Quantum matter without quasiparticles

Size: px
Start display at page:

Download "Quantum matter without quasiparticles"

Transcription

1 HARVARD Quantum matter without quasiparticles Frontiers in Many Body Physics: Memorial for Lev Petrovich Gor kov National High Magnetic Field Laboratory, Tallahassee Subir Sachdev January 13, 2018 Talk online: sachdev.physics.harvard.edu

2 Ubiquitous Strange, Bad, or Incoherent, metal has a resistivity,, which obeys T, and in some cases h/e 2 (in two dimensions), where h/e 2 is the quantum unit of resistance.

3 Strange metals just got stranger B-linear magnetoresistance!? Ba-122 LSCO I. M. Hayes et. al., Nat. Phys P. Giraldo-Gallo et. al., arxiv:

4 Strange metals just got stranger Scaling between B and T!? Ba-122 Ba-122 I. M. Hayes et. al., Nat. Phys. 2016

5 Theories of metallic states without quasiparticles without disorder Breakdown of quasiparticles arises from long-wavelength coupling of electrons to some bosonic collective mode. In all cases this can be written in terms of a continuum theory with a conserved momentum. The critical theory has zero resistance, even though the electron quasiparticles do not exist. Need to add irrelevant (umklapp) e ects to obtain a non-zero resistivity, but this not yield a large linearin-t resistivity.

6 Theories of metallic states without quasiparticles in the presence of disorder Well-known perturbative theory of disordered metals has 2 classes of known fixed points, the insulator at strong disorder, and the metal at weak disorder. The latter state has long-lived, extended quasiparticle excitations (which are not plane waves). Needed: a metallic fixed point at intermediate disorder and strong interactions without quasiparticle excitations. Although disorder is present, it largely self-averages at long scales.

7 Theories of metallic states without quasiparticles in the presence of disorder Well-known perturbative theory of disordered metals has 2 classes of known fixed points, the insulator at strong disorder, and the metal at weak disorder. The latter state has long-lived, extended quasiparticle excitations (which are not plane waves). Needed: a metallic fixed point at intermediate disorder and strong interactions without quasiparticle excitations. Although disorder is present, it largely self-averages at long scales. SYK models

8 The Sachdev-Ye-Kitaev (SYK) model Pick a set of random positions

9 The SYK model Place electrons randomly on some sites

10 The SYK model Entangle electrons pairwise randomly

11 The SYK model Entangle electrons pairwise randomly

12 The SYK model Entangle electrons pairwise randomly

13 The SYK model Entangle electrons pairwise randomly

14 The SYK model Entangle electrons pairwise randomly

15 The SYK model Entangle electrons pairwise randomly

16 The SYK model This describes both a strange metal and a black hole!

17 H = The SYK model (See also: the 2-Body Random Ensemble in nuclear physics; did not obtain the large N limit; T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, and S.S.M. Wong, Rev. Mod. Phys. 53, 385 (1981)) 1 (2N) 3/2 NX i,j,k,`=1 U ij;k` c i c j c k c` µ X i c i c j + c j c i =0, c i c j + c j c i = ij Q = 1 X c i N c i i c i c i U ij;k` are independent random variables with U ij;k` = 0 and U ij;k` 2 = U 2 N!1yields critical strange metal. S. Sachdev and J. Ye, PRL 70, 3339 (1993) A. Kitaev, unpublished; S. Sachdev, PRX 5, (2015)

18 The SYK model Feynman graph expansion in J ij.., and graph-by-graph average, yields exact equations in the large N limit: G(i!) = 1 i! + µ (i!) G( =0 )=Q., ( ) = U 2 G 2 ( )G( ) S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993)

19 The SYK model T = 0 fermion Green s function is singular: G( ) 1 p at large. (Fermi liquids with quasiparticles have G( ) 1/ ) S. Sachdev and J. Ye, PRL 70, 3339 (1993)

20 The SYK model T = 0 fermion Green s function is singular: G( ) 1 p at large. (Fermi liquids with quasiparticles have G( ) 1/ ) T > 0 Green s function has conformal invariance, and is dephased at the characteristic scale k B T/~, which is independent of U. G e 2 ET 1/2 T sin( k B T /~) E measures particle-hole asymmetry. A. Georges and O. Parcollet PRB 59, 5341 (1999) S. Sachdev, PRX, 5, (2015)

21 The SYK model T = 0 fermion Green s function is singular: G( ) 1 p at large. (Fermi liquids with quasiparticles have G( ) 1/ ) T > 0 Green s function has conformal invariance, and is dephased at the characteristic scale k B T/~, which is independent of U. G e 2 ET 1/2 T sin( k B T /~) E measures particle-hole asymmetry. The last property indicates eq ~/(k B T ), and this has been found in a recent numerical study. A. Eberlein, V. Kasper, S. Sachdev, and J. Steinberg, arxiv:

22 The SYK model G R (!)G A (!) ReG R (!) ImG R (!)! Green s functions away from half-filling So the Green s functions display thermal damping at a scale set by T alone, which is independent of U.

