Nuclear physics: a laboratory for many-particle quantum mechanics or From model to theory in nuclear structure physics

Size: px
Start display at page:

Download "Nuclear physics: a laboratory for many-particle quantum mechanics or From model to theory in nuclear structure physics"

Transcription

1 Nuclear physics: a laboratory for many-particle quantum mechanics or From model to theory in nuclear structure physics G.F. Bertsch University of Washington Stockholm University and the Royal Institute Technology Sept. 18, Models vs. theories 2. The nuclear landscape 3. The unitary fermion gas model 4. Light nuclei ab initio 5. The multiconfiguration shell model 6. Models of pairing 7. Self-consistent mean field and density-functional theory 8. Extensions of SCMF

2 What are models good for? N. Bohr (1937) Models: -capture the essential phenomena -are simple, at least in formulation

3 Examples of information nuclear models The shell model model H = 2 2 2m V 1 0f(r)+V s r df dr s 4 parameters Explains magic numbers, explains many ground-state spins and parities The liquid drop model B(N,Z) =a v A a s A /3 Z 2 a c A a (N Z) 2 1/3 a A + δ A 1/2 A = N + Z 5 parameters Reproduces binding energies to 3 MeV r.m.s., out totals ranging from 100 to 2000 MeV.

4 Characteristics of good theories -need only a small set of parameters -have wide predictive power -have intrinsic criteria for limits of validity

5

6 Starting point: the nuclear interaction In the two-body sector, the nuclear interaction is just barely able, or not, to produce a bound state. nn channel: r ~ 2 fm; a_nn ~ 18 fm np channel: V ~ -100 MeV; E_d = -2.2 MeV! (deg) Argonne v 18 np Argonne v 18 pp Argonne v 18 nn SAID 7/06 np! (deg) S1 Argonne v 18 np SAID 7/06 np S E lab (MeV) E lab (MeV) An informative model: the unitary Fermi gas Interaction is zero-range with a strength that produces a zero-energy bound state

7 The unitary model in the three-body system--what we learned 1. There are an infinite number of weakly bound 3-body states (Efimov 1971). 2. It is the only nontrivial three-body problem that can be solved exactly. PRL 97, (2006) P H Y S I C A L R E V I E W L E T T E R S week ending 13 OCTOBER 2006 Unitary Quantum Three-Body Problem in a Harmonic Trap Félix Werner and Yvan Castin Laboratoire Kastler Brossel, École Normale Supérieure, 24 rue Lhomond, Paris Cedex 05, France (Received 18 July 2005; published 10 October 2006) We consider either 3 spinless bosons or 3 equal mass spin-1=2 fermions, interacting via a short-range potential of infinite scattering length and trapped in an isotropic harmonic potential. For a zero-range model, we obtain analytically the exact spectrum and eigenfunctions: for fermions all the states are universal; for bosons there is a coexistence of decoupled universal and efimovian states. All the universal states, even the bosonic ones, have a tiny 3-body loss rate. For a finite range model, we numerically find for bosons a coupling between zero angular momentum universal and efimovian states; the coupling is so weak that, for realistic values of the interaction range, these bosonic universal states remain long-lived and observable. 3. Exact solutions are useful for testing numerical methods (GFMC, hyperspherical harmonics,...)

8 The uniform gas of fermions with short-ranged interactions H = i 2 i 2m + g i<j δ(r i r j ) Interaction is only defined in a cutoff space; the physical expansion parameter is the scattering length a. Perturbative limit (1960ʼs many-body theory): Now we look at the limit a The Hamiltonian has no internal parameters! E N = ξ 2 kf 2 2m 3 5

9 LATTICE MONTE CARLO CALCULATIONS FOR UNITARY... PHYSICAL REVIEW A 87, (2013) TABLE VI. Historical results for the Bertsch parameter ξ determined experimentally (expt.), by numerical simulation (sim.) and by analytic calculation (anal.), along with publication (pub.) date. Values obtained variationally are upper bounds and are indicated with an asterisk; simulation results without a quoted error bar should be regarded as approximate. Pub. date ξ (expt.) Ref. Pub. date ξ (sim.) Ref. Pub. date ξ (anal.) Ref (7) [2] (1) [28] [14] (7) [3] (1) [29] [15] (15) [4] (1) [30] [15] [5] (1) [31] /9 [16] (4) [6] [32] [17] (5) [7] [33] [18] (7) [8] (3) [34] [19] [9] (9) [35] [19] (2) [10] (1) [36] [19] (1) [11] (1) [36] [20] (10) [12] (12) [37] [21] (4) [13] (5) [37] (1) [22] (5) [38] [23] (24) [39] [24] [40] [24] (1) [41] [24] (1) [42] [24] (3) [43] [25] (5) [44] [25] [25] /9 [26] (14) [27] avoids the multiplicative enhancement in computational cost (4) The many-body ground-state energies (measured in

10 Getting more realistic Neutron matter equation of state E/N [MeV] EM 500 MeV EGM 450/500 MeV EGM 450/700 MeV NLO lattice (2009) QMC (2010) APR (1998) GCR (2012) n [fm -3 ] Tews, et al. PRL (2013)

11 Getting more realistic on the nuclear interaction About 20 parameters are required to describe the nuclear interaction in sufficient detail to reproduce experimental scattering phase shifts and properties of the deuteron. The Hamiltonian based on that interaction underbinds the 3-nucleon system, overbinds nuclear matter, and produces a spin-orbit field that is too weak. The deficiencies are corrected by including a 3-body interaction arising from pions.

