Nonlinear driving and Entanglement of a quantum bit with a quantum readout


 George Newman
 1 years ago
 Views:
Transcription
1 Nonlinear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology
2 Quantum Transport group Prof. J.E. Mooij Kees Harmans Fluxqubit team visitors Yasunobu Nakamura (NEC Japan, ) Kouichi Semba (NTT Japan, ) PhD students Alexander ter Haar Adrian Lupascu Jelle Plantenberg postdocs Patrice Bertet Irinel Chiorescu students technical staff collaborations NTT, NEC, MIT, TU Delft (theory), U Munich acknowledgements FOM (NL), IST (EU), ARO (US)
3 Outline basics about the fluxqubit qubit initialization, operation & readout Rabi oscillations, Ramsey fringes present status  extreme stability during qubit operation  strong microwave driving multiphoton induced coherent oscillations experimental demonstration of entanglement quantum bit quantum readout (squid) conclusions
4 3 Josephsonjunctions Quantum Bit J.E. Mooij et al, Science, 285, 1036 (1999) superconducting loop, with 3 Josephson junctions 2 are identical and the 3rd is smaller (α= ) Josephson Potential: U=ΣE J I u = U/E J u = 2 + α  cosγ 1  cosγ 2  αcos(γ 2  γ 1 + 2πf) φ 1 = (γ 1  γ 2 )/2, φ 2 = (γ 1 + γ 2 )/2 u = 2(1  cosφ 1 cosφ 2 ) + 2αsin 2 (φ 1  πf)
5 Josephson potential  phase space 2 wells separated by a barrier for f=0.5, symmetric barrier α=0.8, f=0.5 T in T out T out
6 Flux Qubit two level system C. van der Wal et al, Science, 290, 773 (2000) Exact diagonalisation: two levels at the bottom of the spectra Two wells separated by a barrier Persistent currents of opposite direction and SQUID critical current qubit persistent current Microwave induced excitation level structure see also, J. Friedman et al, Nature, 6, 43 (2000)
7 Coherent oscillations Magnetic resonance with a single, macroscopic quasispin Bloch sphere Ψ>=α >+β > Rabi oscillations microwave excitation with frequency ω and amplitude A coherent rotations with Ω Rabi A A MW pulse ω = E Ω Rabi A e> g>
8 Qubit operated at the magic point Hamiltonian and eigenstates H = ε/2 σz /2 σx tan2θ = / ε 0 = cosθ + sinθ 1 = sinθ + cosθ Initialization, ε = 0 Q = 0 = ( + )/ 2 Operation, ε = 0 Q = α 0 + β 1 Q 0 MW pulse ON (rotating frame) <σx> = α 2  β 2 1 Q MW pulse OFF (lab frame) 1 0 shift Readout, ε > 0 Q = α 0 + β 1
9 Switching event measurements Device qubit merged with the SQUID strong coupling L I pulse ~ns rise/fall time t Readout bias current to switch the SQUID ramping generates the shift (preserving the qubit information) switching current depends on qubit state (spin up or down) pulse height: I sw0 < I b < I sw1 shift
10 Single shot resolution (in an ideal sample) switching probability (%) ground state excited state pulse AW generator (V)
11 Sample E J /E C = E C = 7.36 GHz α = 0.8 = 3.4 GHz I p = 3 na large junctions I c = 2 µa strong coupling L=10 ph shunt capacitance C = 10 pf bias line R b = 150 Ω voltage line R v = 1 kω
12 Cavity, wiring
13 Qubit spectroscopy Energy (GHz) total flux (Φ 0 ) (I sw  I bg ) / I ctr (%) F (GHz) GHz 16 GHz π = 3.4 GHz Φ ext / Φ 0
