 Nuclear deformation in the spherical shell model: quadrupole distributions in the laboratory frame Alhassid, Gilbreth, Bertsch, PRL 11, 225 (214) Modeling of shape dynamics, e.g., fission, requires level density as a function of deformation. Deformation is a key concept in understanding heavy nuclei but it is based on a mean-field approximation that breaks rotational invariance. The challenge is to study nuclear deformation in a framework that preserves rotational invariance (e.g., in the CI shell model) without resorting to mean-field approximations. We calculated the distribution of the axial mass quadrupole in the lab frame using an exact projection on (novel in that [Q 2, H ] ). Q 2 Q 2 P β (q) = δ (Q 2 q) = 1 Tr e βh dϕ e iϕ q Tr (e iϕ Q 2π 2 e βh )

15 Application to heavy nuclei T =.1 MeV T = 1.2 MeV T = 4. MeV 154 Sm Sm Rigid rotor SMMC (deformed) P T (q).1.5 At low temperatures, the distribution is similar to that of a prolate rigid rotor a model-independent signature of deformation q (fm 2 ) q (fm 2 ) q (fm 2 ) T =.1 MeV T =.41 MeV T = 4. MeV 148 Sm Sm (spherical) P T (q) q (fm 2 ) q (fm 2 ) q (fm 2 ) The distribution is close to a Gaussian even at low temperatures.

16 Quadrupole distributions P T (β,γ ) Mustonen, Alhassid, Gilbreth, Bertsch vs. intrinsic deformation Information on intrinsic deformation β,γ can be obtained from the expectation values of rotationally invariant combinations of the quadrupole tensor. q q β 2 (q q) q β cos(γ ) (q q) 2 β 4 invariants to 4 th order: ; ; q 2µ ln P T (β,γ ) at a given temperature T is an invariant and can be expanded in the quadrupole invariants [a Landau-like expansion, used for the free energy to describe shape transitions in Alhassid, Levit, Zingman, PRL 57, 59 (198)] ln P T = aβ 2 + bβ cos γ + cβ The expansion coefficients a,b,c can be determined from the expectation values of the invariants, which in turn can be calculated from the low-order moments of q 2 = q in the lab frame. < q q >= 5 < q 2 2 >; <(q q) q >= < q >; <(q q) 2 >= 5 2 < q 4 > 2

17 Expressing the invariants in terms of in the lab frame and integrating over the µ components, we recover P(q 2 ) in the lab frame. q 2µ T = 4. MeV T = 1.19 MeV T =.1 MeV Sm SMMC expansion P(q) q (fm 2 ) -1 1 q (fm 2 ) -1 1 q (fm 2 ) We find excellent agreement with P(q 2 ) calculated in AFMC! T =4. T =1.2 T =.1 lnp(β,γ ) 154 Sm Mimics a shape transition from a deformed to a spherical shape without using a mean-field approximation!

18 Shape distributions in the intrinsic 148 Sm 15 Sm 152 Sm β,γ variables 154 Sm T =4. T =4. T = T = T = T = T = T Thermal shape transition vs. temperature (or excitation energy) T =.71 T =.71 T =.71 T = N Quantum shape transition (at T=) vs. neutron number

19 β,γ We divide the plane into three regions: spherical, prolate and oblate. Integrate over each deformation region to determine the probability of shapes versus temperature using the appropriate metric µ dq 2µ β 4 sin(γ ) dβ dγ oblate prolate spherical Compare deformed ( 154 Sm), transitional ( 15 Sm) and spherical ( 148 Sm) nuclei

20 Level density versus intrinsic deformation Use the saddle-point approximation to convert P T ( ) to level densities vs. E x, (canonical micro canonical) β,γ β,γ Deformed Transitional Spherical E x (MeV) In strongly deformed nuclei, the contributions from prolate shapes dominate the level density below the shape transition energy. In spherical nuclei, both spherical and prolate shapes make significant contributions.

21 Double Beta Decay in AFMC We can do heavy nuclei in the pn-formalism using AFMC AFMC shell-model estimates for open-shell and heavy nuclei Estimate contribution of the model space truncation to the g A quenching E m E i + i mother intermediate daughter E f + f

22 Matrix elements from response functions in AFMC Ô(t) =e th Ôe th hô (t)ô()i = 1  i e be i  e be i e t(e f E i ) hf Ô ii 2 fi At the limit b!, t b, and large t, only the lowest possible E f = Ef and E i = Ei contribute: hô (t)ô()i = e t(e f E i ) hf Ô i i 2 If Ô is the mass quadrupole ˆQ 2,foraneven-evennucleus hô (t)ô()i = e te 2+ x h2 + 1 ˆQ 2 + g.s.i 2 where is the lowest 2+ state (C.N. Gilbreth et al.)

