Probing the Optical Conductivity of Harmonically-confined Quantum Gases!

Size: px
Start display at page:

Download "Probing the Optical Conductivity of Harmonically-confined Quantum Gases!"

Transcription

1 Probing the Optical Conductivity of Harmonically-confined Quantum Gases! Eugene Zaremba Queen s University, Kingston, Ontario, Canada Financial support from NSERC Work done in collaboration with Ed Taylor and Zhigang Wu

2 The Art of Poking and Prodding! parametric perturbations V trap (x, t) = 2 m! 0(t) 2 x 2! 0 (t) =! 0 +! 0 (t),! 0 (t) =! 0 +! 0 sin t modulation spectroscopy V trap (x)+v opt (x, t) V opt (x, t) =V 0 (t)sinkx, V opt (x, t) =V 0 sin k(x x 0 (t)) effective dynamics V trap (x)+v ext (x) (x)! (x x 0 ) ) V ext (x x 0 cos! 0 t) oscillating harmonic potential optical conductivity V trap (x, t) = 2 m!2 0(x x 0 sin!t)

3 Experiment on Disorder-induced Damping! oscillations of the centre of mass are induced by suddenly shifting the harmonic confining potential a disorder potential created by a laser speckle pattern leads to the decay of the centre of mass motion Y.P. Chen et al., Phys. Rev. A77, (2008)

4 Equation of Motion in Presence of Disorder! the Hamiltonian of the system is Ĥ = NX i= apple ˆp 2 i 2m + V trap(ˆr i ) + ˆV int + NX V dis (ˆr i ) Ĥ0 + ˆV dis i= for an arbitrary dynamical state, the c.m. coordinate Z(t) = (t) ˆR z (t) satisfies d 2 Z dt zz = F M where F (t) = (t) b F z (t) bf z = NX i= V dis (ˆr i ) ẑ i evaluation of the force requires knowledge of the dynamical state

5 Extended Harmonic Potential Theorem! 0 0 in (a), the condensate is initially displaced relative to the centre of the harmonic trap and oscillates in the presence of a static disorder potential in (b), the condensate is initially at rest at the centre of the harmonic trap but the disorder potential is displaced and is made to oscillate at the trap frequency the force is exactly the same in these two physically distinct scenarios D. Dries et al., Phys. Rev. A82, (200)

6 Linear Response! the utility of this latter point of view is that the force can be calculated using conventional linear response theory if the perturbation is weak to second order in the disorder potential, we have F (t) = i ~ where = Z t 0 Z t 0 dt 0 0 [ e F z,i (t), e V dis,i (x(t 0 ),t 0 )] 0 Z dt 0 dkz 2 R(k z)k z e ik z[z(t) z(t 0 )] (k z,k z ; t t 0 ) (k z,k z ; t t 0 )= R dr R dr 0 e ik z(z z 0 ) (r, r 0 ; t t 0 ) (r, r 0 ; t t 0 )= i ~ (t t0 ) 0 [ˆn I (r,t), ˆn I (r 0,t 0 )] 0 the disorder-averaged speckle pattern gives R(k z )= p V 2 dis e 4 2 k 2 z

7 Density Response Function! within the Bogoliubov approximation, the density response function is determined by the collective excitations of the system (r, r 0 ; t t 0 )= i ~ (t t0 ) P i n o n i (r) n i (r0 )e i i(t t 0 ) c.c. the Bogoliubov excitations for an arbitrary anisotropic trap must be determined numerically a simpler approach is to make use of the cylindrical local density approximation, a variant of the more commonly used bulk local density approximation (k z,k z ; ) ' R dz cyl (k z, ; (z)) in this approximation, the condensate responds to a perturbation as if it were locally part of an infinitely long cylindrical condensate with density per unit length ν(z)

8 Damping of the Centre of Mass Oscillation! Y.P. Chen et al., Phys. Rev. A77, (2008) the damping of the mode increases with increasing strength of the disorder potential Z(t) =z 0 e bt cos zt theoretical estimate of damping d 2 Z dt 2 + zz 2 = F M Z l Z(T l ) Z(T l )= M z Z Tl T l dt sin z tf (t) b ' Z z 0 T ' Z z 0 T

9 Results*! b z = 2 Mv 2 0 ~ Z Rz Z dk dz R z 2 R(k) X j X j 2 (k) njn(z 2 0 k) ( j (k) n z ) n= Experimental Comparison initial displacement z µm v 0 /c disorder strength damping V 2 dis /µ2 ' (b/ z ) th ' (b/ z ) exp ' the damping exhibits a resonant peak for a velocity equal to the sound speed at the centre of the trap the results for the bulk LDA differ quantitatively from the cylindrical LDA *Z. Wu and E. Zaremba, Phys. Rev. Lett. 06, 6530 (20)

10 Other Data*! we do not find good agreement for this set of data we have no explanation for this for comparable experimental parameters, the Chen et al. experiment seems to give different results from the Dries et al. experiment our theory can only account for the damping at early times immediately after excitation since the cloud heats up significantly during the course of the evolution *D. Dries et al., Phys. Rev. A82, (200)