14 Rabi: pulse scheme RF line: one microwave pulse with varying length bias line: Ib pulse trigger MW pulse operation Ib pulse readout time voltage line: detection of the switching pulse
15 Rabi coherent oscillations decay time 150 ns switching probability (%) A = 0 dbm A = 6 dbm Rabi frequency (GHz) F Larmor = 6.6 GHz pulse length (ns) A = 12 dbm MW amplitude 10^(A/20) (a.u.) I. Chiorescu, Y. Nakamura, C.J.P.M. Harmans, J.E. Mooij, Science, 299, 1869 (2003)
16 Fast oscillations Switching probability (%) Psw (%) Psw (%) RF pulse length (ns) RF pulse length (ns) RF pulse length (ns)
17 Ramsey interference Ramsey: two π/2 pulses with varying time in between trigger π/2 free run π/2 Ib pulse time operation readout
18 Ramsey fringes 0 MHz F L = 5.61 GHz detuning P SW (%) time between two π/2 pulses (ns) 310 MHz
19 Ramsey interference Ramsey: decoherence time τ φ 20 ns 80 P SW (%) π/2 π/ distance between two p/2 pulses (ns) F L = 5.7 GHz, df= 220 MHz, TRamsey: 4.5 ns
20 Relaxation measurements one π pulse and readout pulse delayed trigger π delay time Ib pulse time operation readout 100 switching probability (%) delay time (µs) 8.3 ns, A=12dBm 6 ns, A=9dBm 4.5 ns, A=6dBm 3.2 ns, A=3dBm ns, A=0 dbm exp fit of A=12dBm τ φ = 870 ns
21 quasiparticle traps strong coupling with the MW line heat sinks on the current and voltage lines current injection: high frequency noise ground via the shunt capacitance Sample (2003) qp traps V heat sink I b
22 Spectroscopy Larmor frequency (GHz) Resonant frequencies (GHz) = GHz I q = 272 na spectroscopy peaks fit: E J /E C =.834 E C =7.281 GHz α= F/F 0 12 Q + ω DF/F 0 Q Q  ω (Q + ω)/2 Q/2 ω switching probability (%) level repulsion GHz persistent current 272 na spectroscopy peaks: Q qubit ω plasma frequency 2.91GHz Q+/ω sidebands 2, 3photon peaks Q/3 3 (Q+3) /2 Q/2 Q frequency (GHz) Q Q+3
23 Rabi oscillations at the magic point low coherence time, but extreme stability of the qubit energy levels switching probability (%) distance between pulses Rabi oscillations: F mw = Rabi oscillations: F mw = + F Rabi 20 Hadamard gate Ramsey with π pulses (Hadamard) pulse length (ns)
24 Ramsey fringes at the magic point coherence time ~1520 ns (mostly limited by the relaxation time) 6.1 P sw (%) Frequency (GHz) = GHz distance between two p/2 pulses (ns)
25 Coherence time at the magic point coherence time ~20 ns (mostly limited by the relaxation time) τ φ and τ r (ns) Larmor frequency (GHz) ΦΦ 0 /2 (mφ 0 ) when optimizing the readout τ φ ~120 ns switching probability (%) Ib=2.841µA Ib=2.976µA Ib=2.565µA delay between two p/2 pulses (microseconds)
26 Multiphoton processes ONEPHOTON F mw =7.16GHz TWOPHOTON F mw =3.62 GHz Switching probability (%) A = 14 dbm A = 18 dbm A = 15 dbm A = 17 dbm A = 22 dbm pulse length (ns) A = 19 dbm
27 Multiphoton processes Onephoton Rabi frequency (GHz) onephoton Rabi frequency J 1 (b10 A/20 ) with b=0.92, =5.344 GHz A/20 (a.u.) power calibration (check the b fit parameter) Twophoton Rabi frequency (GHz) Rabi frequency: n = J n (ε mw /F L ) can be renormalized ~ by noise ( < ) twophoton Rabi frequency J 2 (b10 A/20 ) with =5.344 GHz, b= A/20 (a.u.)