23 arxiv: [pdf, other] Title: A strongly correlated metal built from Sachdev-Ye-Kitaev models Authors: Xue-Yang Building Song, Chao-Ming a Jian, metal Leon Balents Comments: 17 pages, 6 figures See also A. Georges and O. Parcollet PRB 59, 5341 (1999) t... U X X H = X x X... U ijkl,x c ix c jx c kx c lx + X X t ij,xx 0c i,x c j,x 0 i<j,k<l hxx 0 i i,j U ijkl 2 = 2U 2 N 3 Gaussian distrib d t ij,x,x 0 2 = t 2 0 /N. sm, one studies

24 arxiv: [pdf, other] Title: A strongly correlated metal built from Sachdev-Ye-Kitaev models Authors: Xue-Yang Song, Chao-Ming Jian, Leon Balents Building a metal Comments: 17 pages, 6 figures See also A. Georges and O. Parcollet PRB 59, 5341 (1999) t... U Large N equations G(i! n ) 1 = i! n + µ 4 (i! n ) zt 2 0 G(i! n), 4 ( ) = U 2 0 G( )2 G( ),

25 arxiv: [pdf, other] Title: A strongly correlated metal built from Sachdev-Ye-Kitaev models Authors: Xue-Yang Song, Chao-Ming Jian, Leon Balents Comments: 17 pages, 6 figures See also A. Georges and O. Parcollet PRB 59, 5341 (1999) There is a low coherence scale E c t 2 0/U, with SYK criticality at T>E c and heavy Fermi liquid behavior for T<E c. Z

26 arxiv: [pdf, other] Title: A strongly correlated metal built from Sachdev-Ye-Kitaev models Authors: Xue-Yang Song, Chao-Ming Jian, Leon Balents Comments: 17 pages, 6 figures See also A. Georges and O. Parcollet PRB 59, 5341 (1999) There is a low coherence scale E c t 2 0/U, with SYK criticality at T>E c and heavy Fermi liquid behavior for T<E c. From the Kubo formula, we have the conductivity Re[ (!)] / t 2 0 Z f(! + ) d f( )! where A(!) =Im[G R (!)]. A( )A(! + ) At T>E c,usinga(!)! 1/2 F (!/T ), this yields the bad metal behavior e2 h t 2 0 U 1 T ; h e 2 T E c

27 34th Jerusalem Winter School in Theoretical Physics: New Horizons in Quantum January 5, 2017, this https URL ;(v2) added refs, figures, remarks Subjects: Strongly Correlated Electrons (cond-mat.str-el); High Energy Physics Quantum Physics (quant-ph) 2. arxiv: [pdf, other] Title: Magnetotransport in a model of a disordered strange metal Authors: Aavishkar A. Patel, John McGreevy, Daniel P. Arovas, Subir Sachdev Comments: 18+epsilon pages + Appendices + References, 4 figures Subjects: Strongly Correlated Electrons (cond-mat.str-el); Disordered Systems and (cond-mat.dis-nn); High Energy Physics - Theory (hep-th) 3. arxiv: [pdf, other] Title: Topological order in the pseudogap metal Authors: Mathias S. Scheurer, Shubhayu Chatterjee, Wei Wu, Michel Ferrero, An Sachdev Comments: 8+15 pages, 10 figures ps://arxiv.org/find Aavishkar Patel

28 H = + Infecting a Fermi liquid and making it SYK Mobile electrons (c, green) interacting with SYK quantum dots (f, blue) with exchange interactions. This yields the first model agreeing with magnetotransport in strange metals! t 1 NM 1/2 MX hrr 0 i; i=1 NX r; i,j=1 (c ri c r 0 i +h.c.) µ c M X MX k,l=1 r; i=1 c ri c ri µ g r ijklf ri f rjc rk c rl + 1 N 3/2 NX r; i=1 NX r; i,j,k,l=1 f ri f ri J r ijklf ri f rj f rkf rl. A. A. Patel, J. McGreevy, D. P. Arovas and S. Sachdev, arxiv: Similar results in non-random models by Y. Werman, D. Chowdhury, T. Senthil, and E. Berg, to appear

29 Infecting a Fermi liquid and making it SYK ( 0 )= J 2 G 2 ( 0 )G( 0 ) G(i! n )= M N g2 G( 0 )G c ( 0 )G c ( 0 ), 1 i! n + µ (i! n ), (f electrons) c ( 0 )= g 2 G c ( 0 )G( 0 )G( 0 ), G c (i! n )= X 1 i! n k + µ c c (i! n ). (c electrons) k Exactly solvable in the large N,M limits! Low-T phase: c electrons form a Marginal Fermi-liquid (MFL), f electrons are local SYK models Similar results in non-random models by Y. Werman, D. Chowdhury, T. Senthil, and E. Berg, to appear

30 Infecting a Fermi liquid and making it SYK High-T phase: c electrons form an incoherent metal (IM), with local Green s function, and no notion of momentum; f electrons remain local SYK models G c ( ) = G( ) = C c p 1+e 4 E c C p 1+e 4 E 1/2 T e 2 E ct, sin( T ) T sin( T ) 1/2 e 2 ET, 0 apple < Similar results in non-random models by Y. Werman, D. Chowdhury, T. Senthil, and E. Berg, to appear

31 Infecting a Fermi liquid and making it SYK Low-T phase: c electrons form a Marginal Fermi-liquid (MFL), f electrons are local SYK models c (i! n )= ig 2 (0)T 2J cosh 1/2 (2 E) 3/2!n T ln 2 Te E 1 J +! n T!n 2 T +, c (i! n )! ig 2 (0) 2J cosh 1/2 (2 E) 3/2! n ln!n e E 1 J,! n T ( (0) 1/t) Similar results in non-random models by Y. Werman, D. Chowdhury, T. Senthil, and E. Berg, to appear