23 2nbb in AFMC Closure approximation: M 2n = Â m h + f G ~ mi hm G ~ + i i 1 E m 2 (E f + Ei ) h+ f G ~ G ~ + i i 1 Ē 2 (E f + Ei ) where G = Â a ~s a t a. With Ô = ~ G ~ G (a separable two-body operator): hô (t)ô()i = e t(e f E i ) h + f ~ G ~ G + i i 2 To go beyond the closure approximation, a more complicated approach is needed (P.B. Radha et al., PRL 7, 242 (199) for 48 Ca, 7 Ge)

24 nbb in AFMC Can be calculated in the closure approximation The Gamow-Teller part: Ô = 2R Z p Non-separable two-body operator AFMC could then be used to evaluate dq q  ab j (qr ab )h GT (q)~s a ~s b t a t b q + Ē (E i + E hô (t)ô()i = e t(e f Ei ) h + f Ô + i i {z } MGT n The method used for calculating response functions of one-body operators can be generalized to two-body operators f ) 2

25 Conclusion Finite-temperature AFMC is a powerful method for the microscopic calculation of statistical and collective properties of nuclei in very large model spaces; applications in nuclei as heavy as the lanthanides. Microscopic description of collectivity in heavy nuclei Statistical properties as a function of intrinsic deformation in a rotationally invariant framework (CI shell model) without the use of a mean-field approximation Outlook Applications to other mass regions (actinides, unstable nuclei, ). Matrix elements for neutrinoless double beta decay in very large shell model spaces

Statistical properties of nuclei by the shell model Monte Carlo method

Statistical properties of nuclei by the shell model Monte Carlo method Statistical properties of nuclei by the shell model Monte Carlo method Introduction Yoram Alhassid (Yale University) Shell model Monte Carlo (SMMC) method Circumventing the odd particle-number sign problem

More information

The shape distribution of nuclear level densities in the shell model Monte Carlo method

The shape distribution of nuclear level densities in the shell model Monte Carlo method The shape distribution of nuclear level densities in the shell model Monte Carlo method Introduction Yoram Alhassid (Yale University) Shell model Monte Carlo (SMMC) method and level densities Nuclear deformation

More information

Auxiliary-field quantum Monte Carlo methods for nuclei and cold atoms

Auxiliary-field quantum Monte Carlo methods for nuclei and cold atoms Introduction Auxiliary-field quantum Monte Carlo methods for nuclei and cold atoms Yoram Alhassid (Yale University) Auxiliary-field Monte Carlo (AFMC) methods at finite temperature Sign problem and good-sign

More information

Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them

Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them Introduction Yoram Alhassid (Yale University) Finite-temperature auxiliary-field Monte Carlo methods in Fock

More information

The shell model Monte Carlo approach to level densities: recent developments and perspectives

The shell model Monte Carlo approach to level densities: recent developments and perspectives The shell model Monte Carlo approach to level densities: recent developments and perspectives Yoram Alhassid (Yale University) Introduction: the shell model Monte Carlo (SMMC) approach Level density in

More information

arxiv: v1 [nucl-th] 18 Jan 2018

arxiv: v1 [nucl-th] 18 Jan 2018 Nuclear deformation in the configuration-interaction shell model arxiv:181.6175v1 [nucl-th] 18 Jan 218 Y. Alhassid, 1 G.F. Bertsch 2,3 C.N. Gilbreth, 2 and M.T. Mustonen 1 1 Center for Theoretical Physics,

More information

Shell model Monte Carlo level density calculations in the rare-earth region

Shell model Monte Carlo level density calculations in the rare-earth region Shell model Monte Carlo level density calculations in the rare-earth region Kadir Has University Istanbul, Turkey Workshop on Gamma Strength and Level Density in Nuclear Physics and Nuclear Technology

More information

Particle-number projection in finite-temperature mean-field approximations to level densities

Particle-number projection in finite-temperature mean-field approximations to level densities Particle-number projection in finite-temperature mean-field approximations to level densities Paul Fanto (Yale University) Motivation Finite-temperature mean-field theory for level densities Particle-number

More information

The nature of superfluidity in the cold atomic unitary Fermi gas

The nature of superfluidity in the cold atomic unitary Fermi gas The nature of superfluidity in the cold atomic unitary Fermi gas Introduction Yoram Alhassid (Yale University) Finite-temperature auxiliary-field Monte Carlo (AFMC) method The trapped unitary Fermi gas

More information

Shell Model Monte Carlo Methods and their Applications to Nuclear Level Densities

Shell Model Monte Carlo Methods and their Applications to Nuclear Level Densities Shell Model Monte Carlo Methods and their Applications to Nuclear Level Densities H. Nakada (Chiba U., Japan) @ RIKEN (Feb. 14, 2013) Contents : I. Introduction II. Shell model Monte Carlo methods III.

