Quantum Criticality in Heavy Fermion Metals. Qimiao Si. Rice University

Size: px
Start display at page:

Download "Quantum Criticality in Heavy Fermion Metals. Qimiao Si. Rice University"

Transcription

1 Quantum Criticality in Heavy Fermion Metals Qimiao Si Rice University CM Seminar, Texas A&M U, College Station, Oct. 2, 2009

2 Pallab Goswami, Jed Pixley Seiji Yamamoto Stefan Kirchner Jian-Xin Zhu, Lijun Zhu Kevin Ingersent Daniel Grempel Ralf Bulla Jianhui Dai (Rice University) (NHMFL, FSU) (MPI-PKS) (Los Alamos) (Univ. of Florida) (CEA-Saclay) (U. Cologne) (Zhejiang U.) S. Friedemann C. Krellner Y. Tokiwa P. Gegenwart S. Paschen S. Wirth N. Oeschler T. Westerkamp R. Küchler T. Lühmann T. Cichorek K. Neumaier O. Tegus O. Trovarelli C. Geibel J. A. Mydosh F. Steglich P. Coleman E. Abrahams

3 H = -I < ij> σ z i σ z j temperature T B T=0 A A: every spin (spontaneously) points up Order parameter: m= lim B: every microstate equally probable: m=0 h 0 lim + Nsite M /N site = 1

4 H = -I < ij> σ z i σ z j - (I δ ) σ i x i temperature T T=0 A B C control parameter δ A: every spin (spontaneously) points up Order parameter: m= lim B: every microstate equally probable: m=0 h 0 lim + Nsite M /N site = 1 C: every spin points along the transverse field: m=0

5 Quantum Phase Transition H = -I < ij> σ z i σ z j - (I δ ) σ i x i temperature T T=0 A B ordered state Quantum Critical QCP C control parameter δ A: every spin (spontaneously) points up Order parameter: m= lim B: every microstate equally probable: m=0 h 0 lim + Nsite M /N site = 1 C: every spin points along the transverse field: m=0

6 temperature T order QCP δ -- control parameter Following Landau -- fluctuations of order parameter, but in d+z dimensions

7 Chakravarty, Halperin, & Nelson, PRB 39, 2344 (1989) T Following Landau -- fluctuations of order parameter, but in d+z dimensions QCP δ

8 Heavy fermion metals as prototype quantum critical points CeCu 6-x Au x H. v. Löhneysen et al CePd 2 Si 2 Linear resistivity N. Mathur et al T N YbRh 2 Si 2 J. Custers et al

9 A. Schröder et al., Nature 00; PRL 98; O. Stockert et al., PRL 98; M. Aronson et al., PRL 95 Spin Dynamics in CeCu 5.9 Au 0.1 ω/t scaling α=0.75 `everywhere in q. Fractional exponent α=0.75 1/χ(q) q=0. q=q AF Q ω/t INS and M/H T 0.75

10 How can the order-parameter-flucutation description break down? Quantum temporal fluctuations may not simply be extra dimensions of classical order-parameter fluctuations: Z ~ Z ( config config in (x, τ) ) The partition function for an individual configuration in space and time may not be positive semi-definite (cf, the minus sign problem of quantum Monte Carlo).

11 Beyond the order-parameter fluctuations: Inherent quantum modes may be important -- need to identify the additional critical modes before constructing the critical field theory.

12 Kondo lattices:

13 Kondo lattices: heavy Fermi liquid: Kondo singlet Kondo resonance Historical development of heavy Fermi liquid: Single-impurity: Anderson, Wilson, Nozières, Andrei, Wiegmann, Coleman, Read & Newns, Affleck & Luwdig, Lattice: Varma, Doniach, Auerbach & Levin, Millis & Lee, Rice & Ueda, Fulde & Zwicknagl,

14 Pre-History: Kondo resonance (one local moment in a conduction electron bath) Kondo temperature: Singlet ground state: Kondo resonance: Kondo-screened ground state yields an electronic resonance local moment acquires electron quantum number due to Kondo entanglement

15 Cond. electron band ε (k) Pre-History: Heavy Fermi Liquid Heavy electron bands E 1,2 (k) Kondo resonance Large Fermi surface

16 Heavy fermions meet quantum criticality Kondo breakdown at AF heavy fermion QCP Kondo breakdown in AF heavy fermion phase Experiments

17 Critical Kondo Destruction Kondo Destruction (f-electron Mott localization) at the T=0 onset of antiferromagnetism Cf. QS, S. Rabello, K. Ingersent, & J. L. Smith, Nature 413, 804 (2001); Phys. Rev. B68, (2003) P. Coleman et al, JPCM 13, R723 (2001)

18 Heavy Fermi Liquid (Kondo Lattice) Kondo resonance G c 1 ( k, ω) = ω-ε - Σ( k, ω) k pole in Σ heavy electron bands

19 Heavy Fermi Liquid (Kondo Lattice) Kondo resonance G c 1 ( k, ω) = ω-ε - Σ( k, ω) k k-independent pole in Σ heavy electron bands

20 Extended-DMFT* of Kondo Lattice (* Smith & QS; Chitra & Kotliar) Mapping to a Bose-Fermi Kondo model: + self-consistency conditions Electron self-energy Σ (ω) G(k,ω)=1/[ω ε k - Σ(ω)] spin self-energy M (ω) χ(q,ω)=1/[ I q + M(ω)]

21 Extended-DMFT of Kondo Lattice Kondo Lattice Bose-Fermi Kondo Local moment J k g + self-consistency fermion bath fluctuating magnetic field QS, Rabello, Ingersent, Smith, Nature 01; PRB 03; J-X Zhu, D. Grempel, QS, PRL 03; P. Sun, G. Kotliar, PRL 03 Zhu, Kirchner, Bulla, QS, PRL 07; M. Glossop, K. Ingerset, PRL 07; Glossop, Zhu, Kirchner et al, to be published ( 09)