11 Shaking Potentials*! we consider a harmonically-trapped system in the presence of a time-dependent external potential Ĥ 0 = Ĥ(t) =Ĥ0 + NX i= NX V ext (ˆr i! i= ˆp 2 i 2m + V trap(ˆr i ) for small displacements r 0 (t), with Ĥ 0 (t) = Ĥ(t) =Ĥ + Ĥ0 (t) Ĥ = Ĥ0 + NX V ext (ˆr i ) i= NX rv ext (ˆr i ) r 0 (t) = i= + X i<j r 0 (t)) v(ˆr i ˆr j ) the perturbation is seen to couple to the particle density Z drrv ext (r) r 0 (t)ˆn(r). *Z. Wu and E. Zaremba, Ann. Phys. 342, 24 (204)

12 Perturbative Analysis! the perturbation can be rewritten as Ĥ 0 (t) = X r 0µ (t) m NX i~ [Ĵµ, V ext (ˆr i )] = X µ i= µ r 0µ (t) hâµ + Â2µ i  µ = m i~ [Ĵµ, Ĥ],  2µ = Nm! µ 2 ˆR µ Ĵ µ = m ˆP µ = NX ˆp iµ, ˆRµ = NX m N i= the energy absorption rate is given quite generally by dẽ dt = h (t) dĥ0 (t) dt (t)i in linear response one finds dẽ dt = X iµ ṙ 0µ (t)h 0 Âiµ 0i X iµ,j ṙ 0µ (t) Z where we have defined the retarded response functions i= ˆr iµ iµ,j (t t 0 ) i ~ (t t0 )h 0 [Âiµ(t), Âj (t 0 )] 0i dt 0 iµ.j (t t 0 )r 0 (t 0 )

13 Perturbative Analysis, cont d! for a monochromatic displacement of the form r 0µ (t) = 2 (r 0µe i!t + r 0µe i!t ) the time-averaged energy absorption rate is found to be dẽ dt = m2! 3 2 X r0µr 0 µ the energy absorption rate is directly related to the optical conductivity defined as! 2 µ! 2! 2! 2 Im µ (!) where Im µ (!) is the imaginary part of the Fourier transform of the current-current response function µ (t t 0 ) i ~ (t t0 )h 0 [Ĵµ(t), Ĵ (t 0 )] 0i Re µ (!) =! Im µ (!)

14 Discussion! for a displacement of the form dẽ dt = 2 m2! 3 z 2 0 r 0 (t) =z 0 ẑ sin!t! 2 z! 2 2 Im zz(!) we have the current response includes the full effect of the external potential and the harmonic trapping potential information about the possible excitations in the system is contained in the frequency dependence of the current response function in the limit! z! 0 one recovers the result of Tokuno and Giamarchi (PRL 06, (20)). It should be noted however that their derivation is not quite right. one sees that the energy absorption rate vanishes when! =! z. This is a consequence of the extended harmonic potential theorem (Wu and Zaremba, Ann. Phys. 342, 24 (204)) and is not limited to the perturbative analysis. the low-frequency spectral density is enhanced in the presence of the trap

15 MIT Experiment on Superfluidity [PRL 85, 2228 (2000)]! a gaussian potential is rastered periodically through an elongated cylindrical condensate the induced density exhibits an asymmetry when dissipation sets in the dissipation rate is small when the rastering frequency is close to the axial trapping frequency

16 Measuring the Optical Conductivity*! we consider an oscillating trapping potential of the form with V trap (r,t) = X µ = V trap (r) 2 m!2 µ[x µ x 0µ (t)] 2 X F µ (t)x µ + X µ µ F µ (t) =m! 2 µx 0µ (t) 2 m!2 µx 2 0µ(t) the displacement of the trap leads to a time-dependent homogeneous force acting on the system and results in a perturbation that couples to the centre-of-mass coordinate H 0 (t) = X µ NF µ (t) ˆR µ this coupling can be treated perturbatively if F µ (t) is small *Z. Wu, E. Taylor and E. Zaremba, EPL 0, (205)

17 Perturbation Analysis! the centre of mass coordinate is the physical quantity of interest within linear response theory, one finds Z h ˆR µ (t)i = Fourier transforming we have the total current operator is dt 0 R µ (t t 0 )NF (t 0 ) where the centre of mass response function is R µ (t t 0 )= i ~ (t t0 )h[ ˆR µ (t), ˆR (t 0 )]i R µ (!) = Rµ (!)NF (!) Ĵ µ (t) =N d ˆR µ (t) dt and the total induced current is given by J µ (!) = µ (!)F (!) where the global conductivity is µ (!) = i!n 2 Rµ (!)

18 Observables! we now choose the force to be in a specific direction conductivity tensor is then given by ; the furthermore, if the trap displacement is harmonic at the frequency! 0, we have and (!) = i!n F (!) R (!) R (t) =A (! 0 ) cos[! 0 t (! 0 )] (! 0 )= i! 0N F (! 0 ) A (! 0 )e i (! 0 ) = thus, a measurement of the amplitude and phase of the centre of mass displacement as a function of the oscillation frequency ω 0 determines the optical conductivity the optical conductivity is also related to the total current correlations via with Jµ (!) =F apple N m µ µ (!) = i! apple i ~ ( )h[ĵµ( ), Ĵ (0)]i = F [ µ ( )] Jµ (!)