More information

arxiv: v2 [nucl-th] 10 Oct 2017

arxiv: v2 [nucl-th] 10 Oct 2017 INT-PUB-7-4 Nuclear deformation in the laboratory frame C.N. Gilbreth, Y. Alhassid, 2 and G.F. Bertsch,3 Institute of Nuclear Theory, Box 3555, University of Washington, Seattle, WA 9895 2 Center for Theoretical

More information

Stabilizing Canonical- Ensemble Calculations in the Auxiliary-Field Monte Carlo Method

Stabilizing Canonical- Ensemble Calculations in the Auxiliary-Field Monte Carlo Method Stabilizing Canonical- Ensemble Calculations in the Auxiliary-Field Monte Carlo Method C. N. Gilbreth In collaboration with Y. Alhassid Yale University Advances in quantum Monte Carlo techniques for non-relativistic

More information

Benchmarking the Hartree-Fock and Hartree-Fock-Bogoliubov approximations to level densities. G.F. Bertsch, Y. Alhassid, C.N. Gilbreth, and H.

Benchmarking the Hartree-Fock and Hartree-Fock-Bogoliubov approximations to level densities. G.F. Bertsch, Y. Alhassid, C.N. Gilbreth, and H. Benchmarking the Hartree-Fock and Hartree-Fock-Bogoliubov approximations to level densities G.F. Bertsch, Y. Alhassid, C.N. Gilbreth, and H. Nakada 5th Workshop on Nuclear Level Density and Gamma Strength,

More information

Nuclear Structure (II) Collective models

Nuclear Structure (II) Collective models Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France NSDD Workshop, Trieste, March 2014 TALENT school TALENT (Training in Advanced Low-Energy Nuclear Theory, see http://www.nucleartalent.org).

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 2

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 2 2358-20 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 2 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

Effective shell model Hamiltonians from density functional theory: Quadrupolar and pairing correlations

Effective shell model Hamiltonians from density functional theory: Quadrupolar and pairing correlations PHYSICAL REVIEW C 77, 6438 (8) Effective shell model Hamiltonians from density functional theory: Quadrupolar and pairing correlations R. Rodríguez-Guzmán and Y. Alhassid * Center for Theoretical Physics,

More information

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain Mean field studies of odd mass nuclei and quasiparticle excitations Luis M. Robledo Universidad Autónoma de Madrid Spain Odd nuclei and multiquasiparticle excitations(motivation) Nuclei with odd number

More information

Introduction to NUSHELLX and transitions

Introduction to NUSHELLX and transitions Introduction to NUSHELLX and transitions Angelo Signoracci CEA/Saclay Lecture 4, 14 May 213 Outline 1 Introduction 2 β decay 3 Electromagnetic transitions 4 Spectroscopic factors 5 Two-nucleon transfer/

More information

Nuclear models: Collective Nuclear Models (part 2)

Nuclear models: Collective Nuclear Models (part 2) Lecture 4 Nuclear models: Collective Nuclear Models (part 2) WS2012/13: Introduction to Nuclear and Particle Physics,, Part I 1 Reminder : cf. Lecture 3 Collective excitations of nuclei The single-particle

More information

Weak decays from coupled cluster computations

Weak decays from coupled cluster computations Weak decays from coupled cluster computations Gaute Hagen Oak Ridge National Laboratory Topical Collaboration meeting on DBD + fundamental symmetries INT, June 20, 2017 @ ORNL / UTK: G. R. Jansen, T. Morris,

More information

Ab Initio Theory for All Medium-Mass Nuclei

Ab Initio Theory for All Medium-Mass Nuclei Canada s national laboratory for particle and nuclear physics and accelerator-based science Ab Initio Theory for All Medium-Mass Nuclei Jason D. Holt INPC September 12, 2016 Collaborators S. R. Stroberg

More information

Moment (and Fermi gas) methods for modeling nuclear state densities

Moment (and Fermi gas) methods for modeling nuclear state densities Moment (and Fermi gas) methods for modeling nuclear state densities Calvin W. Johnson (PI) Edgar Teran (former postdoc) San Diego State University supported by grants US DOE-NNSA SNP 2008 1 We all know

More information

Neutrinoless Double Beta Decay within the Interacting Shell Model

Neutrinoless Double Beta Decay within the Interacting Shell Model Neutrinoless Double Beta Decay within the Interacting Shell Model Institute for Nuclear Physics, Technical University Darmstadt (TUD) ExtreMe Matter Institute (EMMI), GSI EFN 2010, El Escorial, 27-29 September

More information

arxiv:nucl-th/ v2 14 Jan 1999

arxiv:nucl-th/ v2 14 Jan 1999 Shell Model Monte Carlo Investigation of Rare Earth Nuclei J. A. White and S. E. Koonin W. K. Kellogg Radiation Laboratory, 106-38, California Institute of Technology Pasadena, California 91125 USA arxiv:nucl-th/9812044v2

More information

Nilsson Model. Anisotropic Harmonic Oscillator. Spherical Shell Model Deformed Shell Model. Nilsson Model. o Matrix Elements and Diagonalization

Nilsson Model. Anisotropic Harmonic Oscillator. Spherical Shell Model Deformed Shell Model. Nilsson Model. o Matrix Elements and Diagonalization Nilsson Model Spherical Shell Model Deformed Shell Model Anisotropic Harmonic Oscillator Nilsson Model o Nilsson Hamiltonian o Choice of Basis o Matrix Elements and Diagonaliation o Examples. Nilsson diagrams