32 Linear-in-T resistivity Both the MFL and the IM are not translationally-invariant and have linear-in-t resistivities! MFL 0 = MT 1 J IM 0 =( 1/2 /8) MT 1 J v 2 F g 2 (0)g 2 cosh 1/2 (2 E) cosh(2 E c ). [Can be obtained straightforwardly from Kubo formula in the large-n,m limits] cosh 1/2 (2 E). (v F t) The IM is also a Bad metal with IM 0 1 Similar results in non-random models by Y. Werman, D. Chowdhury, T. Senthil, and E. Berg, to appear

33 Magnetotransport: Marginal-Fermi liquid Thanks to large N,M, we can also exactly derive the linearresponse Boltzmann equation for non-quantizing magnetic fields Re[ c R(!)])@ t n(t, k,!)+v F ˆk E(t) n 0 f (!)+v F (ˆk Bẑ) r k n(t, k,!) =2 n(t, k,!)im[ c R(!)], MFL L = M v2 F (0) 16T MFL H = M v2 F (0) 16T (B = eba 2 /~) (i.e. flux per unit cell) Z 1 1 Z 1 de 1 2 sech2 1 de 1 2 sech2 E1 Im[ c R (E 1)] 2T Im[ c R (E 1)] 2 +(v F /(2k F )) 2 B 2, (v F /(2k F ))B 2T Im[ c R (E 1)] 2 +(v F /(2k F )) 2 B 2. E1 MFL L T 1 s L ((v F /k F )(B/T )), MFL H BT 2 s H ((v F /k F )(B/T )). s L,H (x!1) / 1/x 2, s L,H (x! 0) / x 0. Scaling between magnetic field and temperature in orbital magnetotransport!

34 Magnetotransport with mesoscopic homogeneity No macroscopic momentum, so equations describing charge transport are just r I(x) =0, I(x) = (x) E(x), E(x) = r (x). A. M. Dykhne, Anomalous plasma resistance in a strong magnetic field, Journal of Experimental and Theoretical Physics 32, 348(1971). D. Stroud, Generalized e ective-medium approach to the conductivity of an inhomogeneous material, Phys. Rev. B 12, 3368(1975). M. M. Parish and P. B. Littlewood, Non-saturating magnetoresistance in heavily disordered semiconductors, Nature 426, 162(2003), cond-mat/ M. M. Parish and P. B. Littlewood, Classical magnetotransport of inhomogeneous conductors, Phys. Rev. B 72, (2005), cond-mat/ V. Guttal and D. Stroud, Model for a macroscopically disordered conductor with an exactly linear high-field magnetoresistance, Phys. Rev. B 71, (2005), cond-mat/ J. C. W. Song, G. Refael, and P. A. Lee, Linear magnetoresistance in metals: Guiding center di usion in a smooth random potential, Phys. Rev. B 92, (2015), arxiv: [cond-mat.mes-hall]. N. Ramakrishnan, Y. T. Lai, S. Lara, M. M. Parish, and S. Adam, Equivalence of E ective Medium and Random Resistor Network models for disorder-induced unsaturating linear magnetoresistance, ArXiv e-prints (2017), arxiv: [cond-mat.mes-hall].

35 Magnetotransport with mesoscopic homogeneity No macroscopic momentum, so equations describing charge transport are just r I(x) =0, I(x) = (x) E(x), E(x) = r (x). Current path length increases linearly with B at large B due to local Hall effect, which causes the global resistance to increase linearly with B at large B. M.M. Parish and P.B. Littlewood, Nature 426, 162 (2003)

36 Solvable toy model: two-component disorder Two types of domains a,b with different carrier densities and lifetimes randomly distributed in approximately equal fractions over sample. Effective medium equations can be solved exactly I + a 2 e L e 1 ( a e )+ I + b 2 e L e 1 ( b e )=0. e L e H e L e2 L + H e2 e H /B = e2 L + H e2 q (B/m) 2 a MFL 0a b MFL 0b = a b( MFL 0a a + b m a b MFL 0a + 0b MFL a 2 b MFL 0a + MFL 0b MFL 0b ) 1/2 MFL 0a + 0b MFL. (m = k F /v F 1/t) 2, a,b T (i.e. effective transport scattering rates) e L p c 1 T 2 + c 2 B 2 Scaling between B and T at microscopic orbital level has been transferred to global MR!

37 Magnetotransport in strange metals Engineered a model of a Fermi surface coupled to SYK quantum dots which leads to a marginal Fermi liquid with a linear-in-t resistance, with a magnetoresistance which scales as B T.

38 Magnetotransport in strange metals Engineered a model of a Fermi surface coupled to SYK quantum dots which leads to a marginal Fermi liquid with a linear-in-t resistance, with a magnetoresistance which scales as B T. Mesoscopic disorder then leads to linear-in-b magnetoresistance, and a combined dependence which scales as p B 2 + T 2

39 Magnetotransport in strange metals Engineered a model of a Fermi surface coupled to SYK quantum dots which leads to a marginal Fermi liquid with a linear-in-t resistance, with a magnetoresistance which scales as B T. Mesoscopic disorder then leads to linear-in-b magnetoresistance, and a combined dependence which scales as p B 2 + T 2 Higher temperatures lead to an incoherent metal with a local Green s function and a linear-in-t resistance, but negligible magnetoresistance.

40 This simple two-component model describes a new state of matter which is realized by electrons in the presence of strong interactions and disorder. Can such a model be realized as a fixed-point of a generic theory of strongly-interacting electrons in the presence of disorder? Can we start from a single-band Hubbard model with disorder, and end up with such two-band fixed point, with emergent local conservation laws?