12 Calculational method of choice for light nuclei: Greenʼs function Monte Carlo S. Pieper et al, Phys. Rev. C

13 Excitation energy (MeV) Argonne v 18 with Illinois-7 GFMC Calculations Including IL7 gives correct s.-o. splitting & 10 B g.s. 6 He Li Li 7/2! 5/2! 5/2! 7/2! 1/2! 3/2! 8 Li Be Be 7/ 5/ 7/2! 7/2! 3/2! 3/ 5/ 1/2! 5/2! 1/ 3/2! AV18 10 Be AV18 +IL7 Expt. 3, B S. Pieper et al, Phys. Rev. C

14 Energy (MeV) He 6 He 6 Li Li 7/2! 5/2! 5/2! 7/2! 1/2! 3/2! 8 He 0 + Argonne v 18 with Illinois-7 GFMC Calculations Li 9 Li Be AV18 +IL7 5/2! 1/2! 3/2! 9 Be Expt. 7/ 5/ 7/2! 7/2! 3/2! 3/ 5/ 1/2! 5/2! 1/ 3/2! 1 + 3, Be + 10 B 12 C

15 Multi-configuration shell model See E. Caurier, et al., Rev. Mod. Phys (2005). H = i ε i a i a i + i<j v ij,kl a i a j a la k i =(n,, j, m) labels a shell orbital k<l

16 Domain of configuration-interaction shell model Matrix size < 10^8

17 Shell-model Monte Carlo method (an early review: Physics Reports (1997). H = i ε i a i a i + i<j v ij,kl a i a j a la k k<l Single-particle energies from the Woods-Saxon potential v ij,kl from a self-consistent separable interaction v(r 1,r 2 )= v L f L (r 1 )f L (r 2 ) Y LM (ˆr 1 )Y LM (ˆr 2 ) L M plus a pairing interaction ( discussed later). L =2, 3, 4 Shell-model Shell-model Monte Carlo Monte method Carlo method

18 The Monte-Carlo sign problem is avoided by good luck and a good choice of representation. (All v_l are negative and the pairing interaction is expressed as a density-density interaction between like particles.)

19 Application to the level density of Dy-162 All the shell orbitals between Z=50-90 and N= are included. Dimension of space: D(M=0) = 6 10^21 PRL 101, (2008) PHYSICAL R ρ (MeV -1 ) E M E (MeV) β (MeV -1 ) E X (MeV) ρ (MeV -1 ) E M N(E x ) lnρ E x (MeV) E x (MeV)

20 Pairing in nuclei: the phenomenon Definition of pairing gap: (3) o,z (N) =1 2 (E b(z, N + 1) 2E b (Z, N)+E b (Z, N 1)) Odd N 2 (3) (MeV) Neutron number N Even N 2 (3) e (MeV) Neutron number N

21 The seniority model Define an SU(2) algebra of operators in the Fock space of a j-shell. P + = m>0 a ma m P = P + P 0 = m a ma m The Hamiltonian H = GP + P E v (N) = 1 G(N v)(2ω N v + 2) 4 Ca isotopes in the f_7/2 shell Interaction energy neutron number N

22 The Richardson model See Dukelsky, et al., Rev. Mod. Phys (2004). The model has been widely used to assess the accuracy of BCS theory in various contexts.

23 0.4 FIG. 7. Neutron average variances σ between HFB and experimental (3) o as a function of the calculated quadrupole deformation β 2.Thedeformationrange 0.2 β was divided into bins with β 2 = 0.1, and for each bin the variance σ was obtained by averaging the residuals over all nuclei available. Pairing gaps calculated by self-consistent mean-field theory below another mechanism that could simulate the observed trend in A, namely,anisospindependenceoftheeffective pairing interaction. 1.6 Neutrons exp HFB (3) oz ο (MeV) (3) Neutron number N 2.0 Protons Bertsch, et al., Phys. Rev. C (2009)

24 Nuclear deformation H.B.G. Casimir (1937):.One is led to the conclusion that the quadrupole moment cannot possibly be due to one proton... It might even been that the nucleus as a whole has a prolate shape and that the nucleus as a whole is rotating about its major axis. Energy gap in the excitation spectrum of even-even nuclei, scaled to 2 Delta(3) Ratio Mass number A

25 The Nilsson model H = P 2 2M M ω 2 zz ω 2 (x y 2 ) + c( 2 2 )+d s δ ω ω z The nucleus is most stable where there are gaps in the single-particle spectrum.

26 Self-consistent mean field and density-functional theory H = ij 2 2m ij a i a j + v ij,kl a i a j a la k + 3body i<j,k<l Minimize <H> in the space of Slater determinants a i a j = ρ ij a i a j a a k = ρ ik ρ j ρ i ρ jk or in the space of Bogoliubov vacua a i a j = κ ij a i a j a a k = ρ ik ρ j ρ i ρ jk + κ jiκ k Basis of states can be coordinate space mesh, momentum space mesh, or 3-d harmonic oscillator states. There are two popular families of interactions, the Skyrme family based on contact interactions and derivatives and the Gogny family based on short-ranged Gaussian functions. Both have a density-dependent contact interaction for the 3-body term. See Bender, Heenen and Reihard, Rev. Mod. Phys (2003).

27 Performance of SCMF on nuclear binding energies For comparision, the 5 parameter liquid drop model reproduces binding energies with a 3 MeV RMS error. -SCMF improvement is a factor 2 -SCMF with phenomenology terms for correlation effects improvement is a factor of 5 -same or better improvement can be obtained with the liquid drop model plus shell corrections plus phenomenological correlation terms

28 Correlations and the restoration of broken symmetries SCMF of nuclei breaks translational invariance. Depending on the nucleus, it may also breaks rotational symmetry. In the Bogoliubov theory, it further breaks particle number conservation. PHYSICAL REVIEW C 79, (2009) The paradox of self-consistent mean-field theory: the physical states of course respect the symmetries of the Hamiltonion, but one often does better by breaking them.

29 Extensions of self-consistent mean-field theory for spectroscopy RPA,quasiparticle RPA, time-dependent HF, HFB, DFT Generator Coordinate Methods Collective Hamiltonian Discrete-basis Hill-Wheeler

30 Progress on a global theory for even-even nuclei HFB mapped to the 5-dimensional Bohr Hamiltonian Delaroche et al., PRC 81 (2010) 13 parameters in the energy functional 100 (a) 80 Z sign[cos(3 )] HFB N

31 STRUCTURE OF EVEN-EVEN NUCLEI USING A MAPPED... PHYSICAL REVIEW C 81,014303(2010) E (MeV) Expt Kr Th (3 + 2 ) FIG. 1. Experimental and theoretical spectra (MeV) and transition strengths (e 2 fm 4 )of 76 Kr showing the excitations that we examine in the present global study. The experimental spectrum, on the left, is from Ref. [23] as well as from data repository for the 3 + and 4 + members of the γ band [24]. Calculated values are those from Ref. [23].