22 Kondo lattice with Ising anisotropy Quantum Monte Carlo (T=0.01 T K0 ) δ I RKKY / T K 0 J.-X. Zhu, D. Grempel, and QS, Phys. Rev. Lett. (2003)

23 Kondo lattice with Ising anisotropy Transition 1 st order? Important to avoid double counting in EDMFT: QS, J.-X. Zhu, & D. Grempel, JPCM (2005); P. Sun & G. Kotliar, PRB (2005) Quantum Monte Carlo (T=0.01 T K0 ) δ I RKKY / T K 0 J.-X. Zhu, D. Grempel, and QS, Phys. Rev. Lett. (2003)

24 Kondo lattice with Ising anisotropy Numerical RG (T=0) Quantum Monte Carlo (T=0.01 T K0 ) J.-X. Zhu, S. Kirchner, R. Bulla & QS, PRL 99, (2007); See also, M. Glossop & K. Ingersent, PRL 99, (2007) δ I RKKY / T K 0 J.-X. Zhu, D. Grempel, and QS, Phys. Rev. Lett. (2003)

25 Dynamical spin susceptibility of the Local QCP

26 Kondo lattice with Ising anisotropy QMC χ -1 (Q,ω n ) α = 0.72 J.-X. Zhu, D. Grempel and QS, Phys. Rev. Lett. 03 ω n

27 Kondo lattice with Ising anisotropy QMC χ -1 (Q,ω n ) α = 0.72 J.-X. Zhu, D. Grempel and QS, Phys. Rev. Lett. 03 ω n NRG α= 0.83 α= 0.78 J.-X. Zhu, S. Kirchner, R. Bulla & QS, PRL 07 M. Glossop & K. Ingersent, PRL 07

28

29 Cond. electron band ε (k) Pre-History: Heavy Fermi Liquid Heavy electron band E 1,2 (k) Kondo resonance Large Fermi surface

30 Kondo effect inside the antiferromagnet?

31 Heavy fermions meet quantum criticality Kondo breakdown at AF heavy fermion QCP Kondo breakdown in AF heavy fermion phase Experiments

32 Kondo lattice J K << I rkky << t J K =0 as the reference point of expansion: f- local moments: AF, QNLσM conduction electrons: Fermi volume x S. Yamamoto & QS, PRL 99, (2007)

33 Representing the local moments via Quantum non-linear Sigma Model Heisenberg model + coherent spin path integral QNLσM Not important deep Inside ordered phase Effective fermi-magnon coupling

34 Kondo lattice J K << I rkky << t J K =0 as the reference point of expansion: f- local moments: AF, QNLσM conduction electrons: Fermi volume x S. Yamamoto & QS, PRL 99, (2007) J K EXACTLY MARGINAL; AFs small Fermi surface stable

35 Global phase diagram Yamamoto & QS, to be published ( 09); Yamamoto & QS, PRL 07; QS, Physica B 378, 23 (2006) Watanabe & Ogata, PRL 07; Martin & Assaad, PRL 08; Vojta, PRB 08

36 Type II transition: Second order: Destruction of Kondo screening where magnetism sets in (localization-delocalization of f-electrons)

37 Heavy fermions meet quantum criticality Kondo breakdown at AF heavy fermion QCP Kondo breakdown in AF heavy fermion phase Experiments

38 Spin dynamics Dynamical spin susceptibility: cf. CeCu 6-x Au x (A. Schröder et al 98; O. Stockert et al. 98) UCu 5-x Pd x (?) (M. Aronson et al. 95; D. MacLaughlin et al. 00) Static bulk spin susceptibility: cf. CeCu 6-x Au x (A. Schröder et al. 00) YbRh 2 Si 2 (P. Gegenwart et al. 02) CeCoIn 5 (?) (J. Thompson et al. 02, S. Nakatsuji et al. 02) NMR relaxation rate: cf. YbRh 2 Si 2 (K. Ishida et al. 03) CeCu 6-x Au x (R. Walstedt et al. 03): (1/T 1 ) Cu ~ T α [sum over generic q transfer hyperfine coupling?]

39 Hall Effect Evidence for Fermi Surafce Jump in YbRh 2 Si 2 crossover width decreases as T is lowered T=0 (extrapolation): sharp QCP S. Paschen, T. Lühmann, S. Wirth, P.Gegenwart, O.Trovarelli, C. Geibel, F. Steglich, P.Coleman, & QS, Nature 432, 881 (2004)

40 Hall Effect Evidence for Fermi Surafce Jump in YbRh 2 Si 2 crossover width decreases as T is lowered T=0 (extrapolation): sharp QCP S. Paschen, T. Lühmann, S. Wirth, P.Gegenwart, O.Trovarelli, C. Geibel, F. Steglich, P.Coleman, & QS, Nature 432, 881 (2004)

41 dhva measurement of Fermi Surface across Magnetic Transition in CeRhIn 5 T. Park et al., Nature 440, 65 ( 06); G. Knebel et al., PRB74, ( 06) H. Shishido, _ R. Settai, H. Harima, & Y. Onuki, JPSJ 74, 1103 (2005)

42 Multiple Energy Scales of QCP P. Gegenwart, T. Westerkamp, C. Krellner, Y. Tokiwa, S. Paschen, C. Geibel, F. Steglich, E. Abrahams, & QS, Science 315, 969 (2007)

43 SUMMARY Heavy fermions -- prototype quantum critical points Kondo destruction at antiferromagnetic QCP collapsing Kondo scale, on approach from paramagnetic side Kondo destruction inside the antiferromagetic region Jump of Fermi surface across QCP Experiments: Dynamical scaling, multiple energy scales, Fermi surface YbRh 2 Si 2, CeCu 6-x Au x, CeRhIn 5, etc.