19 Application: D Bose-Hubbard Model! we consider N atoms in a D optical lattice with harmonic confinement; in the tight-binding limit, the Hamiltonian is Ĥ BH = X i iˆn i t X i and the current operator is â i âi+ +â i+âi + 2 U X i ˆn i (ˆn i ) in this model, the centre-of-mass coordinate is given by ˆR = a N Ĵ N i~ [ ˆR, ĤBH] = the optical conductivity is (!) = i! X iˆn i i ta i~ apple a 2 X j â jâj â j âj ~ 2 h ˆT i J(!)

20 Calculation of the Current Response! the imaginary part of the current response function is given by Im J(!) = X h 0 Ĵ i 2 [ (~! E 0 ) (~! + E 0 )] and the real part is obtained from a KK transform the eigenstates and eigenenergies are obtained deep in the Mottinsulator regime t/u ; here, the relevant excitations are single particle-hole excitations we consider a lattice with M sites containing N particles; the ground state is 0i = Y i2n â i 0i and the set of excited states retained are the particle-hole states phi =â pâ h 0i, h 2 N,p 2 M the B-H Hamiltonian is diagonalized using the above truncated Hilbert space

21 Numerical Results! 4 x 0 4 ˆ α 2 π Φ0 J Φ 3 E α0/u excitation energies vs. state index 0.5 E α0/u.5 current matrix elements vs. energy.5 the approximations yield an optical conductivity which accurately satisfies the exact sum rule Σ(ω) ω/u Z.5 the real and imaginary parts of the optical conductivity P. d! Re (!) = a2 ht i ~2 F. Maldague, PRB 6, 2437 (977)

22 Behaviour of the Centre of Mass! R(t) =A(!) cos[!t (!)] (!) = 4 3 i!n (!) A(!)ei F (!) A(ω) 3 φ(ω) ω/u amplitude vs. frequency ω/u phase vs. frequency.5 Σ(ω) ω/u

23 Summary! we have used the Extended Harmonic Potential Theorem to analyze the disorder-induced damping of the centre-of-mass motion of a Bose condensate we have analyzed the energy absorption rate for the case of a shaking external potential in the presence of harmonic confinement; the energy absorption rate is related to the optical conductivity and vanishes when ω = ω trap as a consequence of the extended harmonic potential theorem a complementary excitation scheme is to shake the confining harmonic potential keeping other external potentials fixed; this directly yields the optical conductivity one advantage of this latter scheme is that the optical conductivity can be determined experimentally by simply measuring the position and phase of the center of mass

Tuning the Quantum Phase Transition of Bosons in Optical Lattices

Tuning the Quantum Phase Transition of Bosons in Optical Lattices Tuning the Quantum Phase Transition of Bosons in Optical Lattices Axel Pelster 1. Introduction 2. Spinor Bose Gases 3. Periodically Modulated Interaction 4. Kagome Superlattice 1 1.1 Quantum Phase Transition

More information

On the Dirty Boson Problem

On the Dirty Boson Problem On the Dirty Boson Problem Axel Pelster 1. Experimental Realizations of Dirty Bosons 2. Theoretical Description of Dirty Bosons 3. Huang-Meng Theory (T=0) 4. Shift of Condensation Temperature 5. Hartree-Fock

More information

Roton Mode in Dipolar Bose-Einstein Condensates

Roton Mode in Dipolar Bose-Einstein Condensates Roton Mode in Dipolar Bose-Einstein Condensates Sandeep Indian Institute of Science Department of Physics, Bangalore March 14, 2013 BECs vs Dipolar Bose-Einstein Condensates Although quantum gases are

More information

Time-Dependent Density-Functional Theory

Time-Dependent Density-Functional Theory Summer School on First Principles Calculations for Condensed Matter and Nanoscience August 21 September 3, 2005 Santa Barbara, California Time-Dependent Density-Functional Theory X. Gonze, Université Catholique

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechanics Rajdeep Sensarma sensarma@theory.tifr.res.in Quantum Dynamics Lecture #2 Recap of Last Class Schrodinger and Heisenberg Picture Time Evolution operator/ Propagator : Retarded

More information

Diagrammatic Green s Functions Approach to the Bose-Hubbard Model

Diagrammatic Green s Functions Approach to the Bose-Hubbard Model Diagrammatic Green s Functions Approach to the Bose-Hubbard Model Matthias Ohliger Institut für Theoretische Physik Freie Universität Berlin 22nd of January 2008 Content OVERVIEW CONSIDERED SYSTEM BASIC

More information

Phys 622 Problems Chapter 5

Phys 622 Problems Chapter 5 1 Phys 622 Problems Chapter 5 Problem 1 The correct basis set of perturbation theory Consider the relativistic correction to the electron-nucleus interaction H LS = α L S, also known as the spin-orbit

More information

Lecture 3 Dynamics 29

Lecture 3 Dynamics 29 Lecture 3 Dynamics 29 30 LECTURE 3. DYNAMICS 3.1 Introduction Having described the states and the observables of a quantum system, we shall now introduce the rules that determine their time evolution.