32 Global assessment of accuracy: first excited J=2 state a) Excitation Energies 10 b) B(E2,0 +! ) 184 Hg Theoretical (MeV) Theoretical (e 2 b 2 ) Ne Experimental (MeV) Experimental (e 2 b 2 ) E(exp) = E(theory)+/-40% over 2 order of magnitude Many other observables

33 The CEA/DAM global survey, on the N=Z line 2+ Excitation energies 2.5 Energy (MeV) SLy4 Exp 5dch Z 12

34 Nature (2011) 2.5 Energy (MeV) _ Z 13

35 A near-term goal: odd-a nuclei No collective Hamiltonian to map onto Restoring angular momentum more difficult Projection technique Onishi Formula (1966) Ψ 1 Ψ 0 = det(u 0 U 1 + V 0 V 1) Robledo s Formula (2009) Ψ 1 Ψ 0 =pf (V1 U 1 1 ) 1 1 (V 0 U 1 0 )

36 4 FIG. 3: (Color online) Comparison of the calculated lowlying levels grouped into rotational bands with data taken from Ref. [22]. FIG. 4: (Color online) Excitation energies of states in the ground-state band of 25 Mg and B(E2) and B(M1) values for transitions between them. 3/ level in panel (b) even 8.4 MeV. These values are Bender, Heenen, et al., arxiv: (2014).

37 Charge radii-- HFB Experimental data from Angeli, ADNDT 87 (2004) a) Charge radius HFB Cm Relative Error Mass Number A U a) Charge radius HFB Cm Relative Error Mass Number A U

38 Error assessment INT09-1: Effective field theories and the many-body problem Example: intrinsic error from shell truncation in CI fits Estimated error of 0.2 MeV is close to actual value.

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1 2358-19 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 1 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

Observables predicted by HF theory

Observables predicted by HF theory Observables predicted by HF theory Total binding energy of the nucleus in its ground state separation energies for p / n (= BE differences) Ground state density distribution of protons and neutrons mean

More information

Lisheng Geng. Ground state properties of finite nuclei in the relativistic mean field model

Lisheng Geng. Ground state properties of finite nuclei in the relativistic mean field model Ground state properties of finite nuclei in the relativistic mean field model Lisheng Geng Research Center for Nuclear Physics, Osaka University School of Physics, Beijing University Long-time collaborators

More information

Quantum Monte Carlo calculations of medium mass nuclei

Quantum Monte Carlo calculations of medium mass nuclei Quantum Monte Carlo calculations of medium mass nuclei Diego Lonardoni FRIB Theory Fellow In collaboration with: J. Carlson, LANL S. Gandolfi, LANL X. Wang, Huzhou University, China A. Lovato, ANL & UniTN

More information

The Nuclear Many-Body Problem

The Nuclear Many-Body Problem The Nuclear Many-Body Problem relativistic heavy ions vacuum electron scattering quarks gluons radioactive beams heavy few nuclei body quark-gluon soup QCD nucleon QCD few body systems many body systems

More information

Short-Ranged Central and Tensor Correlations. Nuclear Many-Body Systems. Reaction Theory for Nuclei far from INT Seattle

Short-Ranged Central and Tensor Correlations. Nuclear Many-Body Systems. Reaction Theory for Nuclei far from INT Seattle Short-Ranged Central and Tensor Correlations in Nuclear Many-Body Systems Reaction Theory for Nuclei far from Stability @ INT Seattle September 6-, Hans Feldmeier, Thomas Neff, Robert Roth Contents Motivation

More information

Quantum Theory of Many-Particle Systems, Phys. 540

Quantum Theory of Many-Particle Systems, Phys. 540 Quantum Theory of Many-Particle Systems, Phys. 540 IPM? Atoms? Nuclei: more now Other questions about last class? Assignment for next week Wednesday ---> Comments? Nuclear shell structure Ground-state

More information

New Frontiers in Nuclear Structure Theory

New Frontiers in Nuclear Structure Theory New Frontiers in Nuclear Structure Theory From Realistic Interactions to the Nuclear Chart Robert Roth Institut für Kernphysik Technical University Darmstadt Overview Motivation Nucleon-Nucleon Interactions

More information

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Mean-field concept (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Static Hartree-Fock (HF) theory Fundamental puzzle: The

More information

Quantum Theory of Many-Particle Systems, Phys. 540

Quantum Theory of Many-Particle Systems, Phys. 540 Quantum Theory of Many-Particle Systems, Phys. 540 Questions about organization Second quantization Questions about last class? Comments? Similar strategy N-particles Consider Two-body operators in Fock

More information

Particle-number projection in finite-temperature mean-field approximations to level densities

Particle-number projection in finite-temperature mean-field approximations to level densities Particle-number projection in finite-temperature mean-field approximations to level densities Paul Fanto (Yale University) Motivation Finite-temperature mean-field theory for level densities Particle-number

More information

Neutron Matter: EOS, Spin and Density Response

Neutron Matter: EOS, Spin and Density Response Neutron Matter: EOS, Spin and Density Response LANL : A. Gezerlis, M. Dupuis, S. Reddy, J. Carlson ANL: S. Pieper, R.B. Wiringa How can microscopic theories constrain mean-field theories and properties

More information

Quantum Monte Carlo calculations of neutron and nuclear matter

Quantum Monte Carlo calculations of neutron and nuclear matter Quantum Monte Carlo calculations of neutron and nuclear matter Stefano Gandolfi Los Alamos National Laboratory (LANL) Advances and perspectives in computational nuclear physics, Hilton Waikoloa Village,

More information

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain Mean field studies of odd mass nuclei and quasiparticle excitations Luis M. Robledo Universidad Autónoma de Madrid Spain Odd nuclei and multiquasiparticle excitations(motivation) Nuclei with odd number

More information

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016 Nuclear structure III: Nuclear and neutron matter Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

More information

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar Evolution Of Shell Structure, Shapes & Collective Modes Dario Vretenar vretenar@phy.hr 1. Evolution of shell structure with N and Z A. Modification of the effective single-nucleon potential Relativistic

More information

The Nuclear Many-Body Problem. Lecture 2

The Nuclear Many-Body Problem. Lecture 2 The Nuclear Many-Body Problem Lecture 2 How do we describe nuclei? Shell structure in nuclei and the phenomenological shell model approach to nuclear structure. Ab-initio approach to nuclear structure.