More information

The 2010 US National Nuclear Physics Summer School and the TRIUMF Summer Institute, NNPSS-TSI June 21 July 02, 2010, Vancouver, BC, Canada

The 2010 US National Nuclear Physics Summer School and the TRIUMF Summer Institute, NNPSS-TSI June 21 July 02, 2010, Vancouver, BC, Canada TU DARMSTADT The 2010 US National Nuclear Physics Summer School and the TRIUMF Summer Institute, NNPSS-TSI June 21 July 02, 2010, Vancouver, BC, Canada Achim Richter ECT* Trento/Italy and TU Darmstadt/Germany

More information

Quantum Theory of Many-Particle Systems, Phys. 540

Quantum Theory of Many-Particle Systems, Phys. 540 Quantum Theory of Many-Particle Systems, Phys. 540 Questions about organization Second quantization Questions about last class? Comments? Similar strategy N-particles Consider Two-body operators in Fock

More information

14. Structure of Nuclei

14. Structure of Nuclei 14. Structure of Nuclei Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 14. Structure of Nuclei 1 In this section... Magic Numbers The Nuclear Shell Model Excited States Dr. Tina Potter 14.

More information

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540 Central density Consider nuclear charge density Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) Central density (A/Z* charge density) about the same for nuclei heavier than 16 O, corresponding

More information

Computational Challenges in Nuclear and Many-Body Physics. Summary

Computational Challenges in Nuclear and Many-Body Physics. Summary Computational Challenges in Nuclear and Many-Body Physics Summary Yoram Alhassid (Yale University) Physical systems of interest Challenges in many-body physics Computational methods and their formulation

More information

Shell model calculation ー from basics to the latest methods ー

Shell model calculation ー from basics to the latest methods ー Shell model calculation ー from basics to the latest methods ー Takahiro Mizusaki Senshu university / CNS, the univ. of Tokyo Basics What we will learn? What is Shell Model? Shell model basis states M-scheme

More information

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach A. PETROVICI Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania Outline complex

More information

The Nuclear Many-Body Problem

The Nuclear Many-Body Problem The Nuclear Many-Body Problem relativistic heavy ions vacuum electron scattering quarks gluons radioactive beams heavy few nuclei body quark-gluon soup QCD nucleon QCD few body systems many body systems

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1 2358-19 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 1 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

Collective excitations of Λ hypernuclei

Collective excitations of Λ hypernuclei Collective excitations of Λ hypernuclei Kouichi Hagino (Tohoku Univ.) J.M. Yao (Southwest Univ.) Z.P. Li (Southwest Univ.) F. Minato (JAEA) 1. Introduction 2. Deformation of Lambda hypernuclei 3. Collective

More information

Effective quadrupole-quadrupole interaction from density functional theory

Effective quadrupole-quadrupole interaction from density functional theory PHYSICAL REVIEW C 74, 3431 (26) Effective quadrupole-quadrupole interaction from density functional theory Y. Alhassid, 1 G. F. Bertsch, 2,* L. Fang, 1 and B. Sabbey 2 1 Center for Theoretical Physics,

More information

Remarks about weak-interaction processes

Remarks about weak-interaction processes Remarks about weak-interaction processes K. Langanke GSI Darmstadt and TUD, Darmstadt March 9, 2006 K. Langanke (GSI and TUD, Darmstadt)Remarks about weak-interaction processes March 9, 2006 1 / 35 Nuclear

More information

Shape coexistence and beta decay in proton-rich A~70 nuclei within beyond-mean-field approach

Shape coexistence and beta decay in proton-rich A~70 nuclei within beyond-mean-field approach Shape coexistence and beta decay in proton-rich A~ nuclei within beyond-mean-field approach A. PETROVICI Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania Outline

More information

Giant Resonances Wavelets, Scales and Level Densities

Giant Resonances Wavelets, Scales and Level Densities Giant resonances Damping mechanisms, time and energy scales Fine structure Wavelets and characteristic scales Application: GQR TU DARMSTADT Many-body nuclear models and damping mechanisms Relevance of

More information

XX Nuclear Physics Symposium Oaxtepec, Mexico January 6-9,1997

XX Nuclear Physics Symposium Oaxtepec, Mexico January 6-9,1997 * - -9 W S w SHELL-MODEL MONTE CARLO STUDES OF NUCLE D J Dean Oak Ridge National Laboratory* Oak Ridge, TN 3783-6373 nvited talk to be published in Proceedings XX Nuclear Physics Symposium Oaxtepec, Mexico

More information

The collective model from a Cartan-Weyl perspective

The collective model from a Cartan-Weyl perspective The collective model from a Cartan-Weyl perspective Stijn De Baerdemacker Veerle Hellemans Kris Heyde Subatomic and radiation physics Universiteit Gent, Belgium http://www.nustruc.ugent.be INT workshop

More information

arxiv:nucl-ex/ v1 29 Apr 1999

arxiv:nucl-ex/ v1 29 Apr 1999 Observation of Thermodynamical Properties in the 162 Dy, 166 Er and 172 Yb Nuclei E. Melby, L. Bergholt, M. Guttormsen, M. Hjorth-Jensen, F. Ingebretsen, S. Messelt, J. Rekstad, A. Schiller, S. Siem, and