More information

Quantum Physics III (8.06) Spring 2016 Assignment 3

Quantum Physics III (8.06) Spring 2016 Assignment 3 Quantum Physics III (8.6) Spring 6 Assignment 3 Readings Griffiths Chapter 9 on time-dependent perturbation theory Shankar Chapter 8 Cohen-Tannoudji, Chapter XIII. Problem Set 3. Semi-classical approximation

More information

Dynamic properties of interacting bosons and magnons

Dynamic properties of interacting bosons and magnons Ultracold Quantum Gases beyond Equilibrium Natal, Brasil, September 27 October 1, 2010 Dynamic properties of interacting bosons and magnons Peter Kopietz, Universität Frankfurt collaboration: A. Kreisel,

More information

Towards Quantum Gravity Measurement by Cold Atoms

Towards Quantum Gravity Measurement by Cold Atoms Towards Quantum Gravity Measurement by Cold Atoms SUPA, RAL, Sonangol, IMechE, IOP Quantum Gravity and Gauge Group University of Aberdeen University of Nottingham Quantum Fields, Gravity & Information

More information

Cold atoms in the presence of disorder and interactions

Cold atoms in the presence of disorder and interactions Cold atoms in the presence of disorder and interactions Collaboration: A. Minguzzi, S. Skipetrov, B. van-tiggelen (Grenoble), P. Henseler (Bonn), J. Chalker (Oxford), L. Beilin, E. Gurevich (Technion).

More information

Raman-Induced Oscillation Between an Atomic and Molecular Gas

Raman-Induced Oscillation Between an Atomic and Molecular Gas Raman-Induced Oscillation Between an Atomic and Molecular Gas Dan Heinzen Changhyun Ryu, Emek Yesilada, Xu Du, Shoupu Wan Dept. of Physics, University of Texas at Austin Support: NSF, R.A. Welch Foundation,

More information

Landau damping of transverse quadrupole oscillations of an elongated Bose-Einstein condensate

Landau damping of transverse quadrupole oscillations of an elongated Bose-Einstein condensate PHYSICAL REVIEW A 67, 053607 2003 Landau damping of transverse quadrupole oscillations of an elongated Bose-Einstein condensate M. Guilleumas 1 and L. P. Pitaevskii 2,3 1 Departament d Estructura i Constituents

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature10748 Contents 1 Quenches to U /J = 5.0 and 7.0 2 2 Quasiparticle model 3 3 Bose Hubbard parameters 6 4 Ramp of the lattice depth for the quench 7 WWW.NATURE.COM/NATURE

More information

Quantum Cluster Methods (CPT/CDMFT)

Quantum Cluster Methods (CPT/CDMFT) Quantum Cluster Methods (CPT/CDMFT) David Sénéchal Département de physique Université de Sherbrooke Sherbrooke (Québec) Canada Autumn School on Correlated Electrons Forschungszentrum Jülich, Sept. 24,

More information

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration Analysis ofbose Bose-Fermi Mixturesin in Optical Lattices Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock Project within FerMix collaboration Motivation

More information

Optical Lattices. Chapter Polarization

Optical Lattices. Chapter Polarization Chapter Optical Lattices Abstract In this chapter we give details of the atomic physics that underlies the Bose- Hubbard model used to describe ultracold atoms in optical lattices. We show how the AC-Stark

More information

Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length

Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length I. Vidanović, A. Balaž, H. Al-Jibbouri 2, A. Pelster 3 Scientific Computing Laboratory, Institute of Physics Belgrade, Serbia 2

More information

Electromagnetically Induced Flows in Water

Electromagnetically Induced Flows in Water Electromagnetically Induced Flows in Water Michiel de Reus 8 maart 213 () Electromagnetically Induced Flows 1 / 56 Outline 1 Introduction 2 Maxwell equations Complex Maxwell equations 3 Gaussian sources

More information

in BECs Fabian Grusdt Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Germany

in BECs Fabian Grusdt Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Germany 1 Polaron Seminar, AG Widera AG Fleischhauer, 05/06/14 Introduction to polaron physics in BECs Fabian Grusdt Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Germany Graduate

More information

Inauguration Meeting & Celebration of Lev Pitaevskii s 70 th Birthday. Bogoliubov excitations. with and without an optical lattice.

Inauguration Meeting & Celebration of Lev Pitaevskii s 70 th Birthday. Bogoliubov excitations. with and without an optical lattice. Inauguration Meeting & Celebration of Lev Pitaevskii s 7 th Birthday Bogoliubov excitations with and without an optical lattice Chiara Menotti OUTLINE OF THE TALK Bogoliubov theory: uniform system harmonic

More information

Lecture contents. A few concepts from Quantum Mechanics. Tight-binding model Solid state physics review

Lecture contents. A few concepts from Quantum Mechanics. Tight-binding model Solid state physics review Lecture contents A few concepts from Quantum Mechanics Particle in a well Two wells: QM perturbation theory Many wells (atoms) BAND formation Tight-binding model Solid state physics review Approximations

More information

Physics 506 Winter 2004

Physics 506 Winter 2004 Physics 506 Winter 004 G. Raithel January 6, 004 Disclaimer: The purpose of these notes is to provide you with a general list of topics that were covered in class. The notes are not a substitute for reading

More information

Bogoliubov theory of disordered Bose-Einstein condensates

Bogoliubov theory of disordered Bose-Einstein condensates Bogoliubov theory of disordered Bose-Einstein condensates Christopher Gaul Universidad Complutense de Madrid BENASQUE 2012 DISORDER Bogoliubov theory of disordered Bose-Einstein condensates Abstract The

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon Enrico Fermi School Quantum Matter at Ultralow Temperatures Varenna, July 8, 2014 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner, C.S. Lithium

More information

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas / 6 Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas Giovanni Italo Martone with G. V. Shlyapnikov Worhshop on Exploring Nuclear Physics with Ultracold Atoms

More information

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany)

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany) Phase Diagram of interacting Bose gases in one-dimensional disordered optical lattices R. Citro In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L.