44 Bose-Fermi Kondo Model (Smith & QS ; Sengupta) Local moment J k g fermion bath fluctuating magnetic field

45 ε-expansion of Bose-Fermi Kondo model: SU(2) & XY Kondo J K p δ ( ω w p ) ~ ω 1 ε Critical g 0<ε<1: sub-ohmic dissipation

46 ε-expansion of Bose-Fermi Kondo model: SU(2) & XY Kondo J K p δ ( ω w Critical p ) ~ ω Kondo J K 1 ε Ising Critical g g 0<ε<1: sub-ohmic dissipation

47 ε-expansion of Bose-Fermi Kondo model: SU(2) & XY Kondo J K p δ ( ω w Critical p ) ~ ω Kondo J K 1 ε Ising Critical g g Critical: Crucial for LQCP solution 0<ε<1: sub-ohmic dissipation

48 Role of Berry phase S. Kirchner & QS, arxiv: is a geometrical phase and equals the area on the unit sphere enclosed by For ½<ε<1: Retaining Berry phase violates quantum-to-classical mapping Dropping Berry phase restores quantum-to-classical mapping

49 Role of Berry phase S. Kirchner & QS, arxiv: is a geometrical phase and equals the area on the unit sphere enclosed by For ½<ε<1: Retaining Berry phase violates quantum-to-classical mapping Dropping Berry phase restores quantum-to-classical mapping Various other approaches: Large N, NRG, Monte Carlo Zhu, Kirchner, QS, Georges, PRL 04; Glossop, Ingersent, PRL 05 S. Kirchner, QS, PRL 08 S. Kirchner, QS, Ingersent, PRL 09

50 E-DMFT solution to the Kondo lattice The self-consistent fluctuating field bath: =1 ε p δ ( ω w p )~ ω 1 ε 1 ~Im ln1/( iω ) Destruction of Kondo screening: χ loc ( τ ) ~ 1 τ ε ~ 1 τ Kondo J K Critical Divergent χ loc (ω) locates the local problem on the critical manifold g

51 Kondo lattice J K <<I rkky <<W J K =0 as the reference point of expansion: f- local moments: AF, QNLσM conduction electrons: Fermi volume x simplest case: NOT intersecting AF zone boundary

52 Kondo lattice At J K =0: Local-moment antiferromagnetism Conduction electrons ω k 0 Q q

53 Representing the local moments via Quantum non-linear Sigma Model Heisenberg model + coherent spin path integral QNLσM Not important deep Inside ordered phase Effective fermi-magnon coupling

54 Effective Kondo coupling w/ magnons with AF order q Q Large momentum transfer scattering NOT allowed kinematically. Q S( x, τ) m+ ne i Q x q 0 Forward scattering ALLOWED. S. Yamamoto & QS, PRL 99, (2007)

55 RG for mixed bosons and fermions with a Fermi surface All directions scales Only 1 direction scales (Shankar) S. Yamamoto & QS, arxiv:

56 Combined bosonic/fermionic* RG Tree-level scaling (*ferminoc RG: Shankar, RMP 94) marginal! From NLσM From electrons near FS note: remember for forward scattering

57 RG at 1-loop & beyond:

58 RG at 1-loop & beyond: Marginal even at 1-Loop and beyond.

59 RG at 1-loop & beyond: Marginal even at 1-Loop and beyond. AF phase w/ small Fermi surface! S. Yamamoto & QS, PRL 99, (2007)

60 RG at 1-loop & beyond: Marginal even at 1-Loop and beyond. Large N: = ~ AF phase w/ small Fermi surface! No pole in self energy. Fermi surface remains small. S. Yamamoto & QS, PRL 99, (2007)

61 Effective Kondo coupling w/ magnons with AF order q Q Large momentum transfer scattering NOT allowed kinematically. Q S( x, τ) m+ ne i Q x q 0 Forward scattering ALLOWED. S. Yamamoto & QS, PRL 99, (2007) MARGINAL

62 J K <<I rkky <<W Néel, without Kondo screening G AF S J K

63 J K >>W>>I rkky G paramagnet, w/ Kondo screening PM L J K

64 J K >>W>>I rkky xn site tightly bound local singlets (1-x)N site lone moments: (cf. If x were =1, Kondo insulator)

65 J K >>W>>I rkky xn site tightly bound local singlets (1-x)N site lone moments: projection: (1-x)N site holes with U= (cf. If x were =1, Kondo insulator)

66 J K >>W>>I rkky xn site tightly bound local singlets (1-x)N site lone moments: projection: (1-x)N site holes with U= Luttinger s theorem: (cf. If x were =1, Kondo insulator) (1-x) holes/site in the Fermi surface (1+x) electrons/site ---- Large Fermi surface!

67 J K <<I rkky <<W Néel, without Kondo screening G Differs from PML phase in two ways: order parameter Fermi surface AF S J K

68 Global phase diagram G I AF S II PM L AF L J K SDW of PM L

69 Kondo-screened AF phases

70 Kondo-breakdown AF phase

71 Representing the local moments via Quantum non-linear Sigma Model Heisenberg model + coherent spin path integral QNLσM

72 Global phase diagram G??? I AF S AF L II PM L J K

Quantum Criticality and Emergent Phases in Heavy Fermion Metals

Quantum Criticality and Emergent Phases in Heavy Fermion Metals Quantum Criticality and Emergent Phases in Heavy Fermion Metals Qimiao Si Rice University Hangzhou Workshop on Quantum Matter, April 23, 2013 Jed Pixley, Jianda Wu, Emil Nica Rong Yu, Wenxin Ding (Rice

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

arxiv: v1 [cond-mat.str-el] 12 Mar 2016

arxiv: v1 [cond-mat.str-el] 12 Mar 2016 Quantum criticality and global phase diagram of an Ising-anisotropic ondo lattice arxiv:163.3829v1 [cond-mat.str-el] 12 Mar 216 Emilian M. Nica, 1, evin Ingersent, 2 and Qimiao Si 1 1 Department of Physics

More information

Quantum critical Kondo destruction in the Bose-Fermi Kondo model with a local transverse field

Quantum critical Kondo destruction in the Bose-Fermi Kondo model with a local transverse field PHYSICAL REVIEW B 88, 444 (3 Quantum critical Kondo destruction in the Bose-Fermi Kondo model with a local transverse field Emilian Marius Nica,,* Kevin Ingersent, Jian-Xin Zhu, 3 and Qimiao Si Department

More information

Quantum impurities in a bosonic bath

Quantum impurities in a bosonic bath Ralf Bulla Institut für Theoretische Physik Universität zu Köln 27.11.2008 contents introduction quantum impurity systems numerical renormalization group bosonic NRG spin-boson model bosonic single-impurity

More information

QUANTUM CRITICAL BEHAVIOR IN KONDO SYSTEMS

QUANTUM CRITICAL BEHAVIOR IN KONDO SYSTEMS International Journal of Modern Physics B, Vol. 13, No. 18 (1999) 2331 2342 c World Scientific Publishing Company QUANTUM CRITICAL BEHAVIOR IN KONDO SYSTEMS QIMIAO SI, J. LLEWEILUN SMITH and KEVIN INGERSENT

More information

Miniworkshop on Strong Correlations in Materials and Atom Traps August Superconductivity, magnetism and criticality in the 115s.