More information

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540 Central density Consider nuclear charge density Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) Central density (A/Z* charge density) about the same for nuclei heavier than 16 O, corresponding

More information

Symmetry breaking and symmetry restoration in mean-field based approaches

Symmetry breaking and symmetry restoration in mean-field based approaches Symmetry breaking and symmetry restoration in mean-field based approaches Héloise Goutte GANIL Caen, France goutte@ganil.fr Cliquez pour modifier le style des sous-titres du masque With the kind help of

More information

Few Body Methods in Nuclear Physics - Lecture I

Few Body Methods in Nuclear Physics - Lecture I Few Body Methods in Nuclear Physics - Lecture I Nir Barnea The Hebrew University, Jerusalem, Israel Sept. 2010 Course Outline 1 Introduction - Few-Body Nuclear Physics 2 Gaussian Expansion - The Stochastic

More information

Neutron Halo in Deformed Nuclei

Neutron Halo in Deformed Nuclei Advances in Nuclear Many-Body Theory June 7-1, 211, Primosten, Croatia Neutron Halo in Deformed Nuclei Ó Li, Lulu Ò School of Physics, Peking University June 8, 211 Collaborators: Jie Meng (PKU) Peter

More information

Nuclear structure from chiral-perturbation-theory two- plus three-nucleon interactions

Nuclear structure from chiral-perturbation-theory two- plus three-nucleon interactions Nuclear structure from chiral-perturbation-theory two- plus three-nucleon interactions Petr Navratil Lawrence Livermore National Laboratory* Collaborators: W. E. Ormand (LLNL), J. P. Vary (ISU), E. Caurier

More information

arxiv:nucl-th/ v1 27 Apr 2004

arxiv:nucl-th/ v1 27 Apr 2004 Skyrme-HFB deformed nuclear mass table J. Dobaczewski, M.V. Stoitsov and W. Nazarewicz arxiv:nucl-th/0404077v1 27 Apr 2004 Institute of Theoretical Physics, Warsaw University ul. Hoża 69, PL-00681 Warsaw,

More information

Nilsson Model. Anisotropic Harmonic Oscillator. Spherical Shell Model Deformed Shell Model. Nilsson Model. o Matrix Elements and Diagonalization

Nilsson Model. Anisotropic Harmonic Oscillator. Spherical Shell Model Deformed Shell Model. Nilsson Model. o Matrix Elements and Diagonalization Nilsson Model Spherical Shell Model Deformed Shell Model Anisotropic Harmonic Oscillator Nilsson Model o Nilsson Hamiltonian o Choice of Basis o Matrix Elements and Diagonaliation o Examples. Nilsson diagrams

More information

The nature of superfluidity in the cold atomic unitary Fermi gas

The nature of superfluidity in the cold atomic unitary Fermi gas The nature of superfluidity in the cold atomic unitary Fermi gas Introduction Yoram Alhassid (Yale University) Finite-temperature auxiliary-field Monte Carlo (AFMC) method The trapped unitary Fermi gas

More information

Statistical properties of nuclei by the shell model Monte Carlo method

Statistical properties of nuclei by the shell model Monte Carlo method Statistical properties of nuclei by the shell model Monte Carlo method Introduction Yoram Alhassid (Yale University) Shell model Monte Carlo (SMMC) method Circumventing the odd particle-number sign problem

More information

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach A. PETROVICI Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania Outline complex

More information

NUCLEAR STRUCTURE AB INITIO

NUCLEAR STRUCTURE AB INITIO December, 6:8 WSPC/Trim Size: 9in x 6in for Proceedings master NUCLEAR STRUCTURE AB INITIO H. FELDMEIER AND T. NEFF Gesellschaft für Schwerionenforschung mbh Planckstr., D-69 Darmstadt, Germany E-mail:

More information

Nuclear structure Anatoli Afanasjev Mississippi State University

Nuclear structure Anatoli Afanasjev Mississippi State University Nuclear structure Anatoli Afanasjev Mississippi State University 1. Nuclear theory selection of starting point 2. What can be done exactly (ab-initio calculations) and why we cannot do that systematically?

More information

The interacting boson model

The interacting boson model The interacting boson model P. Van Isacker, GANIL, France Dynamical symmetries of the IBM Neutrons, protons and F-spin (IBM-2) T=0 and T=1 bosons: IBM-3 and IBM-4 The interacting boson model Nuclear collective

More information

c E If photon Mass particle 8-1

c E If photon Mass particle 8-1 Nuclear Force, Structure and Models Readings: Nuclear and Radiochemistry: Chapter 10 (Nuclear Models) Modern Nuclear Chemistry: Chapter 5 (Nuclear Forces) and Chapter 6 (Nuclear Structure) Characterization

More information

Coupled-cluster theory for nuclei

Coupled-cluster theory for nuclei Coupled-cluster theory for nuclei Thomas Papenbrock and G. Hagen D. J. Dean M. Hjorth-Jensen B. Velamur Asokan INT workshop Weakly-bound systems in atomic and nuclear physics Seattle, March 8-12, 2010