28 Coherent rotations in the nonlinear regime several peaks in the Fourier transform of the oscillations Rabi frequencies higher than the Larmor frequency 7 6 Rabi frequency (FFT) (GHz) =5.03 GHz b=1.41 J 1 (b10 A/20 ) ^(A/20)
29 Peaks in FFT of the Rabi oscillations (GHz) Numerical simulations H/h=ω 0 σ z /2+ω x σ x /2+(ω 1 σ x cosωt)/2 ~12.25 GHz 6 ω w 1 (GHz) ω x =0.1 GHz 2ω 0
30 Qubit entangled with a quantum readout QUBIT, twolevel system hf L SQUID, harmonic oscillator 0>, 1> 0>, 1>,..., N> MI q I circ... hω p microwave field 11> 10> 12>... F L 00> ω p 01> 02>
31 Coherent oscillations of the coupled system qubit Larmor frequency 7.16 GHz plasma frequency : 2.91 GHz coupled system at GHz 10> blueside band 00> 11> 01> switching probability (%) Rabi oscillations F=10.15 GHz, A=5dBm 26 qubit: F 24 L =7.16 GHz squid: ω pl =2.91 GHz pulse length (ns) switching probability (%) Rabi oscillations F=10.15 GHz, A=3dBm qubit: F L =7.16 GHz squid: ω pl =2.91 GHz pulse length (ns)
32 Blueside band qubit Larmor frequency 6.43 GHz, plasma frequency : 2.91 GHz coupled system at 9.38 GHz Rabi oscillations at F L =6.43 GHz switching probability (%) coherent oscillations 01> 11> coherent oscillations 00> 10> pulse length (ns) 10> 11> 00> 01> π pulse
33 switching probability (%) qubit Larmor frequency 6.43 GHz plasma frequency : 2.91 GHz coupled system at 9.38 GHz p pulse Rabi oscillations at F L =6.43 GHz Redside band switching probability (%) redside band: coherent oscillations 01> <10 switching probability (%) pulse length (ns) redside band 3.52 GHz F L = 6.43 GHz blueside band 9.38 GHz +10 db MW frequency (GHz) after π after 2π pulse length (ns) 11> 10> π 2π 00> 01>
34 Conclusion entanglement of the qubit with its quantum readout multiphoton induced coherent oscillations very strong (nonlinear) qubit driving, F Rabi >F L qubit operated at the magic point extreme stability of the qubit operation τ rel 1 µs, τ Rabi 150 ns Ramsey interference: decoherence time 20 ns
SUPERCONDUCTING QUANTUM BITS
I0> SUPERCONDUCTING QUANTUM BITS I1> Hans Mooij Summer School on Condensed Matter Theory Windsor, August 18, 2004 quantum computer U quantum bits states l0>, l1> Ψ = αl0> + βl1> input  unitary transformations
More informationSuperconducting quantum bits. Péter Makk
Superconducting quantum bits Péter Makk Qubits Qubit = quantum mechanical two level system DiVincenzo criteria for quantum computation: 1. Register of 2level systems (qubits), n = 2 N states: eg. 101..01>
More informationSynthesizing arbitrary photon states in a superconducting resonator
Synthesizing arbitrary photon states in a superconducting resonator Max Hofheinz, Haohua Wang, Markus Ansmann, R. Bialczak, E. Lucero, M. Neeley, A. O Connell, D. Sank, M. Weides, J. Wenner, J.M. Martinis,
More informationSupercondcting Qubits
Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to
More informationQuantum nondemolition measurement of a superconducting twolevel system
1 Quantum nondemolition measurement of a superconducting twolevel system A. Lupaşcu 1*, S. Saito 1,2, T. Picot 1, P. C. de Groot 1, C. J. P. M. Harmans 1 & J. E. Mooij 1 1 Quantum Transport Group, Kavli
More informationEntanglement Control of Superconducting Qubit Single Photon System
: Quantum omputing Entanglement ontrol of Superconducting Qubit Single Photon System Kouichi Semba Abstract If we could achieve full control of the entangled states of a quantum bit (qubit) interacting
More informationSuperconducting qubits (Phase qubit) Quantum informatics (FKA 172)
Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Thilo Bauch (bauch@chalmers.se) Quantum Device Physics Laboratory, MC2, Chalmers University of Technology Qubit proposals for implementing
More informationLecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008).
Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Newcomer in the quantum computation area ( 2000, following experimental demonstration of coherence in charge + flux qubits).
More informationSuperconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus
Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Leon Stolpmann, Micro and Nanosystems Efe Büyüközer, Micro and Nanosystems Outline 1. 2. 3. 4. 5. Introduction Physical system
More informationSuperconducting Qubits. Nathan Kurz PHYS January 2007
Superconducting Qubits Nathan Kurz PHYS 576 19 January 2007 Outline How do we get macroscopic quantum behavior out of a manyelectron system? The basic building block the Josephson junction, how do we
More informationStrong tunable coupling between a charge and a phase qubit
Strong tunable coupling between a charge and a phase qubit Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Bernard Pannetier Aurélien Fay Ioan Pop Florent Lecocq Rapaël Léone Nicolas Didier
More informationSuperconducting Flux Qubits: The state of the field
Superconducting Flux Qubits: The state of the field S. Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK Outline A brief introduction to the Superconducting