More information

Theoretical Nuclear Physics

Theoretical Nuclear Physics Theoretical Nuclear Physics (SH2011, Second cycle, 6.0cr) Comments and corrections are welcome! Chong Qi, chongq@kth.se The course contains 12 sections 1-4 Introduction Basic Quantum Mechanics concepts

More information

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar Evolution Of Shell Structure, Shapes & Collective Modes Dario Vretenar vretenar@phy.hr 1. Evolution of shell structure with N and Z A. Modification of the effective single-nucleon potential Relativistic

More information

Introduction to shell-model Monte-Carlo methods

Introduction to shell-model Monte-Carlo methods Introduction to shell-model Monte-Carlo methods Gesellschaft für Schwerionenforschung Darmstadt Helmholtz International Summer School Dubna, August 7-17, 2007 Introduction Nuclear Shell Model A Concise

More information

Collective excitations of Lambda hypernuclei

Collective excitations of Lambda hypernuclei Collective excitations of Lambda hypernuclei Kouichi Hagino (Tohoku Univ.) Myaing Thi Win (Lashio Univ.) J.M. Yao (Southwest Univ.) Z.P. Li (Southwest Univ.) 1. Introduction 2. Deformation of Lambda hypernuclei

More information

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry:

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry: RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear and Radiochemistry: Chapter 10 (Nuclear Models) Modern Nuclear Chemistry: Chapter 5 (Nuclear Forces) and Chapter 6 (Nuclear

More information

Chapter 2 Quantum chemistry using auxiliary field Monte Carlo

Chapter 2 Quantum chemistry using auxiliary field Monte Carlo Chapter 2 Quantum chemistry using auxiliary field Monte Carlo 1. The Hubbard-Stratonovich Transformation 2. Neuhauser s shifted contour 3. Calculation of forces and PESs 4. Multireference AFMC 5. Examples

More information

c E If photon Mass particle 8-1

c E If photon Mass particle 8-1 Nuclear Force, Structure and Models Readings: Nuclear and Radiochemistry: Chapter 10 (Nuclear Models) Modern Nuclear Chemistry: Chapter 5 (Nuclear Forces) and Chapter 6 (Nuclear Structure) Characterization

More information

Lecture VI: Neutrino propagator and neutrino potential

Lecture VI: Neutrino propagator and neutrino potential Lecture VI: Neutrino propagator and neutrino potential Petr Vogel, Caltech NLDBD school, November 1, 217 For the case we are considering, i.e. with the exchange of light Majorana neutrinos, the double

More information

Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy.

Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy. Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy Hiroshi Watanabe Outline Prospects for decay spectroscopy of neutron-rich

More information

H.O. [202] 3 2 (2) (2) H.O. 4.0 [200] 1 2 [202] 5 2 (2) (4) (2) 3.5 [211] 1 2 (2) (6) [211] 3 2 (2) 3.0 (2) [220] ε

H.O. [202] 3 2 (2) (2) H.O. 4.0 [200] 1 2 [202] 5 2 (2) (4) (2) 3.5 [211] 1 2 (2) (6) [211] 3 2 (2) 3.0 (2) [220] ε E/ħω H r 0 r Y0 0 l s l l N + l + l s [0] 3 H.O. ε = 0.75 4.0 H.O. ε = 0 + l s + l [00] n z = 0 d 3/ 4 [0] 5 3.5 N = s / N n z d 5/ 6 [] n z = N lj [] 3 3.0.5 0.0 0.5 ε 0.5 0.75 [0] n z = interaction of

More information

Nuclear structure at high excitation energies

Nuclear structure at high excitation energies PRAMANA cfl Indian Academy of Sciences Vol. 57, Nos 2 & 3 journal of Aug. & Sept. 2001 physics pp. 459 467 Nuclear structure at high excitation energies A ANSARI Institute of Physics, Bhubaneswar 751 005,

More information

QRPA calculations of stellar weak-interaction rates

QRPA calculations of stellar weak-interaction rates QRPA calculations of stellar weak-interaction rates P. Sarriguren Instituto de Estructura de la Materia CSIC, Madrid, Spain Zakopane Conference on Nuclear Physics: Extremes of Nuclear Landscape. August

More information

New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen

New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen I. General introduction to the atomic nucleus Charge density, shell gaps, shell occupancies, Nuclear forces, empirical monopoles, additivity,

More information

Nuclear vibrations and rotations

Nuclear vibrations and rotations Nuclear vibrations and rotations Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 February 2, 2011 NUCS 342 (Lecture 9) February 2, 2011 1 / 29 Outline 1 Significance of collective

More information

New Frontiers in Nuclear Structure Theory

New Frontiers in Nuclear Structure Theory New Frontiers in Nuclear Structure Theory From Realistic Interactions to the Nuclear Chart Robert Roth Institut für Kernphysik Technical University Darmstadt Overview Motivation Nucleon-Nucleon Interactions