More information

Toward a unified description of equilibrium and dynamics of neutron star matter

Toward a unified description of equilibrium and dynamics of neutron star matter Toward a unified description of equilibrium and dynamics of neutron star matter Omar Benhar INFN and Department of Physics Sapienza Università di Roma I-00185 Roma, Italy Based on work done in collaboration

More information

Theoretical study of fission barriers in odd-a nuclei using the Gogny force

Theoretical study of fission barriers in odd-a nuclei using the Gogny force Theoretical study of fission barriers in odd-a nuclei using the Gogny force S. Pérez and L.M. Robledo Departamento de Física Teórica Universidad Autónoma de Madrid Saclay, 9th May 2006 Workshop on the

More information

The shape distribution of nuclear level densities in the shell model Monte Carlo method

The shape distribution of nuclear level densities in the shell model Monte Carlo method The shape distribution of nuclear level densities in the shell model Monte Carlo method Introduction Yoram Alhassid (Yale University) Shell model Monte Carlo (SMMC) method and level densities Nuclear deformation

More information

Ab initio rotational bands in medium and heavy nuclei

Ab initio rotational bands in medium and heavy nuclei Ab initio rotational bands in medium and heavy nuclei Calvin W. Johnson This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under

More information

Beyond mean-field study on collective vibrations and beta-decay

Beyond mean-field study on collective vibrations and beta-decay Advanced many-body and statistical methods in mesoscopic systems III September 4 th 8 th, 2017, Busteni, Romania Beyond mean-field study on collective vibrations and beta-decay Yifei Niu Collaborators:

More information

The shell model Monte Carlo approach to level densities: recent developments and perspectives

The shell model Monte Carlo approach to level densities: recent developments and perspectives The shell model Monte Carlo approach to level densities: recent developments and perspectives Yoram Alhassid (Yale University) Introduction: the shell model Monte Carlo (SMMC) approach Level density in

More information

AFDMC Method for Nuclear Physics and Nuclear Astrophysics

AFDMC Method for Nuclear Physics and Nuclear Astrophysics AFDMC Method for Nuclear Physics and Nuclear Astrophysics Thanks to INFN and to F. Pederiva (Trento) Outline Motivations: NN scattering data few body theory. Few-body many body experiments/observations?

More information

Lecture 4: Nuclear Energy Generation

Lecture 4: Nuclear Energy Generation Lecture 4: Nuclear Energy Generation Literature: Prialnik chapter 4.1 & 4.2!" 1 a) Some properties of atomic nuclei Let: Z = atomic number = # of protons in nucleus A = atomic mass number = # of nucleons

More information

Auxiliary-field quantum Monte Carlo methods for nuclei and cold atoms

Auxiliary-field quantum Monte Carlo methods for nuclei and cold atoms Introduction Auxiliary-field quantum Monte Carlo methods for nuclei and cold atoms Yoram Alhassid (Yale University) Auxiliary-field Monte Carlo (AFMC) methods at finite temperature Sign problem and good-sign

More information

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry:

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry: RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear and Radiochemistry: Chapter 10 (Nuclear Models) Modern Nuclear Chemistry: Chapter 5 (Nuclear Forces) and Chapter 6 (Nuclear

More information

Ground-state properties of some N=Z medium mass heavy nuclei. Keywords: Nuclear properties, neutron skin thickness, HFB method, RMF model, N=Z nuclei

Ground-state properties of some N=Z medium mass heavy nuclei. Keywords: Nuclear properties, neutron skin thickness, HFB method, RMF model, N=Z nuclei Ground-state properties of some N=Z medium mass heavy nuclei Serkan Akkoyun 1, Tuncay Bayram 2, Şevki Şentürk 3 1 Department of Physics, Faculty of Science, Cumhuriyet University, Sivas, Turkey 2 Department

More information

Effective shell model Hamiltonians from density functional theory: Quadrupolar and pairing correlations

Effective shell model Hamiltonians from density functional theory: Quadrupolar and pairing correlations PHYSICAL REVIEW C 77, 6438 (8) Effective shell model Hamiltonians from density functional theory: Quadrupolar and pairing correlations R. Rodríguez-Guzmán and Y. Alhassid * Center for Theoretical Physics,

More information

Shape coexistence and beta decay in proton-rich A~70 nuclei within beyond-mean-field approach

Shape coexistence and beta decay in proton-rich A~70 nuclei within beyond-mean-field approach Shape coexistence and beta decay in proton-rich A~ nuclei within beyond-mean-field approach A. PETROVICI Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania Outline

More information

1 Introduction. 2 The hadronic many body problem

1 Introduction. 2 The hadronic many body problem Models Lecture 18 1 Introduction In the next series of lectures we discuss various models, in particluar models that are used to describe strong interaction problems. We introduce this by discussing the

More information

Deformed (Nilsson) shell model

Deformed (Nilsson) shell model Deformed (Nilsson) shell model Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 January 31, 2011 NUCS 342 (Lecture 9) January 31, 2011 1 / 35 Outline 1 Infinitely deep potential

More information

Few- Systems. Selected Topics in Correlated Hyperspherical Harmonics. Body. A. Kievsky

Few- Systems. Selected Topics in Correlated Hyperspherical Harmonics. Body. A. Kievsky Few-Body Systems 0, 11 16 (2003) Few- Body Systems c by Springer-Verlag 2003 Printed in Austria Selected Topics in Correlated Hyperspherical Harmonics A. Kievsky INFN and Physics Department, Universita

More information

The Nuclear Many Body Problem Lecture 3

The Nuclear Many Body Problem Lecture 3 The Nuclear Many Body Problem Lecture 3 Shell structure in nuclei and the phenomenological shell model approach to nuclear structure Ab initio approach to nuclear structure. Green's function Monte Carlo

More information

Relativistic Hartree-Bogoliubov description of sizes and shapes of A = 20 isobars

Relativistic Hartree-Bogoliubov description of sizes and shapes of A = 20 isobars Relativistic Hartree-Bogoliubov description of sizes and shapes of A = 20 isobars G.A. Lalazissis 1,2, D. Vretenar 1,3, and P. Ring 1 arxiv:nucl-th/0009047v1 18 Sep 2000 1 Physik-Department der Technischen