Miniworkshop on Strong Correlations in Materials and Atom Traps August Superconductivity, magnetism and criticality in the 115s. 1957-2 Miniworkshop on Strong Correlations in Materials and Atom Traps 4-15 August 2008 Superconductivity, magnetism and criticality in the 115s. THOMPSON Joe David Los Alamos National Laboratory Materials

More information

When Landau and Lifshitz meet

When Landau and Lifshitz meet Yukawa International Seminar 2007 "Interaction and Nanostructural Effects in Low-Dimensional Systems" November 5-30, 2007, Kyoto When Landau and Lifshitz meet Unconventional Quantum Criticalities November

More information

Quantum phase transitions and the Luttinger theorem.

Quantum phase transitions and the Luttinger theorem. Quantum phase transitions and the Luttinger theorem. Leon Balents (UCSB) Matthew Fisher (UCSB) Stephen Powell (Yale) Subir Sachdev (Yale) T. Senthil (MIT) Ashvin Vishwanath (Berkeley) Matthias Vojta (Karlsruhe)

More information

Critical and Glassy Spin Dynamics in Non-Fermi-Liquid Heavy-Fermion Metals

Critical and Glassy Spin Dynamics in Non-Fermi-Liquid Heavy-Fermion Metals Critical and Glassy Spin Dynamics in Non-Fermi-Liquid Heavy-Fermion Metals D. E. MacLaughlin Department of Physics University of California Riverside, California U.S.A. Leiden p.1 Behavior of spin fluctuations

More information

arxiv: v1 [cond-mat.str-el] 3 Jul 2013

arxiv: v1 [cond-mat.str-el] 3 Jul 2013 Thermal and Electrical Transport across a Magnetic Quantum Critical Point Heike Pfau 1, Stefanie Hartmann 1,, Ulrike Stockert 1, Peijie Sun 1,, Stefan Lausberg 1, Manuel Brando 1, Sven Friedemann 1,+,

More information

arxiv: v1 [cond-mat.str-el] 14 Oct 2008

arxiv: v1 [cond-mat.str-el] 14 Oct 2008 Effect of pressure and Ir substitution in YbRh 2 arxiv:0810.2471v1 [cond-mat.str-el] 14 Oct 08 1. Introduction M E Macovei, M Nicklas, C Krellner, C Geibel and F Steglich Max Planck Institute for Chemical

More information

AN EVALUATION OF OPTICAL CONDUCTIVITY OF PROTOTYPE NON-FERMI LIQUID KONDO ALLOYS

AN EVALUATION OF OPTICAL CONDUCTIVITY OF PROTOTYPE NON-FERMI LIQUID KONDO ALLOYS Int. J. Chem. Sci.: 10(3), 01, 1419-147 ISSN 097-768X www.sadgurupublications.com AN EVALUATION OF OPTICAL CONDUCTIVITY OF PROTOTYPE NON-FERMI LIQUID KONDO ALLOYS A. K. SINGH * and L. K. MISHRA a Department

More information

Electronic correlations in models and materials. Jan Kuneš

Electronic correlations in models and materials. Jan Kuneš Electronic correlations in models and materials Jan Kuneš Outline Dynamical-mean field theory Implementation (impurity problem) Single-band Hubbard model MnO under pressure moment collapse metal-insulator

More information

Heavy Fermion systems

Heavy Fermion systems Heavy Fermion systems Satellite structures in core-level and valence-band spectra Kondo peak Kondo insulator Band structure and Fermi surface d-electron heavy Fermion and Kondo insulators Heavy Fermion

More information

!"#$%& IIT Kanpur. !"#$%&. Kanpur, How spins become pairs: Composite and magnetic pairing in the 115 Heavy Fermion Superconductors

!#$%& IIT Kanpur. !#$%&. Kanpur, How spins become pairs: Composite and magnetic pairing in the 115 Heavy Fermion Superconductors How spins become pairs: Composite and magnetic pairing in the 115 Heavy Fermion Superconductors!"#$%& IIT Kanpur Feb 6 2010 Interaction, Instability and Transport!"#$%&. Kanpur, 1857. How spins become

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 5 Aug 2003

arxiv:cond-mat/ v1 [cond-mat.str-el] 5 Aug 2003 Divergence of the Grüneisen Ratio at Quantum Critical Points in Heavy Fermion Metals arxiv:cond-mat/3893v1 [cond-mat.str-el] 5 Aug 23 R. Küchler (1), N. Oeschler (1), P. Gegenwart (1), T. Cichorek (1),

More information

Phase diagrams of pressure-tuned Heavy Fermion Systems

Phase diagrams of pressure-tuned Heavy Fermion Systems Phase diagrams of pressure-tuned Heavy Fermion Systems G. Knebel, D. Aoki, R. Boursier, D. Braithwaite, J. Derr, Y. Haga, E. Hassinger, G. Lapertot, M.-A. Méasson, P.G. Niklowitz, A. Pourret, B. Salce,

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Mean field theories of quantum spin glasses

Mean field theories of quantum spin glasses Mean field theories of quantum spin glasses Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Talk online: Sachdev Classical Sherrington-Kirkpatrick model H = JS S i j ij i j J ij : a