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon INT workshop Frontiers in quantum simulation with cold atoms University of Washington, April 2, 2015 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner,

More information

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs RHI seminar Pascal Büscher i ( t Φ (r, t) = 2 2 ) 2m + V ext(r) + g Φ (r, t) 2 Φ (r, t) 27 Nov 2008 RHI seminar Pascal Büscher 1 (Stamper-Kurn

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. There are 10 problems, totalling 180 points. Do all problems. Answer all problems in the white books provided.

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University September 18, 2014 2 Chapter 5 Atoms in optical lattices Optical lattices

More information

Quantum Electrodynamical TDDFT: From basic theorems to approximate functionals

Quantum Electrodynamical TDDFT: From basic theorems to approximate functionals Quantum Electrodynamical TDDFT: From basic theorems to approximate functionals Ilya Tokatly NanoBio Spectroscopy Group - UPV/EHU San Sebastiàn - Spain IKERBASQUE, Basque Foundation for Science - Bilbao

More information

We can then linearize the Heisenberg equation for in the small quantity obtaining a set of linear coupled equations for and :

We can then linearize the Heisenberg equation for in the small quantity obtaining a set of linear coupled equations for and : Wednesday, April 23, 2014 9:37 PM Excitations in a Bose condensate So far: basic understanding of the ground state wavefunction for a Bose-Einstein condensate; We need to know: elementary excitations in

More information

Nonadiabatic dynamics and coherent control of nonequilibrium superconductors

Nonadiabatic dynamics and coherent control of nonequilibrium superconductors Nonadiabatic dynamics and coherent control of nonequilibrium superconductors Andreas Schnyder Workshop on strongly correlated electron systems Schloss Ringberg, November 13 k F 1 t (ps 3 4 in collaboration

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University January 25, 2011 2 Chapter 12 Collective modes in interacting Fermi

More information

Floquet Topological Insulator:

Floquet Topological Insulator: Floquet Topological Insulator: Understanding Floquet topological insulator in semiconductor quantum wells by Lindner et al. Condensed Matter Journal Club Caltech February 12 2014 Motivation Motivation

More information

Optomechanically induced transparency of x-rays via optical control: Supplementary Information

Optomechanically induced transparency of x-rays via optical control: Supplementary Information Optomechanically induced transparency of x-rays via optical control: Supplementary Information Wen-Te Liao 1, and Adriana Pálffy 1 1 Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg,

More information

Interplay of micromotion and interactions

Interplay of micromotion and interactions Interplay of micromotion and interactions in fractional Floquet Chern insulators Egidijus Anisimovas and André Eckardt Vilnius University and Max-Planck Institut Dresden Quantum Technologies VI Warsaw

More information

The nature of superfluidity in the cold atomic unitary Fermi gas

The nature of superfluidity in the cold atomic unitary Fermi gas The nature of superfluidity in the cold atomic unitary Fermi gas Introduction Yoram Alhassid (Yale University) Finite-temperature auxiliary-field Monte Carlo (AFMC) method The trapped unitary Fermi gas

More information

Time Evolving Block Decimation Algorithm

Time Evolving Block Decimation Algorithm Time Evolving Block Decimation Algorithm Application to bosons on a lattice Jakub Zakrzewski Marian Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Center, Jagiellonian University,

More information

5. Gross-Pitaevskii theory

5. Gross-Pitaevskii theory 5. Gross-Pitaevskii theory Outline N noninteracting bosons N interacting bosons, many-body Hamiltonien Mean-field approximation, order parameter Gross-Pitaevskii equation Collapse for attractive interaction

More information

Coupled-Cluster Theory. Nuclear Structure

Coupled-Cluster Theory. Nuclear Structure Coupled-Cluster Theory! for Nuclear Structure!!!! Sven Binder INSTITUT FÜR KERNPHYSIK! 1 Nuclear Interactions from Chiral EFT NN 3N 4N NLO LO N 2 LO +... N 3 LO +... +... +... 2 Nuclear Interactions from

More information

Likewise, any operator, including the most generic Hamiltonian, can be written in this basis as H11 H

Likewise, any operator, including the most generic Hamiltonian, can be written in this basis as H11 H Finite Dimensional systems/ilbert space Finite dimensional systems form an important sub-class of degrees of freedom in the physical world To begin with, they describe angular momenta with fixed modulus

More information

Bose-Einstein condensates in optical lattices

Bose-Einstein condensates in optical lattices Bose-Einstein condensates in optical lattices Creating number squeezed states of atoms Matthew Davis University of Queensland p.1 Overview What is a BEC? What is an optical lattice? What happens to a BEC

More information

Lecture 4. Diffusing photons and superradiance in cold gases

Lecture 4. Diffusing photons and superradiance in cold gases Lecture 4 Diffusing photons and superradiance in cold gases Model of disorder-elastic mean free path and group velocity. Dicke states- Super- and sub-radiance. Scattering properties of Dicke states. Multiple