More informationM.C. Escher. Angels and devils (detail), 1941
M.C. Escher Angels and devils (detail), 1941 1 Coherent Quantum Phase Slip: Exact quantum dual to Josephson Tunneling (Coulomb blockade is a partial dual) Degree of freedom in superconductor: Phase and
More informationDispersive Readout, Rabi and RamseyMeasurements for Superconducting Qubits
Dispersive Readout, Rabi and RamseyMeasurements for Superconducting Qubits QIP II (FS 2018) Student presentation by Can Knaut Can Knaut 12.03.2018 1 Agenda I. Cavity Quantum Electrodynamics and the Jaynes
More informationFinal Report. Superconducting Qubits for Quantum Computation Contract MDA CA821/0000
Final Report Superconducting Qubits for Quantum Computation Contract MDA90498CA821/0000 Project Director: Prof. J. Lukens Coproject Director: Prof. D. Averin Coproject Director: Prof. K. Likharev
More informationSuperconducting Qubits
Superconducting Qubits Fabio Chiarello Institute for Photonics and Nanotechnologies IFN CNR Rome Lego bricks The Josephson s Lego bricks box Josephson junction Phase difference Josephson equations Insulating
More informationHybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble
Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble, Cécile GREZES, Andreas DEWES, Denis VION, Daniel ESTEVE, & Patrice BERTET Quantronics Group, SPEC, CEA Saclay Collaborating
More informationCircuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014
Circuit Quantum Electrodynamics Mark David Jenkins Martes cúantico, February 25th, 2014 Introduction Theory details Strong coupling experiment Cavity quantum electrodynamics for superconducting electrical
More informationQuantum Optics and Quantum Informatics FKA173
Quantum Optics and Quantum Informatics FKA173 Date and time: Tuesday, 7 October 015, 08:301:30. Examiners: Jonas Bylander (07053 44 39) and Thilo Bauch (073366 13 79). Visits around 09:30 and 11:30.
More information10.5 Circuit quantum electrodynamics
ASChap. 101 10.5 Circuit quantum electrodynamics ASChap. 102 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,
More informationTopologicaly protected abelian Josephson qubits: theory and experiment.
Topologicaly protected abelian Josephson qubits: theory and experiment. B. Doucot (Jussieu) M.V. Feigelman (Landau) L. Ioffe (Rutgers) M. Gershenson (Rutgers) Plan Honest (pessimistic) review of the state
More informationSuperconducting Qubits Lecture 4
Superconducting Qubits Lecture 4 NonResonant Coupling for Qubit Readout A. Blais, R.S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift
More informationQuantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique
Quantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique Josephson junction team Olivier Buisson, Bernard Pannetier,
More informationLecture 2, March 1, 2018
Lecture 2, March 1, 2018 Last week: Introduction to topics of lecture Algorithms Physical Systems The development of Quantum Information Science Quantum physics perspective Computer science perspective
More informationSuperconducting Circuits and Quantum Information
Superconducting Circuits and Quantum Information Superconducting circuits can behave like atoms making transitions between two levels. Such circuits can test quantum mechanics at macroscopic scales and
More informationShort Course in Quantum Information Lecture 8 Physical Implementations
Short Course in Quantum Information Lecture 8 Physical Implementations Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture : Intro
More informationState tomography of capacitively shunted phase qubits with high fidelity. Abstract
State tomography of capacitively shunted phase qubits with high fidelity Matthias Steffen, M. Ansmann, R. McDermott, N. Katz, Radoslaw C. Bialczak, Erik Lucero, Matthew Neeley, E.M. Weig, A.N. Cleland,
More informationDissipation in Transmon
Dissipation in Transmon Muqing Xu, Exchange in, ETH, Tsinghua University Muqing Xu 8 April 2016 1 Highlight The large E J /E C ratio and the low energy dispersion contribute to Transmon s most significant
More informationLecture 2, March 2, 2017
Lecture 2, March 2, 2017 Last week: Introduction to topics of lecture Algorithms Physical Systems The development of Quantum Information Science Quantum physics perspective Computer science perspective
More informationSuperconducting Resonators and Their Applications in Quantum Engineering
Superconducting Resonators and Their Applications in Quantum Engineering Nov. 2009 Lin Tian University of California, Merced & KITP Collaborators: Kurt Jacobs (U Mass, Boston) Raymond Simmonds (Boulder)
More informationElectrical quantum engineering with superconducting circuits
1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400 swap duration (ns) Electrical quantum engineering with superconducting
More informationnano Josephson junctions Quantum dynamics in