More information

Kondo destruction in a quantum paramagnet with magnetic frustration

Kondo destruction in a quantum paramagnet with magnetic frustration Kondo destruction in a quantum paramagnet with magnetic frustration Jiahao Zhang, 1,2 Hengcan Zhao, 1,2 Meng Lv, 1,2 Sile Hu, 1,2 Yosikazu Isikawa, 3 Yifeng Yang, 1,2,4 Qimiao Si, 5 Frank Steglich, 1,6

More information

Quantum phase transitions

Quantum phase transitions Quantum phase transitions Thomas Vojta Department of Physics, University of Missouri-Rolla Phase transitions and critical points Quantum phase transitions: How important is quantum mechanics? Quantum phase

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

Interplay between heavy-fermion quantum criticality and unconventional superconductivity

Interplay between heavy-fermion quantum criticality and unconventional superconductivity Interplay between heavy-fermion quantum criticality and unconventional superconductivity F. Steglich Max Planck Institute for Chemical Physics of Solids, Dresden, Germany Center for Correlated Matter,

More information

Qu-Transitions. P. Coleman (CMT, Rutgers) IIT Kanpur Feb 7, 2010.

Qu-Transitions. P. Coleman (CMT, Rutgers) IIT Kanpur Feb 7, 2010. Qu-Transitions P. Coleman (CMT, Rutgers) IIT Kanpur Feb 7, 2010. Qu-Transitions Phase transitions in the quantum era P. Coleman (CMT, Rutgers) IIT Kanpur Feb 7, 2010. Qu-era: revolutions always have a

More information

Universally diverging Grüneisen parameter and magnetocaloric effect close to quantum critical points

Universally diverging Grüneisen parameter and magnetocaloric effect close to quantum critical points united nations educational, scientific and cultural organization the abdus salam international centre for theoretical physics international atomic energy agency SMR.1572-3 Workshop on Novel States and

More information

The bosonic Kondo effect:

The bosonic Kondo effect: The bosonic Kondo effect: probing spin liquids and multicomponent cold gases Serge Florens Institut für Theorie der Kondensierten Materie (Karlsruhe) with: Lars Fritz, ITKM (Karlsruhe) Matthias Vojta,

More information

Global phase diagram of a spin-orbit-coupled Kondo lattice model on the honeycomb lattice

Global phase diagram of a spin-orbit-coupled Kondo lattice model on the honeycomb lattice Global phase diagram of a spin-orbit-coupled Kondo lattice model on the honeycomb lattice a Weyl-Kondo semimetal phase 26. Experimental evidence has come from the new heavy fermion compound Ce 3 Bi 4 Pd

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Leon Balents T. Senthil, MIT A. Vishwanath, UCB S. Sachdev, Yale M.P.A. Fisher, UCSB Outline Introduction: what is a DQCP Disordered and VBS ground states and gauge theory

More information

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds Twelfth Arnold Sommerfeld Lecture Series January 31 - February 3, 2012 sachdev.physics.harvard.edu HARVARD Max

More information

Magnetic Moment Collapse drives Mott transition in MnO

Magnetic Moment Collapse drives Mott transition in MnO Magnetic Moment Collapse drives Mott transition in MnO J. Kuneš Institute of Physics, Uni. Augsburg in collaboration with: V. I. Anisimov, A. V. Lukoyanov, W. E. Pickett, R. T. Scalettar, D. Vollhardt,

More information

Dual fermion approach to unconventional superconductivity and spin/charge density wave

Dual fermion approach to unconventional superconductivity and spin/charge density wave June 24, 2014 (ISSP workshop) Dual fermion approach to unconventional superconductivity and spin/charge density wave Junya Otsuki (Tohoku U, Sendai) in collaboration with H. Hafermann (CEA Gif-sur-Yvette,

More information

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl Magnetism, Bad Metals and Superconductivity: Iron Pnictides and Beyond September 11, 2014 Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises Gertrud Zwicknagl Institut

More information

Surprising Effects of Electronic Correlations in Solids

Surprising Effects of Electronic Correlations in Solids Center for Electronic Correlations and Magnetism University of Augsburg Surprising Effects of Electronic Correlations in Solids Dieter Vollhardt Supported by TRR 80 FOR 1346 University of Florida, Gainesville;

More information

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay I- Similarities between phase diagram and quantum critical points Quantum Criticality in 3 Families of Superconductors L. Taillefer,

More information

arxiv: v2 [cond-mat.str-el] 27 Feb 2013

arxiv: v2 [cond-mat.str-el] 27 Feb 2013 Spin-boson coupling in continuous-time quantum Monte Carlo Junya Otsuki 1,2 1 Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, D-86135

More information

Quantum Monte Carlo investigations of correlated electron systems, present and future. Zi Yang Meng ( 孟子杨 )

Quantum Monte Carlo investigations of correlated electron systems, present and future. Zi Yang Meng ( 孟子杨 ) Quantum Monte Carlo investigations of correlated electron systems, present and future Zi Yang Meng ( 孟子杨 ) http://ziyangmeng.iphy.ac.cn Collaborators Xiao Yan Xu Yoni Schattner Zi Hong Liu Erez Berg Chuang

More information

A New look at the Pseudogap Phase in the Cuprates.

A New look at the Pseudogap Phase in the Cuprates. A New look at the Pseudogap Phase in the Cuprates. Patrick Lee MIT Common themes: 1. Competing order. 2. superconducting fluctuations. 3. Spin gap: RVB. What is the elephant? My answer: All of the above!