More information

Lisheng Geng. Ground state properties of finite nuclei in the relativistic mean field model

Lisheng Geng. Ground state properties of finite nuclei in the relativistic mean field model Ground state properties of finite nuclei in the relativistic mean field model Lisheng Geng Research Center for Nuclear Physics, Osaka University School of Physics, Beijing University Long-time collaborators

More information

Accurate Description of the Spinand Parity-Dependent Nuclear Level Densities

Accurate Description of the Spinand Parity-Dependent Nuclear Level Densities Accurate Description of the Spinand Parity-Dependent Nuclear Level Densities Mihai Horoi Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA Nuclear Level Densities

More information

Quantum Theory of Many-Particle Systems, Phys. 540

Quantum Theory of Many-Particle Systems, Phys. 540 Quantum Theory of Many-Particle Systems, Phys. 540 IPM? Atoms? Nuclei: more now Other questions about last class? Assignment for next week Wednesday ---> Comments? Nuclear shell structure Ground-state

More information

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Mean-field concept (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Static Hartree-Fock (HF) theory Fundamental puzzle: The

More information

13. Basic Nuclear Properties

13. Basic Nuclear Properties 13. Basic Nuclear Properties Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 13. Basic Nuclear Properties 1 In this section... Motivation for study The strong nuclear force Stable nuclei Binding

More information

Structure of the Low-Lying States in the Odd-Mass Nuclei with Z 100

Structure of the Low-Lying States in the Odd-Mass Nuclei with Z 100 Structure of the Low-Lying States in the Odd-Mass Nuclei with Z 100 R.V.Jolos, L.A.Malov, N.Yu.Shirikova and A.V.Sushkov JINR, Dubna, June 15-19 Introduction In recent years an experimental program has

More information

Beyond mean-field study on collective vibrations and beta-decay

Beyond mean-field study on collective vibrations and beta-decay Advanced many-body and statistical methods in mesoscopic systems III September 4 th 8 th, 2017, Busteni, Romania Beyond mean-field study on collective vibrations and beta-decay Yifei Niu Collaborators:

More information

Oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes

Oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes Oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes Andreas Görgen Service de Physique Nucléaire CEA Saclay Sunniva Siem Department of Physics University of Oslo 1 Context

More information

Fine structure of nuclear spin-dipole excitations in covariant density functional theory

Fine structure of nuclear spin-dipole excitations in covariant density functional theory 1 o3iø(œ April 12 16, 2012, Huzhou, China Fine structure of nuclear spin-dipole excitations in covariant density functional theory ùíî (Haozhao Liang) ŒÆÔnÆ 2012 c 4 13 F ÜŠöµ Š # Ç!Nguyen Van Giai Ç!ë+

More information

Shell-model description for beta decays of pfg-shell nuclei

Shell-model description for beta decays of pfg-shell nuclei Shell-model description for beta decays of pfg-shell nuclei Workshop on New Era of Nuclear Physics in the Cosmos the r-process nucleosynthesis Sep. 25-26, 2008 @RIKEN M. Honma (Univ. of Aizu) T. Otsuka

More information

Pavel Cejnar Institute of Particle & Nuclear Physics, Charles University, Praha

Pavel Cejnar Institute of Particle & Nuclear Physics, Charles University, Praha and Nuclear Structure Pavel Cejnar Institute of Particle & Nuclear Physics, Charles University, Praha ha,, CZ cejnar @ ipnp.troja.mff.cuni.cz Program: > Shape phase transitions in nuclear structure data

More information

Coupled-cluster theory for medium-mass nuclei

Coupled-cluster theory for medium-mass nuclei Coupled-cluster theory for medium-mass nuclei Thomas Papenbrock and G. Hagen (ORNL) D. J. Dean (ORNL) M. Hjorth-Jensen (Oslo) A. Nogga (Juelich) A. Schwenk (TRIUMF) P. Piecuch (MSU) M. Wloch (MSU) Seattle,

More information

Krane Enge Cohen Willaims NUCLEAR PROPERTIES 1 Binding energy and stability Semi-empirical mass formula Ch 4

Krane Enge Cohen Willaims NUCLEAR PROPERTIES 1 Binding energy and stability Semi-empirical mass formula Ch 4 Lecture 3 Krane Enge Cohen Willaims NUCLER PROPERTIES 1 Binding energy and stability Semi-empirical mass formula 3.3 4.6 7. Ch 4 Nuclear Spin 3.4 1.5 1.6 8.6 3 Magnetic dipole moment 3.5 1.7 1.6 8.7 4

More information

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments)

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments) T Symmetry EDM s Octupole Deformation Other Nuclei Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments) J. Engel University of North Carolina June 16, 2005 T

More information

Recent Progress on the 0 + Dominance

Recent Progress on the 0 + Dominance Recent Progress on the 0 + Dominance Naotaka Yoshinaga Saitama University, APAN N. Yoshinaga-2006-CNS 1 Outline of my talk ntroduction Formulation in single j-shells Estimation of the ground state energy