41 10' 0. Electrons in doped silicon appear to separate into two components: localized spin moments and itinerant electrons P 2 [ " T(K) F1G. 1. Temperature dependence of normalized susceptibility g/gp, ~; of three Si:P,B samples with dia'erent normalized electron densities, n/n, =0. 58, I.I, and 1.8. Solid lines through data are a guide to the eye. M. J. Hirsch, D.F. Holcomb, R.N. Bhatt, and M.A. Paalanen, PRL 68, 1418 (1992) M. Milovanovic, S. Sachdev and R.N. Bhatt, PRL 63, 82 (1989) A.C. Potter, M. Barkeshli, J. McGreevy, T. Senthil, PRL 109, (2012)

Transport in non-fermi liquids

Transport in non-fermi liquids HARVARD Transport in non-fermi liquids Theory Winter School National High Magnetic Field Laboratory, Tallahassee Subir Sachdev January 12, 2018 Talk online: sachdev.physics.harvard.edu Quantum matter without

More information

The disordered Hubbard model: from Si:P to the high temperature superconductors

The disordered Hubbard model: from Si:P to the high temperature superconductors The disordered Hubbard model: from Si:P to the high temperature superconductors Subir Sachdev April 25, 2018 Workshop on 2D Quantum Metamaterials NIST, Gaithersburg, MD HARVARD 1. Disordered Hubbard model

More information

From the SYK model to a theory of the strange metal

From the SYK model to a theory of the strange metal HARVARD From the SYK model to a theory of the strange metal International Centre for Theoretical Sciences, Bengaluru Subir Sachdev December 8, 2017 Talk online: sachdev.physics.harvard.edu Magnetotransport

More information

Ultra-quantum metals. Subir Sachdev February 5, 2018 Simons Foundation, New York HARVARD

Ultra-quantum metals. Subir Sachdev February 5, 2018 Simons Foundation, New York HARVARD Ultra-quantum metals Subir Sachdev February 5, 2018 Simons Foundation, New York HARVARD aaadi3icdvjnb9naelxnvzffkry5jehqilrsjwkl4vsvc9ykagilbejw67g9qr3r7q4brvb4l1z4k1w4qmwfa/+ftekigmboz++9mz1967diudzb8mp1rly9dv3gxk3/1u07d+81nu+/07judidmzlidh1rjxguodtczhhckar5mebsevfzqr2eonjfi0mwlhoc0etzmjbplttbdfytehiukotcofv4w5kcln7luhpgvwz1qkywwmj2+nyqkbnvtbui+whk63afrpa/xgskulz30m5tk9g0z2/j0tktclhm7vbb8jozmkfinfbrqe1f+xs18g1pepbk1dbousxrkiho9nrqsggiew2grnk5ftazcgjy5arnrakitsqlpdr7vtqibleswmwkrz1es09bp7ax/tlwxwmsbca0mragxhvjwazku96ocyccnkkklrcanztajukfvtwswrmqc/mdqf/4mujxtdoo6mdtossrzatcwlknaj7pbycyvvyazdbc+ktuwlj3qbecwcpqjhlerj1jay8teentayykmrnjlhrxntz7noxxm1kt6b21j/ksblsbehvdcfkvbwdyhxwugrslyj7grkwqmm1tamej2v2apvztzdlrvq7i4kfwfdhudqsd402vu7ddpbdgpnufoltn1+s6e88o5ciyocz+6n92v7jfvk/ffo/e+r62ew/c8cp4o7+cvfkr9bq==

More information

From the SYK model, to a theory of the strange metal, and of quantum gravity in two spacetime dimensions

From the SYK model, to a theory of the strange metal, and of quantum gravity in two spacetime dimensions HARVARD From the SYK model, to a theory of the strange metal, and of quantum gravity in two spacetime dimensions ARO MURI review, University of Maryland October 13, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu

More information

Universal theory of complex SYK models and extremal charged black holes

Universal theory of complex SYK models and extremal charged black holes HARVARD Universal theory of complex SYK models and extremal charged black holes Subir Sachdev Chaos and Order: from Strongly Correlated Systems to Black Holes, Kavli Institute for Theoretical Physics University

More information

Disordered metals without quasiparticles, and charged black holes

Disordered metals without quasiparticles, and charged black holes HARVARD Disordered metals without quasiparticles, and charged black holes String Theory: Past and Present (SpentaFest) International Center for Theoretical Sciences, Bengaluru January 11-13, 2017 Subir

More information

Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal

Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal Workshop on Frontiers of Quantum Materials Rice University, Houston, November 4, 2016 Subir Sachdev Talk online:

More information

Strange metals and black holes

Strange metals and black holes HARVARD Strange metals and black holes Homi Bhabha Memorial Public Lecture Indian Institute of Science Education and Research, Pune November 14, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu

More information

Equilibrium and non-equilibrium dynamics of SYK models

Equilibrium and non-equilibrium dynamics of SYK models Equilibrium and non-equilibrium dynamics of SYK models Strongly interacting conformal field theory in condensed matter physics, Institute for Advanced Study, Tsinghua University, Beijing, June 25-27, 207

More information

Quantum Entanglement, Strange metals, and black holes. Subir Sachdev, Harvard University

Quantum Entanglement, Strange metals, and black holes. Subir Sachdev, Harvard University Quantum Entanglement, Strange metals, and black holes Subir Sachdev, Harvard University Quantum entanglement Quantum Entanglement: quantum superposition with more than one particle Hydrogen atom: Hydrogen