More information

Spatial and temporal propagation of Kondo correlations. Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund

Spatial and temporal propagation of Kondo correlations. Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund Spatial and temporal propagation of Kondo correlations Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund Collaborators Collaborators Benedikt Lechtenberg Collaborators

More information

Quantum Phase Transition in a Partially Frustrated System: CePdAl

Quantum Phase Transition in a Partially Frustrated System: CePdAl Institute of Physics, Chinese Academy of Sciences Heavy Fermion Physics: Perspective and Outlook Quantum Phase Transition in a Partially Frustrated System: CePdAl Hilbert v. Löhneysen Physikalisches Institut

More information

A Holographic Model of the Kondo Effect (Part 1)

A Holographic Model of the Kondo Effect (Part 1) A Holographic Model of the Kondo Effect (Part 1) Andy O Bannon Quantum Field Theory, String Theory, and Condensed Matter Physics Kolymbari, Greece September 1, 2014 Credits Based on 1310.3271 Johanna Erdmenger

More information

Non Fermi Liquids: Theory and Experiment. Challenges of understanding Critical and Normal Heavy Fermion Fluids

Non Fermi Liquids: Theory and Experiment. Challenges of understanding Critical and Normal Heavy Fermion Fluids Beyond Quasiparticles: New Paradigms for Quantum Fluids Aspen Center for Physics 14-17 June, 2014 Non Fermi Liquids: Theory and Experiment. Challenges of understanding Critical and Normal Heavy Fermion

More information

O. Parcollet CEA-Saclay FRANCE

O. Parcollet CEA-Saclay FRANCE Cluster Dynamical Mean Field Analysis of the Mott transition O. Parcollet CEA-Saclay FRANCE Dynamical Breakup of the Fermi Surface in a doped Mott Insulator M. Civelli, M. Capone, S. S. Kancharla, O.P.,

More information

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 )

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 ) Revealing fermionic quantum criticality from new Monte Carlo techniques Zi Yang Meng ( 孟子杨 ) http://ziyangmeng.iphy.ac.cn Collaborators and References Xiao Yan Xu Zi Hong Liu Chuang Chen Gao Pei Pan Yang

More information

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory From utzwiller Wave Functions to Dynamical Mean-Field Theory Dieter Vollhardt Autumn School on Correlated Electrons DMFT at 25: Infinite Dimensions Forschungszentrum Jülich, September 15, 2014 Supported

More information

Quantum magnetism and the theory of strongly correlated electrons

Quantum magnetism and the theory of strongly correlated electrons Quantum magnetism and the theory of strongly correlated electrons Johannes Reuther Freie Universität Berlin Helmholtz Zentrum Berlin? Berlin, April 16, 2015 Johannes Reuther Quantum magnetism () Berlin,

More information

Quantum phase transitions and Fermi surface reconstruction

Quantum phase transitions and Fermi surface reconstruction Quantum phase transitions and Fermi surface reconstruction Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski Matthias Punk Erez Berg HARVARD 1. Fate of the Fermi surface: reconstruction or

More information

Holographic Kondo and Fano Resonances

Holographic Kondo and Fano Resonances Holographic Kondo and Fano Resonances Andy O Bannon Disorder in Condensed Matter and Black Holes Lorentz Center, Leiden, the Netherlands January 13, 2017 Credits Johanna Erdmenger Würzburg Carlos Hoyos

More information

Serge Florens. ITKM - Karlsruhe. with: Lars Fritz and Matthias Vojta

Serge Florens. ITKM - Karlsruhe. with: Lars Fritz and Matthias Vojta 0.5 setgray0 0.5 setgray1 Universal crossovers and critical dynamics for quantum phase transitions in impurity models Serge Florens ITKM - Karlsruhe with: Lars Fritz and Matthias Vojta p. 1 Summary The

More information

(r) 2.0 E N 1.0

(r) 2.0 E N 1.0 The Numerical Renormalization Group Ralf Bulla Institut für Theoretische Physik Universität zu Köln 4.0 3.0 Q=0, S=1/2 Q=1, S=0 Q=1, S=1 E N 2.0 1.0 Contents 1. introduction to basic rg concepts 2. introduction

More information

A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID

A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID ABSTRACT--- I demonstrate a contradiction which arises if we assume that the Fermi surface in a heavy electron metal represents

More information

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE ANDREAS W.W. LUDWIG (UC-Santa Barbara) work done in collaboration with: Bela Bauer (Microsoft Station-Q, Santa

More information

Odd-frequency superconductivity in two-channel Kondo lattice and its electromagnetic response

Odd-frequency superconductivity in two-channel Kondo lattice and its electromagnetic response 2014/06/20 (fri) @NHSCP2014 Odd-frequency superconductivity in two-channel Kondo lattice and its electromagnetic response Department of Basic Science, The University of Tokyo JSPS Postdoctoral Fellow Shintaro

More information

Quantum spin systems - models and computational methods

Quantum spin systems - models and computational methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Quantum spin systems - models and computational methods Anders W. Sandvik, Boston University Lecture outline Introduction

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Sep 2004

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Sep 2004 Superconductivity in CeCoIn 5 x Sn x : Veil Over an Ordered State or Novel Quantum Critical Point? arxiv:cond-mat/0409559v1 [cond-mat.str-el] 21 Sep 2004 E. D. Bauer, C. Capan, F. Ronning, R. Movshovich,

More information

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) New perspectives in superconductors E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) E. Bascones leni@icmm.csic.es Outline Talk I: Correlations in iron superconductors Introduction

More information

Strange metal from local quantum chaos

Strange metal from local quantum chaos Strange metal from local quantum chaos John McGreevy (UCSD) hello based on work with Daniel Ben-Zion (UCSD) 2017-08-26 Compressible states of fermions at finite density The metallic states that we understand

More information

arxiv: v1 [cond-mat.str-el] 14 Dec 2017

arxiv: v1 [cond-mat.str-el] 14 Dec 2017 Uniaxial stress tuning of geometrical frustration in a Kondo lattice R. Küchler 1,2, C. Stingl 2, Y. Tokiwa 2, M. S. Kim 3, T. Takabatake 3, and P. Gegenwart 2 1 Max Planck Institute for Chemical Physics

More information

Two energy scales and slow crossover in YbAl 3

Two energy scales and slow crossover in YbAl 3 Two energy scales and slow crossover in YbAl 3 Jon Lawrence University of California, Irvine http://www.physics.uci.edu/~jmlawren/research.html YbAl 3 is an intermediate valence (IV) compound with a large

More information

Controllable chirality-induced geometrical Hall effect in a frustrated highlycorrelated

Controllable chirality-induced geometrical Hall effect in a frustrated highlycorrelated Supplementary Information Controllable chirality-induced geometrical Hall effect in a frustrated highlycorrelated metal B. G. Ueland, C. F. Miclea, Yasuyuki Kato, O. Ayala Valenzuela, R. D. McDonald, R.