More information

Nuclear vibrations and rotations

Nuclear vibrations and rotations Nuclear vibrations and rotations Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 February 2, 2011 NUCS 342 (Lecture 9) February 2, 2011 1 / 29 Outline 1 Significance of collective

More information

APPLICATIONS OF A HARD-CORE BOSE HUBBARD MODEL TO WELL-DEFORMED NUCLEI

APPLICATIONS OF A HARD-CORE BOSE HUBBARD MODEL TO WELL-DEFORMED NUCLEI International Journal of Modern Physics B c World Scientific Publishing Company APPLICATIONS OF A HARD-CORE BOSE HUBBARD MODEL TO WELL-DEFORMED NUCLEI YUYAN CHEN, FENG PAN Liaoning Normal University, Department

More information

Isospin Violation & Nuclear Decays

Isospin Violation & Nuclear Decays Isospin Violation & Nuclear Decays University of Jyväskylä & University of Warsaw with Wojtek Satuła, Witek Nazarewicz, Maciek Konieczka, Tomek Werner, and Maciek Zalewski Fundamental Symmetry Tests with

More information

From EFTs to Nuclei. Thomas Papenbrock. and. CANHP 2015 Research partly funded by the US Department of Energy

From EFTs to Nuclei. Thomas Papenbrock. and. CANHP 2015 Research partly funded by the US Department of Energy From EFTs to Nuclei Thomas Papenbrock and CANHP 2015 Research partly funded by the US Department of Energy Collaborators @ ORNL / UTK: T. Coello, A. Ekström, G. Hagen, G. R. Jansen, K. Wendt @ ORNL/MSU:

More information

Physics of neutron-rich nuclei

Physics of neutron-rich nuclei Physics of neutron-rich nuclei Nuclear Physics: developed for stable nuclei (until the mid 1980 s) saturation, radii, binding energy, magic numbers and independent particle. Physics of neutron-rich nuclei

More information

Effective Field Theory for light nuclear systems

Effective Field Theory for light nuclear systems Effective Field Theory for light nuclear systems Jimmy Rotureau Chalmers University of Technology, Göteborg, Sweden B. Barrett, University of Arizona, Tucson I. Stetcu, University of Washington, Seattle

More information

4 November Master 2 APIM. Le problème à N corps nucléaire: structure nucléaire

4 November Master 2 APIM. Le problème à N corps nucléaire: structure nucléaire 4 November 2010. Master 2 APIM Le problème à N corps nucléaire: structure nucléaire The atomic nucleus is a self-bound quantum many-body (manynucleon) system Rich phenomenology for nuclei Mean field Which

More information

Medium polarization effects and pairing interaction in finite nuclei

Medium polarization effects and pairing interaction in finite nuclei Medium polarization effects and pairing interaction in finite nuclei S. Baroni, P.F. Bortignon, R.A. Broglia, G. Colo, E. Vigezzi Milano University and INFN F. Barranco Sevilla University Commonly used

More information

Three-nucleon forces and shell structure of neutron-rich Ca isotopes

Three-nucleon forces and shell structure of neutron-rich Ca isotopes Three-nucleon forces and shell structure of neutron-rich Ca isotopes Javier Menéndez Institut für Kernphysik (TU Darmstadt) and ExtreMe Matter Institute (EMMI) NUSTAR Week 3, Helsinki, 9 October 13 Outline

More information

The interacting boson model

The interacting boson model The interacting boson model P. Van Isacker, GANIL, France Introduction to the IBM Practical applications of the IBM Overview of nuclear models Ab initio methods: Description of nuclei starting from the

More information

Part III: The Nuclear Many-Body Problem

Part III: The Nuclear Many-Body Problem Part III: The Nuclear Many-Body Problem To understand the properties of complex nuclei from first principles Microscopic Valence- Space Interactions Model spaces Many-body perturbation theory (MBPT) Calculating

More information

arxiv: v2 [nucl-th] 8 May 2014

arxiv: v2 [nucl-th] 8 May 2014 Oblate deformation of light neutron-rich even-even nuclei Ikuko Hamamoto 1,2 1 Riken Nishina Center, Wako, Saitama 351-0198, Japan 2 Division of Mathematical Physics, Lund Institute of Technology at the

More information

Nuclear Shell Model. 1d 3/2 2s 1/2 1d 5/2. 1p 1/2 1p 3/2. 1s 1/2. configuration 1 configuration 2

Nuclear Shell Model. 1d 3/2 2s 1/2 1d 5/2. 1p 1/2 1p 3/2. 1s 1/2. configuration 1 configuration 2 Nuclear Shell Model 1d 3/2 2s 1/2 1d 5/2 1d 3/2 2s 1/2 1d 5/2 1p 1/2 1p 3/2 1p 1/2 1p 3/2 1s 1/2 1s 1/2 configuration 1 configuration 2 Nuclear Shell Model MeV 5.02 3/2-2 + 1p 1/2 1p 3/2 4.44 5/2-1s 1/2

More information

arxiv: v1 [nucl-th] 18 Jan 2018

arxiv: v1 [nucl-th] 18 Jan 2018 Nuclear deformation in the configuration-interaction shell model arxiv:181.6175v1 [nucl-th] 18 Jan 218 Y. Alhassid, 1 G.F. Bertsch 2,3 C.N. Gilbreth, 2 and M.T. Mustonen 1 1 Center for Theoretical Physics,

More information

Quantum mechanics of many-fermion systems

Quantum mechanics of many-fermion systems Quantum mechanics of many-fermion systems Kouichi Hagino Tohoku University, Sendai, Japan 1. Identical particles: Fermions and Bosons 2. Simple examples: systems with two identical particles 3. Pauli principle

More information

Dense Matter and Neutrinos. J. Carlson - LANL

Dense Matter and Neutrinos. J. Carlson - LANL Dense Matter and Neutrinos J. Carlson - LANL Neutron Stars and QCD phase diagram Nuclear Interactions Quantum Monte Carlo Low-Density Equation of State High-Density Equation of State Neutron Star Matter