More information

SYK models and black holes

SYK models and black holes SYK models and black holes Black Hole Initiative Colloquium Harvard, October 25, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Wenbo Fu, Harvard Yingfei Gu, Stanford Richard Davison,

More information

Local criticality and marginal Fermi liquid in a solvable model Erez Berg

Local criticality and marginal Fermi liquid in a solvable model Erez Berg Local criticality and marginal Fermi liquid in a solvable model Erez Berg Y. Werman, D. Chowdhury, T. Senthil, and EB, arxiv:xxxx.xxxx Yochai Werman (Weizmann Berkeley) Debanjan Chowdhury (MIT) Senthil

More information

Topological order in the pseudogap metal

Topological order in the pseudogap metal HARVARD Topological order in the pseudogap metal High Temperature Superconductivity Unifying Themes in Diverse Materials 2018 Aspen Winter Conference Aspen Center for Physics Subir Sachdev January 16,

More information

Universal theory of complex SYK models and extremal charged black holes

Universal theory of complex SYK models and extremal charged black holes HARVARD Universal theory of complex SYK models and extremal charged black holes Subir Sachdev Jerusalem Winter School, December 31, 2018 HARVARD Wenbo Fu Yingfei Gu Grigory Tarnopolsky 1. Quantum matter

More information

NEW HORIZONS IN QUANTUM MATTER

NEW HORIZONS IN QUANTUM MATTER The 34 th Jerusalem School in Theoretical Physics NEW HORIZONS IN QUANTUM MATTER 27.12, 2016 5.1, 2017 Photo credit Frans Lanting / www.lanting.com Modern quantum materials realize a remarkably rich set

More information

Strange metal from local quantum chaos

Strange metal from local quantum chaos Strange metal from local quantum chaos John McGreevy (UCSD) hello based on work with Daniel Ben-Zion (UCSD) 2017-08-26 Compressible states of fermions at finite density The metallic states that we understand

More information

General relativity and the cuprates

General relativity and the cuprates General relativity and the cuprates Gary T. Horowitz and Jorge E. Santos Department of Physics, University of California, Santa Barbara, CA 93106, U.S.A. E-mail: gary@physics.ucsb.edu, jss55@physics.ucsb.edu

More information

Quantum Entanglement, Strange metals, and black holes. Subir Sachdev, Harvard University

Quantum Entanglement, Strange metals, and black holes. Subir Sachdev, Harvard University Quantum Entanglement, Strange metals, and black holes Subir Sachdev, Harvard University Quantum Entanglement, Strange metals, and black holes Superconductor, levitated by an unseen magnet, in which countless

More information

Topological order in quantum matter

Topological order in quantum matter HARVARD Topological order in quantum matter Stanford University Subir Sachdev November 30, 2017 Talk online: sachdev.physics.harvard.edu Mathias Scheurer Wei Wu Shubhayu Chatterjee arxiv:1711.09925 Michel

More information

Emergent gauge fields and the high temperature superconductors

Emergent gauge fields and the high temperature superconductors HARVARD Emergent gauge fields and the high temperature superconductors Unifying physics and technology in light of Maxwell s equations The Royal Society, London November 16, 2015 Subir Sachdev Talk online:

More information

Solvable model for a dynamical quantum phase transition from fast to slow scrambling

Solvable model for a dynamical quantum phase transition from fast to slow scrambling Solvable model for a dynamical quantum phase transition from fast to slow scrambling Sumilan Banerjee Weizmann Institute of Science Designer Quantum Systems Out of Equilibrium, KITP November 17, 2016 Work

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals PCTS, Princeton, October 26, 2012 Subir Sachdev Talk online at sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Complex entangled

More information

Mean field theories of quantum spin glasses

Mean field theories of quantum spin glasses Mean field theories of quantum spin glasses Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Talk online: Sachdev Classical Sherrington-Kirkpatrick model H = JS S i j ij i j J ij : a

More information

Quantum criticality of Fermi surfaces

Quantum criticality of Fermi surfaces Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface

More information

Quantum phase transitions and the Luttinger theorem.

Quantum phase transitions and the Luttinger theorem. Quantum phase transitions and the Luttinger theorem. Leon Balents (UCSB) Matthew Fisher (UCSB) Stephen Powell (Yale) Subir Sachdev (Yale) T. Senthil (MIT) Ashvin Vishwanath (Berkeley) Matthias Vojta (Karlsruhe)

More information

A New look at the Pseudogap Phase in the Cuprates.

A New look at the Pseudogap Phase in the Cuprates. A New look at the Pseudogap Phase in the Cuprates. Patrick Lee MIT Common themes: 1. Competing order. 2. superconducting fluctuations. 3. Spin gap: RVB. What is the elephant? My answer: All of the above!

More information

From the pseudogap to the strange metal

From the pseudogap to the strange metal HARVARD From the pseudogap to the strange metal S. Sachdev, E. Berg, S. Chatterjee, and Y. Schattner, PRB 94, 115147 (2016) S. Sachdev and S. Chatterjee, arxiv:1703.00014 APS March meeting March 13, 2017

More information

LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION

LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION Subir Sachdev Center for Theoretical Physics, P.O. Box 6666 Yale University, New Haven, CT 06511 This paper reviews recent progress in understanding the

More information

Exotic phases of the Kondo lattice, and holography

Exotic phases of the Kondo lattice, and holography Exotic phases of the Kondo lattice, and holography Stanford, July 15, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. The Anderson/Kondo lattice models Luttinger s theorem 2. Fractionalized