More information

How do Fermi liquids get heavy and die? Abstract

How do Fermi liquids get heavy and die? Abstract How do Fermi liquids get heavy and die? P. Coleman, 1 C. Pépin, 2 Qimiao Si, 3 and R. Ramazashvili 4 1 Center for Materials Theory, Department of Physics and Astronomy, Rutgers University, Piscataway,

More information

Intermediate valence in Yb Intermetallic compounds

Intermediate valence in Yb Intermetallic compounds Intermediate valence in Yb Intermetallic compounds Jon Lawrence University of California, Irvine This talk concerns rare earth intermediate valence (IV) metals, with a primary focus on certain Yb-based

More information

Finite-temperature properties of the two-dimensional Kondo lattice model

Finite-temperature properties of the two-dimensional Kondo lattice model PHYSICAL REVIEW B VOLUME 61, NUMBER 4 15 JANUARY 2000-II Finite-temperature properties of the two-dimensional Kondo lattice model K. Haule J. Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia J. Bonča

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi: 1.138/nPHYS1852 Supplementary material: Magnetically driven superconductivity in CeCu 2 Si 2 O. Stockert, 1, J. Arndt, 1 E. Faulhaber, 2, 3 C. Geibel, 1 H. S. Jeevan, 1,

More information

Quantum criticality of Fermi surfaces

Quantum criticality of Fermi surfaces Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface

More information

Review of typical behaviours observed in strongly correlated systems. Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN, F14050 Caen.

Review of typical behaviours observed in strongly correlated systems. Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN, F14050 Caen. Review of typical behaviours observed in strongly correlated systems Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN, F14050 Caen. Introduction : Major part of solid state physics of the second part

More information

CFT approach to multi-channel SU(N) Kondo effect

CFT approach to multi-channel SU(N) Kondo effect CFT approach to multi-channel SU(N) Kondo effect Sho Ozaki (Keio Univ.) In collaboration with Taro Kimura (Keio Univ.) Seminar @ Chiba Institute of Technology, 2017 July 8 Contents I) Introduction II)

More information

Slow Spin Dynamics in Non-Fermi-Liquid UCu 5 x Pd x, x = 1.0 and 1.5 arxiv:cond-mat/ v1 [cond-mat.str-el] 5 Sep 2001

Slow Spin Dynamics in Non-Fermi-Liquid UCu 5 x Pd x, x = 1.0 and 1.5 arxiv:cond-mat/ v1 [cond-mat.str-el] 5 Sep 2001 Slow Spin Dynamics in Non-Fermi-Liquid UCu 5 x Pd x, x = 1. and 1.5 arxiv:cond-mat/197v1 [cond-mat.str-el] 5 Sep 21 D. E. MacLaughlin a, R. H. Heffner b O. O. Bernal c G. J. Nieuwenhuys d J. E. Sonier

More information

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 Kondo Effect in Metals and Quantum Dots Jan von Delft

More information

3. Quantum matter without quasiparticles

3. Quantum matter without quasiparticles 1. Review of Fermi liquid theory Topological argument for the Luttinger theorem 2. Fractionalized Fermi liquid A Fermi liquid co-existing with topological order for the pseudogap metal 3. Quantum matter

More information

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu Quantum phases of antiferromagnets and the underdoped cuprates Talk online: sachdev.physics.harvard.edu Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and

More information

Small and large Fermi surfaces in metals with local moments

Small and large Fermi surfaces in metals with local moments Small and large Fermi surfaces in metals with local moments T. Senthil (MIT) Subir Sachdev Matthias Vojta (Augsburg) cond-mat/0209144 Transparencies online at http://pantheon.yale.edu/~subir Luttinger

More information

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality Hans-Henning Klauss Institut für Festkörperphysik TU Dresden 1 References [1] Stephen Blundell, Magnetism in Condensed

More information

Relativistic magnetotransport in graphene

Relativistic magnetotransport in graphene Relativistic magnetotransport in graphene Markus Müller in collaboration with Lars Fritz (Harvard) Subir Sachdev (Harvard) Jörg Schmalian (Iowa) Landau Memorial Conference June 6, 008 Outline Relativistic

More information

Quantum critical itinerant ferromagnetism

Quantum critical itinerant ferromagnetism Quantum critical itinerant ferromagnetism Belitz et al., PRL 2005 Cavendish Laboratory University of Cambridge Two types of ferromagnetism Localised ferromagnetism: moments localised in real space Ferromagnet

More information

arxiv: v1 [cond-mat.mtrl-sci] 30 Dec 2018

arxiv: v1 [cond-mat.mtrl-sci] 30 Dec 2018 Journal of the Physical Society of Japan FULL PAPERS Navigating the trends in the proximity to magnetic quantum critical point and superconductivity for Ce-based heavy-fermion compounds Munehisa Matsumoto,

More information

"From a theoretical tool to the lab"

From a theoretical tool to the lab N "From a theoretical tool to the lab" Aline Ramires Institute for Theoretical Studies - ETH - Zürich Cold Quantum Coffee ITP - Heidelberg University - 13th June 2017 ETH - Hauptgebäude The Institute for

More information

Origin of non-fermi liquid behavior in heavy fermion systems: A conceptual view

Origin of non-fermi liquid behavior in heavy fermion systems: A conceptual view Origin of non-fermi liquid behavior in heavy fermion systems: A conceptual view Swapnil Patil* Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi

More information

Heavy fermions : condensed matter theory perspective

Heavy fermions : condensed matter theory perspective Heavy fermions : condensed matter theory perspective C. Pépin (IPhT, CEA-Saclay + IIP, Natal) M. Norman (Argonne) I. Paul (U. Paris VI) A. Benlagra (Dresden) K-S. Kim (Pohang, Korea) KITP, Oct. 13th 2011

More information

Lecture 2: Deconfined quantum criticality

Lecture 2: Deconfined quantum criticality Lecture 2: Deconfined quantum criticality T. Senthil (MIT) General theoretical questions Fate of Landau-Ginzburg-Wilson ideas at quantum phase transitions? (More precise) Could Landau order parameters

More information

Can superconductivity emerge out of a non Fermi liquid.