More information

The interacting boson model

The interacting boson model The interacting boson model P. Van Isacker, GANIL, France Dynamical symmetries of the IBM Neutrons, protons and F-spin (IBM-2) T=0 and T=1 bosons: IBM-3 and IBM-4 The interacting boson model Nuclear collective

More information

Chapter 6. Summary and Conclusions

Chapter 6. Summary and Conclusions Chapter 6 Summary and Conclusions The basic aim of the present thesis was to understand the interplay between single particle and collective degrees of freedom and underlying nuclear phenomenon in mass

More information

The Nuclear Many-Body problem. Lecture 3

The Nuclear Many-Body problem. Lecture 3 The Nuclear Many-Body problem Lecture 3 Emergent phenomena at the drip lines. How do properties of nuclei change as we move towards the nuclear driplines? Many-body open quantum systems. Unification of

More information

Allowed beta decay May 18, 2017

Allowed beta decay May 18, 2017 Allowed beta decay May 18, 2017 The study of nuclear beta decay provides information both about the nature of the weak interaction and about the structure of nuclear wave functions. Outline Basic concepts

More information

Microscopic Theories of Nuclear Masses

Microscopic Theories of Nuclear Masses MSU/NSCL JINA - Pizza Lunch seminar, MSU, 02/26/2007 Outline 1 Introduction 2 Nuclear Energy Density Functional approach: general characteristics 3 EDF mass tables from the Montreal-Brussels group 4 Towards

More information

Nuclear Matter Incompressibility and Giant Monopole Resonances

Nuclear Matter Incompressibility and Giant Monopole Resonances Nuclear Matter Incompressibility and Giant Monopole Resonances C.A. Bertulani Department of Physics and Astronomy Texas A&M University-Commerce Collaborator: Paolo Avogadro 27th Texas Symposium on Relativistic

More information

nuclear level densities from exactly solvable pairing models

nuclear level densities from exactly solvable pairing models nuclear level densities from exactly solvable pairing models Stefan Rombouts In collaboration with: Lode Pollet, Kris Van Houcke, Dimitri Van Neck, Kris Heyde, Jorge Dukelsky, Gerardo Ortiz Ghent University

More information

Symmetry breaking and symmetry restoration in mean-field based approaches

Symmetry breaking and symmetry restoration in mean-field based approaches Symmetry breaking and symmetry restoration in mean-field based approaches Héloise Goutte GANIL Caen, France goutte@ganil.fr Cliquez pour modifier le style des sous-titres du masque With the kind help of

More information

Towards a microscopic theory for low-energy heavy-ion reactions

Towards a microscopic theory for low-energy heavy-ion reactions Towards a microscopic theory for low-energy heavy-ion reactions Role of internal degrees of freedom in low-energy nuclear reactions Kouichi Hagino (Tohoku University) 1. Introduction: Environmental Degrees

More information

Chiral effective field theory on the lattice: Ab initio calculations of nuclei

Chiral effective field theory on the lattice: Ab initio calculations of nuclei Chiral effective field theory on the lattice: Ab initio calculations of nuclei Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Dean Lee (NC State)

More information

Coupled-channels Neutron Reactions on Nuclei

Coupled-channels Neutron Reactions on Nuclei Coupled-channels Neutron Reactions on Nuclei Ian Thompson with: Gustavo Nobre, Frank Dietrich, Jutta Escher (LLNL) and: Toshiko Kawano (LANL), Goran Arbanas (ORNL), P. O. Box, Livermore, CA! This work

More information

Band Structure of nuclei in Deformed HartreeFock and Angular Momentum Projection theory. C. R. Praharaj Institute of Physics Bhubaneswar.

Band Structure of nuclei in Deformed HartreeFock and Angular Momentum Projection theory. C. R. Praharaj Institute of Physics Bhubaneswar. Band Structure of nuclei in Deformed HartreeFock and Angular Momentum Projection theory C. R. Praharaj Institute of Physics. India INT Workshop Nov 2007 1 Outline of talk Motivation Formalism HF calculation

More information

Observables predicted by HF theory

Observables predicted by HF theory Observables predicted by HF theory Total binding energy of the nucleus in its ground state separation energies for p / n (= BE differences) Ground state density distribution of protons and neutrons mean

More information

Proton-neutron asymmetry in exotic nuclei

Proton-neutron asymmetry in exotic nuclei Proton-neutron asymmetry in exotic nuclei M. A. Caprio Center for Theoretical Physics, Yale University, New Haven, CT RIA Theory Meeting Argonne, IL April 4 7, 2006 Collective properties of exotic nuclei

More information

Neutron Halo in Deformed Nuclei

Neutron Halo in Deformed Nuclei Advances in Nuclear Many-Body Theory June 7-1, 211, Primosten, Croatia Neutron Halo in Deformed Nuclei Ó Li, Lulu Ò School of Physics, Peking University June 8, 211 Collaborators: Jie Meng (PKU) Peter

More information

Nuclear physics: a laboratory for many-particle quantum mechanics or From model to theory in nuclear structure physics