More information

arxiv: v1 [cond-mat.str-el] 16 Mar 2016

arxiv: v1 [cond-mat.str-el] 16 Mar 2016 Numerical study of fermion and boson models with infinite-range random interactions Wenbo Fu and Subir Sachdev, 2 Department of Physics, Harvard University, arxiv:63.5246v [cond-mat.str-el] 6 Mar 26 Cambridge,

More information

Theory of the Nernst effect near the superfluid-insulator transition

Theory of the Nernst effect near the superfluid-insulator transition Theory of the Nernst effect near the superfluid-insulator transition Sean Hartnoll (KITP), Christopher Herzog (Washington), Pavel Kovtun (KITP), Marcus Mueller (Harvard), Subir Sachdev (Harvard), Dam Son

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 5 Beforehand Yesterday Today Anderson Localization, Mesoscopic

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability Subir Sachdev sachdev.physics.harvard.edu HARVARD y x Fermi surface with full square lattice symmetry y x Spontaneous

More information

Topological order in quantum matter

Topological order in quantum matter HARVARD Topological order in quantum matter Indian Institute of Science Education and Research, Pune Subir Sachdev November 13, 2017 Talk online: sachdev.physics.harvard.edu 1. Classical XY model in 2

More information

A quantum dimer model for the pseudogap metal

A quantum dimer model for the pseudogap metal A quantum dimer model for the pseudogap metal College de France, Paris March 27, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Andrea Allais Matthias Punk Debanjan Chowdhury (Innsbruck)

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

Emergent light and the high temperature superconductors

Emergent light and the high temperature superconductors HARVARD Emergent light and the high temperature superconductors Pennsylvania State University State College, January 21, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu Maxwell's equations:

More information

Quantum spin liquids and the Mott transition. T. Senthil (MIT)

Quantum spin liquids and the Mott transition. T. Senthil (MIT) Quantum spin liquids and the Mott transition T. Senthil (MIT) Friday, December 9, 2011 Band versus Mott insulators Band insulators: even number of electrons per unit cell; completely filled bands Mott

More information

Stability of semi-metals : (partial) classification of semi-metals

Stability of semi-metals : (partial) classification of semi-metals : (partial) classification of semi-metals Eun-Gook Moon Department of Physics, UCSB EQPCM 2013 at ISSP, Jun 20, 2013 Collaborators Cenke Xu, UCSB Yong Baek, Kim Univ. of Toronto Leon Balents, KITP B.J.

More information

Quantum phase transitions in condensed matter

Quantum phase transitions in condensed matter Quantum phase transitions in condensed matter The 8th Asian Winter School on Strings, Particles, and Cosmology, Puri, India January 11-18, 2014 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD

More information

Relativistic magnetotransport in graphene

Relativistic magnetotransport in graphene Relativistic magnetotransport in graphene Markus Müller in collaboration with Lars Fritz (Harvard) Subir Sachdev (Harvard) Jörg Schmalian (Iowa) Landau Memorial Conference June 6, 008 Outline Relativistic

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Talks online at http://sachdev.physics.harvard.edu What is a phase transition? A change in the collective properties of a macroscopic number of atoms What is a quantum

More information

3. Quantum matter without quasiparticles

3. Quantum matter without quasiparticles 1. Review of Fermi liquid theory Topological argument for the Luttinger theorem 2. Fractionalized Fermi liquid A Fermi liquid co-existing with topological order for the pseudogap metal 3. Quantum matter

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

Spinon magnetic resonance. Oleg Starykh, University of Utah

Spinon magnetic resonance. Oleg Starykh, University of Utah Spinon magnetic resonance Oleg Starykh, University of Utah May 17-19, 2018 Examples of current literature 200 cm -1 = 6 THz Spinons? 4 mev = 1 THz The big question(s) What is quantum spin liquid? No broken

More information

Small and large Fermi surfaces in metals with local moments

Small and large Fermi surfaces in metals with local moments Small and large Fermi surfaces in metals with local moments T. Senthil (MIT) Subir Sachdev Matthias Vojta (Augsburg) cond-mat/0209144 Transparencies online at http://pantheon.yale.edu/~subir Luttinger

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003 arxiv:cond-mat/0305637v1 [cond-mat.supr-con] 28 May 2003 The superconducting state in a single CuO 2 layer: Experimental findings and scenario Rushan Han, Wei Guo School of Physics, Peking University,

More information

Integer quantum Hall effect for bosons: A physical realization

Integer quantum Hall effect for bosons: A physical realization Integer quantum Hall effect for bosons: A physical realization T. Senthil (MIT) and Michael Levin (UMCP). (arxiv:1206.1604) Thanks: Xie Chen, Zhengchen Liu, Zhengcheng Gu, Xiao-gang Wen, and Ashvin Vishwanath.

More information

Quantum oscillations in insulators with neutral Fermi surfaces

Quantum oscillations in insulators with neutral Fermi surfaces Quantum oscillations in insulators with neutral Fermi surfaces ITF-Seminar IFW Institute - Dresden October 4, 2017 Inti Sodemann MPI-PKS Dresden Contents Theory of quantum oscillations of insulators with

More information

The underdoped cuprates as fractionalized Fermi liquids (FL*)

The underdoped cuprates as fractionalized Fermi liquids (FL*) The underdoped cuprates as fractionalized Fermi liquids (FL*) R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, Physical Review B 75, 235122 (2007) R. K. Kaul, Y. B. Kim, S. Sachdev, and T.

More information

Which Spin Liquid Is It?