More information

The phonon dispersion relation of a Bose-Einstein condensate

The phonon dispersion relation of a Bose-Einstein condensate The phonon dispersion relation of a Bose-Einstein condensate I. Shammass, 1 S. Rinott, 2 A. Berkovitz, 2 R. Schley, 2 and J. Steinhauer 2 1 Department of Condensed Matter Physics, Weizmann Institute of

More information

Separation of relaxation time scales in a quantum Newton s cradle

Separation of relaxation time scales in a quantum Newton s cradle Separation of relaxation time scales in a quantum Newton s cradle Rianne van den Berg Universiteit van Amsterdam CRM: Beyond integrability Research team UvA Bram Wouters PhD student BNL Robert Konik PI

More information

with ultracold atoms in optical lattices

with ultracold atoms in optical lattices Attempts of coherent of coherent control contro with ultracold atoms in optical lattices Martin Holthaus Institut für Physik Carl von Ossietzky Universität Oldenburg http://www.physik.uni-oldenburg.de/condmat

More information

Bose-Hubbard Model (BHM) at Finite Temperature

Bose-Hubbard Model (BHM) at Finite Temperature Bose-Hubbard Model (BHM) at Finite Temperature - a Layman s (Sebastian Schmidt) proposal - pick up Diploma work at FU-Berlin with PD Dr. Axel Pelster (Uni Duisburg-Essen) ~ Diagrammatic techniques, high-order,

More information

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014 Cavity Optomechanics with synthetic Landau Levels of ultra cold atoms: Sankalpa Ghosh, Physics Department, IIT Delhi Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, 043603 (2013)! HRI, Allahabad,Cold

More information

BEC in one dimension

BEC in one dimension BEC in one dimension Tilmann John 11. Juni 2013 Outline 1 one-dimensional BEC 2 theoretical description Tonks-Girardeau gas Interaction exact solution (Lieb and Liniger) 3 experimental realization 4 conclusion

More information

4 Evolution of density perturbations

4 Evolution of density perturbations Spring term 2014: Dark Matter lecture 3/9 Torsten Bringmann (torsten.bringmann@fys.uio.no) reading: Weinberg, chapters 5-8 4 Evolution of density perturbations 4.1 Statistical description The cosmological

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Quantum dynamics in ultracold atoms

Quantum dynamics in ultracold atoms Rather don t use Power-Points title Page Use my ypage one instead Quantum dynamics in ultracold atoms Corinna Kollath (Ecole Polytechnique Paris, France) T. Giamarchi (University of Geneva) A. Läuchli

More information

Lattice modulation experiments with fermions in optical lattices and more

Lattice modulation experiments with fermions in optical lattices and more Lattice modulation experiments with fermions in optical lattices and more Nonequilibrium dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University Rajdeep Sensarma Harvard

More information

Holographic Lattices

Holographic Lattices Holographic Lattices Jerome Gauntlett with Aristomenis Donos Christiana Pantelidou Holographic Lattices CFT with a deformation by an operator that breaks translation invariance Why? Translation invariance

More information

C. Show your answer in part B agrees with your answer in part A in the limit that the constant c 0.

C. Show your answer in part B agrees with your answer in part A in the limit that the constant c 0. Problem #1 A. A projectile of mass m is shot vertically in the gravitational field. Its initial velocity is v o. Assuming there is no air resistance, how high does m go? B. Now assume the projectile is

More information

Shock waves in the unitary Fermi gas

Shock waves in the unitary Fermi gas Shock waves in the unitary Fermi gas Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova Banff, May 205 Collaboration with: Francesco Ancilotto and Flavio Toigo Summary.

More information

1 Equal-time and Time-ordered Green Functions

1 Equal-time and Time-ordered Green Functions 1 Equal-time and Time-ordered Green Functions Predictions for observables in quantum field theories are made by computing expectation values of products of field operators, which are called Green functions

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mit.edu 5.74 Introductory Quantum Mechanics II Spring 009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Andrei Tokmakoff,

More information

Lecture 4: Basic elements of band theory

Lecture 4: Basic elements of band theory Phys 769 Selected Topics in Condensed Matter Physics Summer 010 Lecture 4: Basic elements of band theory Lecturer: Anthony J. Leggett TA: Bill Coish 1 Introduction Most matter, in particular most insulating

More information

MD simulation: output

MD simulation: output Properties MD simulation: output Trajectory of atoms positions: e. g. diffusion, mass transport velocities: e. g. v-v autocorrelation spectrum Energies temperature displacement fluctuations Mean square

More information

(Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System

(Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System (Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System Daisuke Satow (RIKEN/BNL) Collaborators: Jean-Paul Blaizot (Saclay CEA, France) Yoshimasa Hidaka (RIKEN, Japan) Supersymmetry

More information

Condensate fraction for a polarized three-dimensional Fermi gas

Condensate fraction for a polarized three-dimensional Fermi gas Condensate fraction for a polarized three-dimensional Fermi gas Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova, Italy Camerino, June 26, 2014 Collaboration with:

More information

does not change the dynamics of the system, i.e. that it leaves the Schrödinger equation invariant,

does not change the dynamics of the system, i.e. that it leaves the Schrödinger equation invariant, FYST5 Quantum Mechanics II 9..212 1. intermediate eam (1. välikoe): 4 problems, 4 hours 1. As you remember, the Hamilton operator for a charged particle interacting with an electromagentic field can be

More information

A response of a system of strongly interacting particles to an. inhomogeneous external field. Abstract

A response of a system of strongly interacting particles to an. inhomogeneous external field. Abstract A response of a system of strongly interacting particles to an inhomogeneous external field S.A.Mikhailov Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, 01187 Dresden, Germany (July

More information

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs i ( ) t Φ (r, t) = 2 2 2m + V ext(r) + g Φ (r, t) 2 Φ (r, t) (Mewes et al., 1996) 26/11/2009 Stefano Carignano 1 Contents 1 Introduction

More information

Bardeen Bardeen, Cooper Cooper and Schrieffer and Schrieffer 1957

Bardeen Bardeen, Cooper Cooper and Schrieffer and Schrieffer 1957 Unexpected aspects of large amplitude nuclear collective motion Aurel Bulgac University of Washington Collaborators: Sukjin YOON (UW) Kenneth J. ROCHE (ORNL) Yongle YU (now at Wuhan Institute of Physics

More information

Lecture 4: Superfluidity

Lecture 4: Superfluidity Lecture 4: Superfluidity Kicking Bogoliubov quasiparticles FIG. 1. The Bragg and condensate clouds. (a) Average of two absorption images after 38 msec time of flight, following a resonant Bragg pulse with

More information

Ground-state properties, excitations, and response of the 2D Fermi gas

Ground-state properties, excitations, and response of the 2D Fermi gas Ground-state properties, excitations, and response of the 2D Fermi gas Introduction: 2D FG and a condensed matter perspective Auxiliary-field quantum Monte Carlo calculations - exact* here Results on spin-balanced

More information

Density-matrix theory for time-resolved dynamics of superconductors in non-equilibrium

Density-matrix theory for time-resolved dynamics of superconductors in non-equilibrium Max Planck Institute for Solid State Research Density-matrix theory for time-resolved dynamics of superconductors in non-equilibrium co-workers and papers: (1) (2) (3) (4) Dirk Manske A. Knorr (TU Berlin),

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mit.edu 5.74 Introductory Quantum Mechanics II Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. p. 10-0 10..

More information

Pure and zero-point vibrational corrections to molecular properties

Pure and zero-point vibrational corrections to molecular properties Pure and zero-point vibrational corrections to molecular properties Kenneth Ruud UiT The Arctic University of Norway I UNIVERSITETET TROMSØ June 30 2015 Outline Why consider vibrational effects? General

More information

Spectral Broadening Mechanisms

Spectral Broadening Mechanisms Spectral Broadening Mechanisms Lorentzian broadening (Homogeneous) Gaussian broadening (Inhomogeneous, Inertial) Doppler broadening (special case for gas phase) The Fourier Transform NC State University

More information

Representation of the quantum and classical states of light carrying orbital angular momentum

Representation of the quantum and classical states of light carrying orbital angular momentum Representation of the quantum and classical states of light carrying orbital angular momentum Humairah Bassa and Thomas Konrad Quantum Research Group, University of KwaZulu-Natal, Durban 4001, South Africa

More information

Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates

Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates Kuei Sun May 4, 2006 kueisun2@uiuc.edu Department of Physics, University of Illinois at Urbana- Champaign, 1110 W.

More information

( ) /, so that we can ignore all

( ) /, so that we can ignore all Physics 531: Atomic Physics Problem Set #5 Due Wednesday, November 2, 2011 Problem 1: The ac-stark effect Suppose an atom is perturbed by a monochromatic electric field oscillating at frequency ω L E(t)

More information

Approximation Methods in QM

Approximation Methods in QM Chapter 3 Approximation Methods in QM Contents 3.1 Time independent PT (nondegenerate)............... 5 3. Degenerate perturbation theory (PT)................. 59 3.3 Time dependent PT and Fermi s golden

More information

Quasiclassical analysis of Bloch oscillations in non-hermitian tightbinding

Quasiclassical analysis of Bloch oscillations in non-hermitian tightbinding Quasiclassical analysis of Bloch oscillations in non-hermitian tightbinding lattices Eva-Maria Graefe Department of Mathematics, Imperial College London, UK joint work with Hans Jürgen Korsch, and Alexander

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechanics Rajdeep Sensarma sensarma@theory.tifr.res.in Quantum Dynamics Lecture #3 Recap of Last lass Time Dependent Perturbation Theory Linear Response Function and Spectral Decomposition

More information

Introduction to Classical and Quantum FEL Theory R. Bonifacio University of Milano and INFN LNF

Introduction to Classical and Quantum FEL Theory R. Bonifacio University of Milano and INFN LNF Introduction to Classical and Quantum FEL Theory R. Bonifacio University of Milano and INFN LNF Natal 2016 1 1 OUTLINE Classical SASE and spiking Semi-classical FEL theory: quantum purification Fully quantum

More information

Polariton Condensation

Polariton Condensation Polariton Condensation Marzena Szymanska University of Warwick Windsor 2010 Collaborators Theory J. Keeling P. B. Littlewood F. M. Marchetti Funding from Macroscopic Quantum Coherence Macroscopic Quantum