More information

Nuclear structure I: Introduction and nuclear interactions

Nuclear structure I: Introduction and nuclear interactions Nuclear structure I: Introduction and nuclear interactions Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July

More information

Nuclear Energy Density Functional

Nuclear Energy Density Functional UNEDF Project: Towards a Universal Nuclear Energy Density Functional Atomic nucleus Piotr Magierski Warsaw University of Technology/University of Washington Nuclear Landscape 126 superheavy nuclei protons

More information

Schiff Moments. J. Engel. May 9, 2017

Schiff Moments. J. Engel. May 9, 2017 Schiff Moments J. Engel May 9, 2017 Connection Between EDMs and T Violation Consider non-degenerate ground state g.s. : J, M. Symmetry under rotations R y (π) for vector operator like d i e i r i implies:

More information

Shell evolution and pairing in calcium isotopes with two- and three-body forces

Shell evolution and pairing in calcium isotopes with two- and three-body forces Shell evolution and pairing in calcium isotopes with two- and three-body forces Javier Menéndez Institut für Kernphysik, TU Darmstadt ExtreMe Matter Institute (EMMI) with Jason D. Holt, Achim Schwenk and

More information

arxiv: v1 [nucl-th] 15 Jan 2015

arxiv: v1 [nucl-th] 15 Jan 2015 Accuracy of the new pairing theory and its improvement L. Y. Jia, Department of Physics, University of Shanghai for Science and Technology, Shanghai 93, P. R. China Department of Physics, Hebei Normal

More information

arxiv: v1 [nucl-th] 7 Nov 2016

arxiv: v1 [nucl-th] 7 Nov 2016 Nuclear structure calculations in 20 Ne with No-Core Configuration-Interaction model arxiv:1611.01979v1 [nucl-th] 7 Nov 2016 Maciej Konieczka and Wojciech Satu la Faculty of Physics, University of Warsaw,

More information

14. Structure of Nuclei

14. Structure of Nuclei 14. Structure of Nuclei Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 14. Structure of Nuclei 1 In this section... Magic Numbers The Nuclear Shell Model Excited States Dr. Tina Potter 14.

More information

Tritium β decay in pionless EFT

Tritium β decay in pionless EFT Ohio University June 0, 207 Recipe for EFT(/π) For momenta p < m π pions can be integrated out as degrees of freedom and only nucleons and external currents are left. Write down all possible terms of nucleons

More information

The role of isospin symmetry in collective nuclear structure. Symposium in honour of David Warner

The role of isospin symmetry in collective nuclear structure. Symposium in honour of David Warner The role of isospin symmetry in collective nuclear structure Symposium in honour of David Warner The role of isospin symmetry in collective nuclear structure Summary: 1. Coulomb energy differences as

More information

Comparison of Nuclear Configuration Interaction Calculations and Coupled Cluster Calculations

Comparison of Nuclear Configuration Interaction Calculations and Coupled Cluster Calculations Comparison of Nuclear Configuration Interaction Calculations and Coupled Cluster Calculations Mihai Horoi Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA Support

More information

Local chiral NN potentials and the structure of light nuclei

Local chiral NN potentials and the structure of light nuclei Local chiral NN potentials and the structure of light nuclei Maria Piarulli @ELBA XIV WORKSHOP June 7-July 1 16, Marciana Marina, Isola d Elba PHYSICAL REVIEW C 91, 43(15) Minimally nonlocal nucleon-nucleon

More information

University of Tokyo (Hongo) Nov., Ikuko Hamamoto. Division of Mathematical Physics, LTH, University of Lund, Sweden

University of Tokyo (Hongo) Nov., Ikuko Hamamoto. Division of Mathematical Physics, LTH, University of Lund, Sweden University of Tokyo (Hongo) Nov., 006 One-particle motion in nuclear many-body problem - from spherical to deformed nuclei - from stable to drip-line - from particle to quasiparticle picture kuko Hamamoto

More information

Coupled-cluster theory for medium-mass nuclei

Coupled-cluster theory for medium-mass nuclei Coupled-cluster theory for medium-mass nuclei Thomas Papenbrock and G. Hagen (ORNL) D. J. Dean (ORNL) M. Hjorth-Jensen (Oslo) A. Nogga (Juelich) A. Schwenk (TRIUMF) P. Piecuch (MSU) M. Wloch (MSU) Seattle,

More information

Introduction to NUSHELLX and transitions

Introduction to NUSHELLX and transitions Introduction to NUSHELLX and transitions Angelo Signoracci CEA/Saclay Lecture 4, 14 May 213 Outline 1 Introduction 2 β decay 3 Electromagnetic transitions 4 Spectroscopic factors 5 Two-nucleon transfer/

More information

B. PHENOMENOLOGICAL NUCLEAR MODELS

B. PHENOMENOLOGICAL NUCLEAR MODELS B. PHENOMENOLOGICAL NUCLEAR MODELS B.0. Basic concepts of nuclear physics B.0. Binding energy B.03. Liquid drop model B.04. Spherical operators B.05. Bohr-Mottelson model B.06. Intrinsic system of coordinates

More information

Renormalization group methods in nuclear few- and many-body problems

Renormalization group methods in nuclear few- and many-body problems Renormalization group methods in nuclear few- and many-body problems Lecture 3 S.K. Bogner (NSCL/MSU) 2011 National Nuclear Physics Summer School University of North Carolina at Chapel Hill Lecture 2 outline

More information

The nuclear shell-model: from single-particle motion to collective effects

The nuclear shell-model: from single-particle motion to collective effects The nuclear shell-model: from single-particle motion to collective effects 1. Nuclear forces and very light nuclei 2. Independent-particle shell model and few nucleon correlations 3. Many-nucleon correlations:

More information

arxiv: v1 [nucl-th] 22 Jan 2015

arxiv: v1 [nucl-th] 22 Jan 2015 Neutron Matter from Low to High Density 1 Neutron Matter from Low to High Density Stefano Gandolfi, 1 Alexandros Gezerlis, 2 J. Carlson 1 arxiv:1501.05675v1 [nucl-th] 22 Jan 2015 1 Theoretical Division,

More information

Symmetry energy, masses and T=0 np-pairing

Symmetry energy, masses and T=0 np-pairing Symmetry energy, masses and T=0 np-pairing Can we measure the T=0 pair gap? Do the moments of inertia depend on T=0 pairing? Do masses evolve like T(T+1) or T^2 (N-Z)^2? Origin of the linear term in mean

More information

RG & EFT for nuclear forces

RG & EFT for nuclear forces RG & EFT for nuclear forces Andreas Nogga, Forschungszentrum Jülich ECT* school, Feb/March 2006 Low momentum interactions: Using the RG to simplify the nuclear force for many-body calculations. Application

More information

Cluster Models for Light Nuclei

Cluster Models for Light Nuclei Cluster Models for Light Nuclei N. Itagaki, T. Otsuka, University of Tokyo S. Aoyama, Niigata University K. Ikeda, RIKEN S. Okabe, Hokkaido University Purpose of the present study Cluster model explore

More information

PARTICLE-NUMBER CONSERVING

PARTICLE-NUMBER CONSERVING PARTICLE-NUMBER CONSERVING MICROSCOPIC APPROACH AND APPLICATION TO ISOSPIN MIXING L. Bonneau, J. Le Bloas, H. Naidja, P. Quentin, K. Sieja (CENBG/Université Bordeaux 1) J. Bartel (IPHC/Université Louis

More information

The Shell Model: An Unified Description of the Structure of th

The Shell Model: An Unified Description of the Structure of th The Shell Model: An Unified Description of the Structure of the Nucleus (I) ALFREDO POVES Departamento de Física Teórica and IFT, UAM-CSIC Universidad Autónoma de Madrid (Spain) TSI2015 Triumf, July 2015

More information

Pairing in Nuclear and Neutron Matter Screening effects

Pairing in Nuclear and Neutron Matter Screening effects Pairing Degrees of Freedom in Nuclei and Nuclear Medium Seattle, Nov. 14-17, 2005 Outline: Pairing in Nuclear and Neutron Matter Screening effects U. Lombardo pairing due to the nuclear (realistic) interaction

More information

H.O. [202] 3 2 (2) (2) H.O. 4.0 [200] 1 2 [202] 5 2 (2) (4) (2) 3.5 [211] 1 2 (2) (6) [211] 3 2 (2) 3.0 (2) [220] ε

H.O. [202] 3 2 (2) (2) H.O. 4.0 [200] 1 2 [202] 5 2 (2) (4) (2) 3.5 [211] 1 2 (2) (6) [211] 3 2 (2) 3.0 (2) [220] ε E/ħω H r 0 r Y0 0 l s l l N + l + l s [0] 3 H.O. ε = 0.75 4.0 H.O. ε = 0 + l s + l [00] n z = 0 d 3/ 4 [0] 5 3.5 N = s / N n z d 5/ 6 [] n z = N lj [] 3 3.0.5 0.0 0.5 ε 0.5 0.75 [0] n z = interaction of

More information

Unitary-model-operator approach to nuclear many-body problems

Unitary-model-operator approach to nuclear many-body problems Unitary-model-operator approach to nuclear many-body problems in collaboration with Structure calc. for many-nucleon systems Kenji Suzuki (Kyushu Inst. of Tech.) Ryoji kamoto (Kyushu Inst. of Tech.) V

More information

Nuclear Structure Theory II

Nuclear Structure Theory II uclear Structure Theory II The uclear Many-body Problem Alexander Volya Florida State University Physics of light nuclei 1 H 4 Li 3 He 2 H 8 7 6 Be 5 Li 4 He 3 B H 10 9 8 7 Be 6 Li 5 He 4 B H 12 11 10

More information

Cluster and shape in stable and unstable nuclei

Cluster and shape in stable and unstable nuclei luster and shape in stable and unstable nuclei Y. Kanada-En yo (Kyoto Univ.) ollaborators: Y. Hidaka (GOE-PD->Riken) F. Kobayashi (D2, Kyoto Univ.) T. Suhara (Kyoto Univ.->Tsukuba Univ.) Y. Taniguchi (Tsukuba

More information

Coupled-channels Neutron Reactions on Nuclei

Coupled-channels Neutron Reactions on Nuclei Coupled-channels Neutron Reactions on Nuclei Ian Thompson with: Gustavo Nobre, Frank Dietrich, Jutta Escher (LLNL) and: Toshiko Kawano (LANL), Goran Arbanas (ORNL), P. O. Box, Livermore, CA! This work

More information

13. Basic Nuclear Properties

13. Basic Nuclear Properties 13. Basic Nuclear Properties Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 13. Basic Nuclear Properties 1 In this section... Motivation for study The strong nuclear force Stable nuclei Binding

More information

The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure

The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure Stefano Gandolfi Los Alamos National Laboratory (LANL) Nuclear Structure and Reactions: Weak, Strange and Exotic International

More information

The No Core Shell Model: Its Formulation, Application and Extensions. Bruce R. Barrett University of Arizona,

The No Core Shell Model: Its Formulation, Application and Extensions. Bruce R. Barrett University of Arizona, The No Core Shell Model: Its Formulation, Application and Extensions Bruce R. Barrett University of Arizona, Tucson, INT Spring Program 2011 March 23, 2011 MICROSCOPIC NUCLEAR-STRUCTURE THEORY 1. Start

More information

Many-Body Problems and Quantum Field Theory

Many-Body Problems and Quantum Field Theory Philippe A. Martin Francois Rothen Many-Body Problems and Quantum Field Theory An Introduction Translated by Steven Goldfarb, Andrew Jordan and Samuel Leach Second Edition With 102 Figures, 7 Tables and

More information

Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them

Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them Introduction Yoram Alhassid (Yale University) Finite-temperature auxiliary-field Monte Carlo methods in Fock

More information