Which Spin Liquid Is It? Which Spin Liquid Is It? Some results concerning the character and stability of various spin liquid phases, and Some speculations concerning candidate spin-liquid phases as the explanation of the peculiar

More information

Tuning order in cuprate superconductors

Tuning order in cuprate superconductors Tuning order in cuprate superconductors arxiv:cond-mat/0201401 v1 23 Jan 2002 Subir Sachdev 1 and Shou-Cheng Zhang 2 1 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120,

More information

Quantum coherent transport in Meso- and Nanoscopic Systems

Quantum coherent transport in Meso- and Nanoscopic Systems Quantum coherent transport in Meso- and Nanoscopic Systems Philippe Jacquod pjacquod@physics.arizona.edu U of Arizona http://www.physics.arizona.edu/~pjacquod/ Quantum coherent transport Outline Quantum

More information

Quantum Monte Carlo study of a Z 2 gauge theory containing phases with and without a Luttinger volume Fermi surface

Quantum Monte Carlo study of a Z 2 gauge theory containing phases with and without a Luttinger volume Fermi surface Quantum Monte Carlo study of a Z 2 gauge theory containing phases with and without a Luttinger volume Fermi surface V44.00011 APS March Meeting, Los Angeles Fakher Assaad, Snir Gazit, Subir Sachdev, Ashvin

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals University of Cologne, June 8, 2012 Subir Sachdev Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World, chair D.J. Gross. arxiv:1203.4565

More information

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay I- Similarities between phase diagram and quantum critical points Quantum Criticality in 3 Families of Superconductors L. Taillefer,

More information

Theory of Quantum Matter: from Quantum Fields to Strings

Theory of Quantum Matter: from Quantum Fields to Strings Theory of Quantum Matter: from Quantum Fields to Strings Salam Distinguished Lectures The Abdus Salam International Center for Theoretical Physics Trieste, Italy January 27-30, 2014 Subir Sachdev Talk

More information

2015 Summer School on Emergent Phenomena in Quantum Materials. Program Overview

2015 Summer School on Emergent Phenomena in Quantum Materials. Program Overview Emergent Phenomena in Quantum Materials Program Overview Each talk to be 45min with 15min Q&A. Monday 8/3 8:00AM Registration & Breakfast 9:00-9:10 Welcoming Remarks 9:10-10:10 Eugene Demler Harvard University

More information

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber title 1 team 2 Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber motivation: topological states of matter 3 fermions non-interacting, filled band (single particle physics) topological

More information

Braid Group, Gauge Invariance and Topological Order

Braid Group, Gauge Invariance and Topological Order Braid Group, Gauge Invariance and Topological Order Yong-Shi Wu Department of Physics University of Utah Topological Quantum Computing IPAM, UCLA; March 2, 2007 Outline Motivation: Topological Matter (Phases)

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies on-line at http://pantheon.yale.edu/~subir

More information

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering DE-FG02-08ER46544 Overview

More information

Random Matrices, Black holes, and the Sachdev-Ye-Kitaev model

Random Matrices, Black holes, and the Sachdev-Ye-Kitaev model Random Matrices, Black holes, and the Sachdev-Ye-Kitaev model Antonio M. García-García Shanghai Jiao Tong University PhD Students needed! Verbaarschot Stony Brook Bermúdez Leiden Tezuka Kyoto arxiv:1801.02696

More information

Topological Kondo Insulators!

Topological Kondo Insulators! Topological Kondo Insulators! Maxim Dzero, University of Maryland Collaborators: Kai Sun, University of Maryland Victor Galitski, University of Maryland Piers Coleman, Rutgers University Main idea Kondo

More information

Talk online: sachdev.physics.harvard.edu

Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Particle theorists Condensed matter theorists Quantum Entanglement Hydrogen atom: Hydrogen molecule: = _ = 1 2 ( ) Superposition of two electron states leads to

More information

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger Julius-Maximilians-Universität Würzburg 1 New Gauge/Gravity Duality group at Würzburg University Permanent members 2 Gauge/Gravity

More information

Holographic Kondo and Fano Resonances

Holographic Kondo and Fano Resonances Holographic Kondo and Fano Resonances Andy O Bannon Disorder in Condensed Matter and Black Holes Lorentz Center, Leiden, the Netherlands January 13, 2017 Credits Johanna Erdmenger Würzburg Carlos Hoyos

More information

UNIVERSAL BOUNDS ON DIFFUSION

UNIVERSAL BOUNDS ON DIFFUSION 9th Crete Regional Meeting in String Theory UNIVERSAL BOUNDS ON DIFFUSION with B. Gouteraux, E. Kiritsis and W.Li +... Matteo Baggioli UOC & Crete Center for Theoretical Physics Is there a miminum (Planckian)

More information

(Effective) Field Theory and Emergence in Condensed Matter

(Effective) Field Theory and Emergence in Condensed Matter (Effective) Field Theory and Emergence in Condensed Matter T. Senthil (MIT) Effective field theory in condensed matter physics Microscopic models (e.g, Hubbard/t-J, lattice spin Hamiltonians, etc) `Low

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Landau-Fermi liquid theory

Landau-Fermi liquid theory Landau-Fermi liquid theory Shreyas Patankar Chennai Mathematical Institute Abstract We study the basic properties of Landau s theory of a system of interacting fermions (a Fermi liquid). The main feature

More information

Phase transitions in Bi-layer quantum Hall systems

Phase transitions in Bi-layer quantum Hall systems Phase transitions in Bi-layer quantum Hall systems Ming-Che Chang Department of Physics Taiwan Normal University Min-Fong Yang Departmant of Physics Tung-Hai University Landau levels Ferromagnetism near

More information

Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor

Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor T (K) 1 5 Fe.8 Co.2 Si ρ xy (µω cm) J.F. DiTusa N. Manyala LSU Y. Sidis D.P. Young G. Aeppli UCL Z. Fisk FSU T C 1 Nature Materials 3, 255-262 (24)

More information

Subir Sachdev Research Accomplishments

Subir Sachdev Research Accomplishments Subir Sachdev Research Accomplishments Theory for the quantum phase transition involving loss of collinear antiferromagnetic order in twodimensional quantum antiferromagnets (N. Read and S. Sachdev, Phys.