More information

Modulated superradiance and synchronized chaos in clouds of atoms in a bad cavity

Modulated superradiance and synchronized chaos in clouds of atoms in a bad cavity Modulated superradiance and synchronized chaos in clouds of atoms in a bad cavity Emil Yuzbashyan Collaborators: Aniket Patra (Rutgers) and Boris Altshuler (Columbia) International orkshop Dissipative

More information

Filippo Tramonto. Miniworkshop talk: Quantum Monte Carlo simula9ons of low temperature many- body systems

Filippo Tramonto. Miniworkshop talk: Quantum Monte Carlo simula9ons of low temperature many- body systems Miniworkshop talk: Quantum Monte Carlo simulations of low temperature many-body systems Physics, Astrophysics and Applied Physics Phd school Supervisor: Dott. Davide E. Galli Outline Interests in quantum

More information

4. Complex Oscillations

4. Complex Oscillations 4. Complex Oscillations The most common use of complex numbers in physics is for analyzing oscillations and waves. We will illustrate this with a simple but crucially important model, the damped harmonic

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

LINEAR RESPONSE THEORY

LINEAR RESPONSE THEORY MIT Department of Chemistry 5.74, Spring 5: Introductory Quantum Mechanics II Instructor: Professor Andrei Tokmakoff p. 8 LINEAR RESPONSE THEORY We have statistically described the time-dependent behavior

More information

Holographic Lattices

Holographic Lattices Holographic Lattices Jerome Gauntlett with Aristomenis Donos Christiana Pantelidou Holographic Lattices CFT with a deformation by an operator that breaks translation invariance Why? Translation invariance

More information

Optimal Controlled Phasegates for Trapped Neutral Atoms at the Quantum Speed Limit

Optimal Controlled Phasegates for Trapped Neutral Atoms at the Quantum Speed Limit with Ultracold Trapped Atoms at the Quantum Speed Limit Michael Goerz May 31, 2011 with Ultracold Trapped Atoms Prologue: with Ultracold Trapped Atoms Classical Computing: 4-Bit Full Adder Inside the CPU:

More information

Complex Numbers. The set of complex numbers can be defined as the set of pairs of real numbers, {(x, y)}, with two operations: (i) addition,

Complex Numbers. The set of complex numbers can be defined as the set of pairs of real numbers, {(x, y)}, with two operations: (i) addition, Complex Numbers Complex Algebra The set of complex numbers can be defined as the set of pairs of real numbers, {(x, y)}, with two operations: (i) addition, and (ii) complex multiplication, (x 1, y 1 )

More information

Lecture 6 Quantum Mechanical Systems and Measurements

Lecture 6 Quantum Mechanical Systems and Measurements Lecture 6 Quantum Mechanical Systems and Measurements Today s Program: 1. Simple Harmonic Oscillator (SHO). Principle of spectral decomposition. 3. Predicting the results of measurements, fourth postulate

More information

Lecture 2. Contents. 1 Fermi s Method 2. 2 Lattice Oscillators 3. 3 The Sine-Gordon Equation 8. Wednesday, August 28

Lecture 2. Contents. 1 Fermi s Method 2. 2 Lattice Oscillators 3. 3 The Sine-Gordon Equation 8. Wednesday, August 28 Lecture 2 Wednesday, August 28 Contents 1 Fermi s Method 2 2 Lattice Oscillators 3 3 The Sine-Gordon Equation 8 1 1 Fermi s Method Feynman s Quantum Electrodynamics refers on the first page of the first

More information

4.3 Lecture 18: Quantum Mechanics

4.3 Lecture 18: Quantum Mechanics CHAPTER 4. QUANTUM SYSTEMS 73 4.3 Lecture 18: Quantum Mechanics 4.3.1 Basics Now that we have mathematical tools of linear algebra we are ready to develop a framework of quantum mechanics. The framework

More information

Fiber Optics. Equivalently θ < θ max = cos 1 (n 0 /n 1 ). This is geometrical optics. Needs λ a. Two kinds of fibers:

Fiber Optics. Equivalently θ < θ max = cos 1 (n 0 /n 1 ). This is geometrical optics. Needs λ a. Two kinds of fibers: Waves can be guided not only by conductors, but by dielectrics. Fiber optics cable of silica has nr varying with radius. Simplest: core radius a with n = n 1, surrounded radius b with n = n 0 < n 1. Total

More information

Stochastic nonlinear Schrödinger equations and modulation of solitary waves

Stochastic nonlinear Schrödinger equations and modulation of solitary waves Stochastic nonlinear Schrödinger equations and modulation of solitary waves A. de Bouard CMAP, Ecole Polytechnique, France joint work with R. Fukuizumi (Sendai, Japan) Deterministic and stochastic front

More information

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES College de France, May 14, 2013 SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INFM PLAN OF THE LECTURES Lecture 1. Superfluidity in ultra cold atomic gases: examples

More information

Microscopic-macroscopic connection

Microscopic-macroscopic connection icroscopic-macroscopic connection Valérie Véniard ETSF France Laboratoire des Solides Irradiés Ecole Polytechniue CEA-DS CNRS 91128 Palaiseau France Outline 1. Introduction: which uantities do we need

More information