Permanent: Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Cécile Naud Bernard Pannetier Quantum dynamics in nano Josephson junctions CNRS Université Joseph Fourier Institut Néel LP2MC GRENOBLE
More informationDriving Qubit Transitions in JC Hamiltonian
Qubit Control Driving Qubit Transitions in JC Hamiltonian Hamiltonian for microwave drive Unitary transform with and Results in dispersive approximation up to 2 nd order in g Drive induces Rabi oscillations
More informationProcess Tomography of Quantum Memory in a Josephson Phase Qubit coupled to a TwoLevel State
Process Tomography of Quantum Memory in a Josephson Phase Qubit coupled to a TwoLevel State Matthew Neeley, M. Ansmann, Radoslaw C. Bialczak, M. Hofheinz, N. Katz, Erik Lucero, A. O Connell, H. Wang,
More informationFrom SQUID to Qubit Flux 1/f Noise: The Saga Continues
From SQUID to Qubit Flux 1/f Noise: The Saga Continues Fei Yan, S. Gustavsson, A. Kamal, T. P. Orlando Massachusetts Institute of Technology, Cambridge, MA T. Gudmundsen, David Hover, A. Sears, J.L. Yoder,
More informationSingle MicrowavePhoton Detector based on Superconducting Quantum Circuits
17 th International Workshop on Low Temperature Detectors 19/July/2017 Single MicrowavePhoton Detector based on Superconducting Quantum Circuits Kunihiro Inomata Advanced Industrial Science and Technology
More informationSupplementary information for Quantum delayedchoice experiment with a beam splitter in a quantum superposition
Supplementary information for Quantum delayedchoice experiment with a beam splitter in a quantum superposition ShiBiao Zheng 1, YouPeng Zhong 2, Kai Xu 2, QiJue Wang 2, H. Wang 2, LiTuo Shen 1, ChuiPing
More informationdc measurements of macroscopic quantum levels in a superconducting qubit structure with a timeordered meter
dc measurements of macroscopic quantum levels in a superconducting qubit structure with a timeordered meter D. S. Crankshaw, K. Segall, D. Nakada, and T. P. Orlando Department of Electrical Engineering
More informationExploring parasitic Material Defects with superconducting Qubits
Exploring parasitic Material Defects with superconducting Qubits Jürgen Lisenfeld, Alexander Bilmes, Georg Weiss, and A.V. Ustinov Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe,
More informationDynamical Casimir effect in superconducting circuits
Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in a superconducting coplanar waveguide Phys. Rev. Lett. 103, 147003 (2009) Dynamical Casimir effect in superconducting microwave
More informationΦ / Resonant frequency (GHz) exp. theory Supplementary Figure 2: Resonant frequency ω PO
1 a 1 mm b d SQUID JJ c 30 µm 30 µm 10 µm Supplementary Figure 1: Images of the parametric phaselocked oscillator. a, Optical image of the device. The λ/4type coplanar waveguide resonator is made of
More informationDistributing Quantum Information with Microwave Resonators in Circuit QED
Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid
More informationSuperconducting phase qubits
Quantum Inf Process (2009) 8:81 103 DOI 10.1007/s1112800901051 Superconducting phase qubits John M. Martinis Published online: 18 February 2009 The Author(s) 2009. This article is published with open
More informationEntangled Macroscopic Quantum States in Two Superconducting Qubits
Entangled Macroscopic Quantum States in Two Superconducting Qubits A. J. Berkley,H. Xu, R. C. Ramos, M. A. Gubrud, F. W. Strauch, P. R. Johnson, J. R. Anderson, A. J. Dragt, C. J. Lobb, F. C. Wellstood
More informationCoherent oscillations in a charge qubit
Coherent oscillations in a charge qubit The qubit The readout Characterization of the Cooper pair box Coherent oscillations Measurements of relaxation and decoherence times Tim Duty, Kevin Bladh, David
More informationSynthesising arbitrary quantum states in a superconducting resonator
Synthesising arbitrary quantum states in a superconducting resonator Max Hofheinz 1, H. Wang 1, M. Ansmann 1, Radoslaw C. Bialczak 1, Erik Lucero 1, M. Neeley 1, A. D. O Connell 1, D. Sank 1, J. Wenner
More informationDecoherence in Josephson and Spin Qubits. Lecture 3: 1/f noise, twolevel systems
Decoherence in Josephson and Spin Qubits Alexander Shnirman University of Innsbruck Lecture 3: 1/f noise, twolevel systems 1. Phenomenology of 1/f noise 2. Microscopic models 3. Relation between T1 relaxation
More informationDemonstration of conditional gate operation using superconducting charge qubits
Demonstration of conditional gate operation using superconducting charge qubits T. Yamamoto, Yu. A. Pashkin, * O. Astafiev, Y. Nakamura, & J. S. Tsai NEC Fundamental Research Laboratories, Tsukuba, Ibaraki
More informationExperimental Quantum Computing: A technology overview
Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations
More informationQuantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft
Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of singleparticles? in a solid state environment?
More informationSynthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara
Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara Quantum Integrated Circuits Quantum currents & voltages Microfabricated atoms Digital to Analog Converter
More informationDipolecoupling a singleelectron double quantum dot to a microwave resonator
Dipolecoupling a singleelectron double quantum dot to a microwave resonator 200 µm J. Basset, D.D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff Quantum
More informationTheoretical design of a readout system for the Flux QubitResonator Rabi Model in the ultrastrong coupling regime
Theoretical design of a readout system for the Flux QubitResonator Rabi Model in the ultrastrong coupling regime Ceren Burçak Dağ Supervisors: Dr. Pol FornDíaz and Assoc. Prof. Christopher Wilson Institute
More information43 New Regime of Circuit Quantum Electro Dynamics
43 New Regime of Circuit Quantum Electro Dynamics Kouichi SEMBA, Fumiki YOSHIHARA, Tomoko FUSE, Sahel ASHHAB, Kosuke KAKUYANAGI, and Shiro SAITO Researchers at the National Institute of Information and
More informationQuantum Reservoir Engineering
Departments of Physics and Applied Physics, Yale University Quantum Reservoir Engineering Towards Quantum Simulators with Superconducting Qubits SMG Claudia De Grandi (Yale University) Siddiqi Group (Berkeley)
More informationIntroduction to Quantum Mechanics of Superconducting Electrical Circuits
Introduction to Quantum Mechanics of Superconducting lectrical Circuits What is superconductivity? What is a osephson junction? What is a Cooper Pair Box Qubit? Quantum Modes of Superconducting Transmission
More informationSupplementary Information for Controlled catch and release of microwave photon states
Supplementary Information for Controlled catch and release of microwave photon states Yi Yin, 1, Yu Chen, 1 Daniel Sank, 1 P. J. J. O Malley, 1 T. C. White, 1 R. Barends, 1 J. Kelly, 1 Erik Lucero, 1 Matteo
More informationLecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Λ 0 : intended
Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Ĥ = Ĥ(p, q : Λ), Λ: control parameter { e.g. charge qubit Λ = V g gate voltage phase qubit Λ = I bias current
More informationMesoscopic field state superpositions in Cavity QED: present status and perspectives
Mesoscopic field state superpositions in Cavity QED: present status and perspectives Serge Haroche, Ein Bokek, February 21 st 2005 Entangling single atoms with larger and larger fields: an exploration
More informationQUANTUM COMPUTING. Part II. Jean V. Bellissard. Georgia Institute of Technology & Institut Universitaire de France
QUANTUM COMPUTING Part II Jean V. Bellissard Georgia Institute of Technology & Institut Universitaire de France QUANTUM GATES: a reminder Quantum gates: 1qubit gates x> U U x> U is unitary in M 2 ( C
More informationQuantum Information Processing with Semiconductor Quantum Dots
Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of singleparticles? in a solid state environment?
More informationParityProtected Josephson Qubits
ParityProtected Josephson Qubits Matthew Bell 1,2, Wenyuan Zhang 1, Lev Ioffe 1,3, and Michael Gershenson 1 1 Department of Physics and Astronomy, Rutgers University, New Jersey 2 Department of Electrical
More informationJosephson charge qubits: a brief review
Quantum Inf Process (2009) 8:55 80 DOI 10.1007/s1112800901015 Josephson charge qubits: a brief review Yu. A. Pashkin O. Astafiev T. Yamamoto Y. Nakamura J. S. Tsai Published online: 13 February 2009
More informationSuperconducting qubits
Superconducting qubits Franco Nori Physics Dept., The University of Michigan, Ann Arbor, USA Group members: Frontier Research System, RIKEN, Japan Yuxi Liu, L.F. Wei, S. Ashhab, J.R. Johansson Collaborators:
More informationDoing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED
Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED RenShou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert
More informationMetastable states in an RF driven Josephson oscillator
Metastable states in an RF driven Josephson oscillator R. VIJAYARAGHAVAN Daniel Prober Robert Schoelkopf Steve Girvin Department of Applied Physics Yale University 3162006 APS March Meeting I. Siddiqi
More informationQuantum computation with superconducting qubits
Quantum computation with superconducting qubits Project for course: Quantum Information Ognjen Malkoc June 10, 2013 1 Introduction 2 Josephson junction 3 Superconducting qubits 4 Circuit and Cavity QED
More informationJosephsonJunction Qubits
JosephsonJunction Qubits John Martinis Kristine Lang, Ray Simmonds, Robert McDermott, Sae Woo Nam, Jose Aumentado, Dustin Hite, Dave Pappas, NST Boulder Cristian Urbina, (CNRS/CEA Saclay) Qubit 8µm Atom
More informationINTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5QUBIT QUANTUM PROCESSOR IN THE CLOUD
INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5QUBIT QUANTUM PROCESSOR IN THE CLOUD Hanhee Paik IBM Quantum Computing Group IBM T. J. Watson Research Center, Yorktown Heights, NY USA
More informationMatter wave interferometry beyond classical limits
MaxPlanckInstitut für Quantenoptik Varenna school on Atom Interferometry, 15.07.201320.07.2013 The Plan Lecture 1 (Wednesday): Quantum noise in interferometry and Spin Squeezing Lecture 2 (Friday):
More informationFabio Chiarello IFNCNR Rome, Italy
Italian National Research Council Institute for Photonics and Nanotechnologies Elettronica quantistica con dispositivi Josephson: dagli effetti quantistici macroscopici al qubit Fabio Chiarello IFNCNR
More informationSuperconducting persistentcurrent qubit Orlando, T.P.; Mooij, J.E.; Tian, Lin; Wal, Caspar H. van der; Levitov, L.S.; Lloyd, Seth; Mazo, J.J.