Nuclear physics: a laboratory for many-particle quantum mechanics or From model to theory in nuclear structure physics Nuclear physics: a laboratory for many-particle quantum mechanics or From model to theory in nuclear structure physics G.F. Bertsch University of Washington Stockholm University and the Royal Institute

More information

Modeling the Atomic Nucleus. Theoretical bag of tricks

Modeling the Atomic Nucleus. Theoretical bag of tricks Modeling the Atomic Nucleus Theoretical bag of tricks The nuclear many-body problem The Nuclear Many-Body Problem H ˆ = T ˆ + V ˆ ˆ T = A 2 p ˆ " i, V ˆ = 2m i i=1 one-body H ˆ " = E" " V ˆ 2b (i, j) +

More information

1 Introduction. 2 The hadronic many body problem

1 Introduction. 2 The hadronic many body problem Models Lecture 18 1 Introduction In the next series of lectures we discuss various models, in particluar models that are used to describe strong interaction problems. We introduce this by discussing the

More information

The Nuclear Shape Phase Transitions Studied within the Geometric Collective Model

The Nuclear Shape Phase Transitions Studied within the Geometric Collective Model April, 203 PROGRESS IN PHYSICS Volume 2 The Nuclear Shape Phase Transitions Studied within the Geometric Collective Model Khalaf A.M. and Ismail A.M. Physics Department, Faculty of Science, Al-Azhar University,

More information

Tamara Nikšić University of Zagreb

Tamara Nikšić University of Zagreb CONFIGURATION MIXING WITH RELATIVISTIC SCMF MODELS Tamara Nikšić University of Zagreb Supported by the Croatian Foundation for Science Tamara Nikšić (UniZg) Primošten 11 9.6.11. 1 / 3 Contents Outline

More information

Schiff Moments. J. Engel. October 23, 2014

Schiff Moments. J. Engel. October 23, 2014 Schiff Moments J. Engel October 23, 2014 One Way Things Get EDMs Starting at fundamental level and working up: Underlying fundamental theory generates three T -violating πnn vertices: N? ḡ π New physics

More information

Coupled-cluster computations of weak decays in nuclei

Coupled-cluster computations of weak decays in nuclei Coupled-cluster computations of weak decays in nuclei Gaute Hagen Oak Ridge National Laboratory Nuclear ab initio Theories and Neutrino Physics INT, March 6th, 2018 Trend in realistic ab-initio calculations

More information

Schiff Moments. J. Engel. November 4, 2016

Schiff Moments. J. Engel. November 4, 2016 Schiff Moments J. Engel November 4, 2016 One Way Things Get EDMs Starting at fundamental level and working up: Underlying fundamental theory generates three T-violating πnn vertices: N? ḡ π New physics

More information

INVESTIGATION OF THE EVEN-EVEN N=106 ISOTONIC CHAIN NUCLEI IN THE GEOMETRIC COLLECTIVE MODEL

INVESTIGATION OF THE EVEN-EVEN N=106 ISOTONIC CHAIN NUCLEI IN THE GEOMETRIC COLLECTIVE MODEL U.P.B. Sci. Bull., Series A, Vol. 79, Iss. 1, 2017 ISSN 1223-7027 INVESTIGATION OF THE EVEN-EVEN N=106 ISOTONIC CHAIN NUCLEI IN THE GEOMETRIC COLLECTIVE MODEL Stelian St. CORIIU 1 Geometric-Collective-Model

More information

Beyond-mean-field approach to low-lying spectra of Λ hypernuclei

Beyond-mean-field approach to low-lying spectra of Λ hypernuclei Beyond-mean-field approach to low-lying spectra of Λ hypernuclei Kouichi Hagino (Tohoku Univ.) Hua Mei (Tohoku Univ.) J.M. Yao (Tohoku U. / Southwest U.) T. Motoba (Osaka Electro-Commun. U. ) 1. Introduction

More information

Calculating β Decay for the r Process

Calculating β Decay for the r Process Calculating β Decay for the r Process J. Engel with M. Mustonen, T. Shafer C. Fröhlich, G. McLaughlin, M. Mumpower, R. Surman D. Gambacurta, M. Grasso January 8, 7 R-Process Abundances Nuclear Landscape

More information

Nuclear Structure Theory II

Nuclear Structure Theory II uclear Structure Theory II The uclear Many-body Problem Alexander Volya Florida State University Physics of light nuclei 1 H 4 Li 3 He 2 H 8 7 6 Be 5 Li 4 He 3 B H 10 9 8 7 Be 6 Li 5 He 4 B H 12 11 10

More information

Tackling the Sign Problem of Ultracold Fermi Gases with Mass-Imbalance

Tackling the Sign Problem of Ultracold Fermi Gases with Mass-Imbalance Tackling the Sign Problem of Ultracold Fermi Gases with Mass-Imbalance Dietrich Roscher [D. Roscher, J. Braun, J.-W. Chen, J.E. Drut arxiv:1306.0798] Advances in quantum Monte Carlo techniques for non-relativistic

More information