Can superconductivity emerge out of a non Fermi liquid. Can superconductivity emerge out of a non Fermi liquid. Andrey Chubukov University of Wisconsin Washington University, January 29, 2003 Superconductivity Kamerling Onnes, 1911 Ideal diamagnetism High Tc

More information

Spinon magnetic resonance. Oleg Starykh, University of Utah

Spinon magnetic resonance. Oleg Starykh, University of Utah Spinon magnetic resonance Oleg Starykh, University of Utah May 17-19, 2018 Examples of current literature 200 cm -1 = 6 THz Spinons? 4 mev = 1 THz The big question(s) What is quantum spin liquid? No broken

More information

Nematic and Magnetic orders in Fe-based Superconductors

Nematic and Magnetic orders in Fe-based Superconductors Nematic and Magnetic orders in Fe-based Superconductors Cenke Xu Harvard University Collaborators: Markus Mueller, Yang Qi Subir Sachdev, Jiangping Hu Collaborators: Subir Sachdev Markus Mueller Yang Qi

More information

Numerical Methods in Quantum Many-body Theory. Gun Sang Jeon Pyeong-chang Summer Institute 2014

Numerical Methods in Quantum Many-body Theory. Gun Sang Jeon Pyeong-chang Summer Institute 2014 Numerical Methods in Quantum Many-body Theory Gun Sang Jeon 2014-08-25 Pyeong-chang Summer Institute 2014 Contents Introduction to Computational Physics Monte Carlo Methods: Basics and Applications Numerical

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 7: Magnetic excitations - Phase transitions and the Landau mean-field theory. - Heisenberg and Ising models. - Magnetic excitations. External parameter, as for

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Outline: with T. Senthil, Bangalore A. Vishwanath, UCB S. Sachdev, Yale L. Balents, UCSB conventional quantum critical points Landau paradigm Seeking a new paradigm -

More information

Electron Correlation

Electron Correlation Series in Modern Condensed Matter Physics Vol. 5 Lecture Notes an Electron Correlation and Magnetism Patrik Fazekas Research Institute for Solid State Physics & Optics, Budapest lb World Scientific h Singapore

More information

Kondo satellites in photoemission spectra of heavy fermion compounds

Kondo satellites in photoemission spectra of heavy fermion compounds Kondo satellites in photoemission spectra of heavy fermion compounds P. Wölfle, Universität Karlsruhe J. Kroha, Universität Bonn Outline Introduction: Kondo resonances in the photoemission spectra of Ce

More information

Réunion du GDR MICO Dinard 6-9 décembre Frustration and competition of interactions in the Kondo lattice: beyond the Doniach s diagram

Réunion du GDR MICO Dinard 6-9 décembre Frustration and competition of interactions in the Kondo lattice: beyond the Doniach s diagram Réunion du GDR MICO Dinard 6-9 décembre 2010 1 Frustration and competition of interactions in the Kondo lattice: beyond the Doniach s diagram Claudine Lacroix, institut Néel, CNRS-UJF, Grenoble 1- The

More information

Metals without quasiparticles

Metals without quasiparticles Metals without quasiparticles A. Review of Fermi liquid theory B. A non-fermi liquid: the Ising-nematic quantum critical point C. Fermi surfaces and gauge fields Metals without quasiparticles A. Review

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor

Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor T (K) 1 5 Fe.8 Co.2 Si ρ xy (µω cm) J.F. DiTusa N. Manyala LSU Y. Sidis D.P. Young G. Aeppli UCL Z. Fisk FSU T C 1 Nature Materials 3, 255-262 (24)

More information

arxiv: v1 [cond-mat.str-el] 15 Jan 2015

arxiv: v1 [cond-mat.str-el] 15 Jan 2015 arxiv:1501.03852v1 [cond-mat.str-el] 15 Jan 2015 High Pressure Measurements of the Resistivity of β-ybalb 4 1. Introduction T Tomita, K Kuga, Y Uwatoko and S Nakatsuji Institute for Solid State Physics,

More information

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST Laboratoire National des Champs Magnétiques Intenses Toulouse Collaborations D. Vignolles B. Vignolle C. Jaudet J.

More information

WORLD SCIENTIFIC (2014)

WORLD SCIENTIFIC (2014) WORLD SCIENTIFIC (2014) LIST OF PROBLEMS Chapter 1: Magnetism of Free Electrons and Atoms 1. Orbital and spin moments of an electron: Using the theory of angular momentum, calculate the orbital

More information

Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets

Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets Talk at Rutherford Appleton Lab, March 13, 2007 Peter Kopietz, Universität Frankfurt collaborators: Nils Hasselmann,

More information

Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005.

Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005. Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005. Q 1 (Balents) Are quantum effects important for physics of hexagonal

More information

An introduction to the dynamical mean-field theory. L. V. Pourovskii

An introduction to the dynamical mean-field theory. L. V. Pourovskii An introduction to the dynamical mean-field theory L. V. Pourovskii Nordita school on Photon-Matter interaction, Stockholm, 06.10.2016 OUTLINE The standard density-functional-theory (DFT) framework An

More information

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models Local moment approach to the multi - orbital single impurity Anderson and Hubbard models Anna Kauch Institute of Theoretical Physics Warsaw University PIPT/Les Houches Summer School on Quantum Magnetism

More information

Routes to heavy-fermion superconductivity

Routes to heavy-fermion superconductivity Journal of Physics: Conference Series OPEN ACCESS Routes to heavy-fermion superconductivity To cite this article: F Steglich et al 2013 J. Phys.: Conf. Ser. 449 012028 View the article online for updates

More information