University of Groningen Superconducting persistentcurrent qubit Orlando, T.P.; Mooij, J.E.; Tian, Lin; Wal, Caspar H. van der; Levitov, L.S.; Lloyd, Seth; Mazo, J.J. Published in: Physical Review B DOI:
More informationBuilding Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)
Building Blocks for Quantum Computing Part IV Design and Construction of the Trapped Ion Quantum Computer (TIQC) CSC801 Seminar on Quantum Computing Spring 2018 1 Goal Is To Understand The Principles And
More informationEngineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system
Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system Nathan K. Langford OVERVIEW Acknowledgements Ramiro Sagastizabal, Florian Luthi and the rest of the
More informationQuantum simulation with superconducting circuits
Quantum simulation with superconducting circuits Summary: introduction to quantum simulation with superconducting circuits: quantum metamaterials, qubits, resonators motional averaging/narrowing: theoretical
More informationMotion and motional qubit
Quantized motion Motion and motional qubit... > > n=> > > motional qubit N ions 3 N oscillators Motional sidebands Excitation spectrum of the S / transition levelatom harmonic trap coupled system & transitions
More informationQuantum computation and quantum information
Quantum computation and quantum information Chapter 7  Physical Realizations  Part 2 First: sign up for the lab! do handins and project! Ch. 7 Physical Realizations Deviate from the book 2 lectures,
More informationControlling the Interaction of Light and Matter...
Control and Measurement of Multiple Qubits in Circuit Quantum Electrodynamics Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, D. Bozyigit, R. Bianchetti, C. Eichler, S. Filipp, J. Fink, T. Frey,
More informationRabi oscillations, Ramsey fringes and spin echoes in an electrical circuit
Fortschr. Phys. 51, No. 4 5, 462 468 (2003) / DOI 10.1002/prop.200310063 Rabi oscillations, Ramsey fringes and spin echoes in an electrical circuit D. Vion 1, A. Aassime 1, A. Cottet 1,P.Joyez 1, H. Pothier
More informationCoherent Coupling between 4300 Superconducting Flux Qubits and a Microwave Resonator
: A New Era in Quantum Information Processing Technologies Coherent Coupling between 4300 Superconducting Flux Qubits and a Microwave Resonator Yuichiro Matsuzaki, Kosuke Kakuyanagi, Hiraku Toida, Hiroshi
More informationMechanical quantum resonators
Mechanical quantum resonators A. N. Cleland and M. R. Geller Department of Physics, University of California, Santa Barbara CA 93106 USA Department of Physics and Astronomy, University of Georgia, Athens,
More information2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. IoChun, Hoi
2015 AMO Summer School Quantum Optics with Propagating Microwaves in Superconducting Circuits I IoChun, Hoi Outline 1. Introduction to quantum electrical circuits 2. Introduction to superconducting artificial
More informationControlledNOT logic gate for phase qubits based on conditional spectroscopy
Quantum Inf Process (2012) 11:1349 1357 DOI 10.1007/s1112801102746 ControlledNOT logic gate for phase qubits based on conditional spectroscopy Joydip Ghosh Michael R. Geller Received: 19 May 2011 /
More informationarxiv: v1 [condmat.meshall] 16 Oct 2009
Coherent oscillations between classically separable quantum states of a superconducting loop Vladimir E. Manucharyan, 1 Jens Koch, 1 Markus Brink, 1 Leonid I. Glazman, 1 and Michel H. Devoret 1 1 Departments
More informationTowards quantum metrology with N00N states enabled by ensemblecavity interaction. Massachusetts Institute of Technology
Towards quantum metrology with N00N states enabled by ensemblecavity interaction Hao Zhang Monika SchleierSmith Robert McConnell Jiazhong Hu Vladan Vuletic Massachusetts Institute of Technology MITHarvard
More informationQuantum Physics and Quantum Information with Atoms, Photons, Electrical Circuits, and Spins
Quantum Physics and Quantum Information with Atoms, Photons, Electrical Circuits, and Spins Patrice Bertet To cite this version: Patrice Bertet. Quantum Physics and Quantum Information with Atoms, Photons,
More informationNano devices for single photon source and qubit
Nano devices for single photon source and qubit, Acknowledgement K. Gloos, P. Utko, P. Lindelof Niels Bohr Institute, Denmark J. Toppari, K. Hansen, S. Paraoanu, J. Pekola University of Jyvaskyla, Finland
More informationQIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments
QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments 1 Instructor: Daryoush Shiri Postdoctoral fellow, IQC IQC, June 2015, WEEK2 2 Parametric Amplifiers
More information10.5 Circuit quantum electrodynamics
ASChap. 101 10.5 Circuit quantum electrodynamics ASChap. 102 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,
More informationQuantum Optics with Electrical Circuits: Strong Coupling Cavity QED
Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED RenShou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert Schoelkopf
More informationIs Quantum Mechanics the Whole Truth?* A.J. Leggett. University of Illinois at UrbanaChampaign
Is Quantum Mechanics the Whole Truth?* A6S1 A.J. Leggett University of Illinois at UrbanaChampaign 1. Why bother? 2. What are we looking for? 3. What have we seen so far? 4. Where do we go from here?
More informationQuantum bits with Josephson junctions
Fizika Nizkikh Temperatur, 007, v. 33, No. 9, p. 957 98 Quantum bits with Josephson junctions (Review Article) G. Wendin and V.S. Shumeiko Department of Microtechnology and Nanoscience, Chalmers University
More informationCavity QED. Driven Circuit QED System. Circuit QED. decay atom: γ radiation: κ. E. Il ichev et al., PRL 03
Decoherence and Relaxation in Driven Circuit QED Systems Alexander Shnirman Arkady Fedorov Julian Hauss Valentina Brosco Stefan André Michael Marthaler Gerd Schön experiments Evgeni Il ichev et al. Univ.
More informationCircuit QED: A promising advance towards quantum computing
Circuit QED: A promising advance towards quantum computing Himadri Barman Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India. QCMJC Talk, July 10, 2012 Outline Basics of quantum
More informationIon crystallisation. computing
Ion crystallisation and application to quantum computing Cooling with incrased laser power: (a) reduced Doppler width (b) Kink in the line profile (b) P=0.2 mw P=0.5 mw Excitation spectra of an ion cloud
More informationCavity Quantum Electrodynamics with Superconducting Circuits
Cavity Quantum Electrodynamics with Superconducting Circuits Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, R. Bianchetti, S. Filipp, J. Fink, A. Fragner, M. Göppl, P. Leek, P. Maurer, L. Steffen,
More informationSupplemental Material to the Manuscript Radio frequency magnetometry using a single electron spin
Supplemental Material to the Manuscript Radio frequency magnetometry using a single electron spin M. Loretz, T. Rosskopf, C. L. Degen Department of Physics, ETH Zurich, Schafmattstrasse 6, 8093 Zurich,
More informationMeasurement theory for phase qubits
Measurement theory for phase qubits CoP.I. Alexander Korotkov, UC Riverside The team: 1) Qin Zhang, graduate student ) Dr. Abraham Kofman, researcher (started in June 005) 3) Alexander Korotkov, associate
More informationIntroduction to Circuit QED
Introduction to Circuit QED Michael Goerz ARL Quantum Seminar November 10, 2015 Michael Goerz Intro to cqed 1 / 20 JaynesCummings model g κ γ [from Schuster. Phd Thesis. Yale (2007)] JaynesCumming Hamiltonian
More informationDecoherence in Josephsonjunction qubits due to criticalcurrent fluctuations
PHYSICAL REVIEW B 70, 064517 (2004) Decoherence in Josephsonjunction qubits due to criticalcurrent fluctuations D. J. Van Harlingen, 1 T. L. Robertson, 2 B. L. T. Plourde, 2 P. A. Reichardt, 2 T. A.
More information