More information

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu arxiv:0809.0694 Yang Qi Harvard Cenke Xu Harvard Max Metlitski Harvard Ribhu Kaul Microsoft Roger Melko

More information

Aditi Mitra New York University

Aditi Mitra New York University Entanglement dynamics following quantum quenches: pplications to d Floquet chern Insulator and 3d critical system diti Mitra New York University Supported by DOE-BES and NSF- DMR Daniel Yates, PhD student

More information

Spin liquids on the triangular lattice

Spin liquids on the triangular lattice Spin liquids on the triangular lattice ICFCM, Sendai, Japan, Jan 11-14, 2011 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Classification of spin liquids Quantum-disordering magnetic order

More information

Talk online at

Talk online at Talk online at http://sachdev.physics.harvard.edu Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic

More information

Trapping Centers at the Superfluid-Mott-Insulator Criticality: Transition between Charge-quantized States

Trapping Centers at the Superfluid-Mott-Insulator Criticality: Transition between Charge-quantized States Trapping Centers at the Superfluid-Mott-Insulator Criticality: Transition between Charge-quantized States Boris Svistunov University of Massachusetts, Amherst DIMOCA 2017, Mainz Institute for Theoretical

More information

Building a theory of transport for strange metals. Andrew Lucas

Building a theory of transport for strange metals. Andrew Lucas Building a theory of transport for strange metals Andrew Lucas Stanford Physics 290K Seminar, UC Berkeley February 13, 2017 Collaborators 2 Julia Steinberg Harvard Physics Subir Sachdev Harvard Physics

More information

Holography of compressible quantum states

Holography of compressible quantum states Holography of compressible quantum states New England String Meeting, Brown University, November 18, 2011 sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Compressible quantum

More information

Bekenstein-Hawking entropy and strange metals

Bekenstein-Hawking entropy and strange metals HARVARD Bekenstein-Hawking entropy and strange metals CMSA Colloquium Harvard University September 16, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu Quantum matter without quasiparticles

More information

Radiation-Induced Magnetoresistance Oscillations in a 2D Electron Gas

Radiation-Induced Magnetoresistance Oscillations in a 2D Electron Gas Radiation-Induced Magnetoresistance Oscillations in a 2D Electron Gas Adam Durst Subir Sachdev Nicholas Read Steven Girvin cond-mat/0301569 Yale Condensed Matter Physics Seminar February 20, 2003 Outline

More information

Quantum critical transport, duality, and M-theory

Quantum critical transport, duality, and M-theory Quantum critical transport, duality, and M-theory hep-th/0701036 Christopher Herzog (Washington) Pavel Kovtun (UCSB) Subir Sachdev (Harvard) Dam Thanh Son (Washington) Talks online at http://sachdev.physics.harvard.edu

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

Transport w/o quasiparticles

Transport w/o quasiparticles Transport w/o quasiparticles Good metals, bad metals and insulators Sean Hartnoll (Stanford) -- Caneel Bay, Jan. 2013 Based on: 1201.3917 w/ Diego Hofman 1212.2998 w/ Aristos Donos (also work in progress

More information

Defects in topologically ordered states. Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014

Defects in topologically ordered states. Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014 Defects in topologically ordered states Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014 References Maissam Barkeshli & XLQ, PRX, 2, 031013 (2012) Maissam Barkeshli, Chaoming Jian, XLQ,

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

Dual vortex theory of doped antiferromagnets

Dual vortex theory of doped antiferromagnets Dual vortex theory of doped antiferromagnets Physical Review B 71, 144508 and 144509 (2005), cond-mat/0502002, cond-mat/0511298 Leon Balents (UCSB) Lorenz Bartosch (Harvard) Anton Burkov (Harvard) Predrag

More information

Origin of the anomalous low temperature upturn in resistivity in the electron-doped cuprates.

Origin of the anomalous low temperature upturn in resistivity in the electron-doped cuprates. Origin of the anomalous low temperature upturn in resistivity in the electron-doped cuprates. Y. Dagan 1, A. Biswas 2, M. C. Barr 1, W. M. Fisher 1, and R. L. Greene 1. 1 Center for Superconductivity Research,

More information

Metals without quasiparticles

Metals without quasiparticles Metals without quasiparticles A. Review of Fermi liquid theory B. A non-fermi liquid: the Ising-nematic quantum critical point C. Fermi surfaces and gauge fields Metals without quasiparticles A. Review

More information

Quantum Entanglement and Superconductivity. Subir Sachdev, Perimeter Institute and Harvard University

Quantum Entanglement and Superconductivity. Subir Sachdev, Perimeter Institute and Harvard University Quantum Entanglement and Superconductivity Subir Sachdev, Perimeter Institute and Harvard University Sorry, Einstein. Quantum Study Suggests Spooky Action Is Real. By JOHN MARKOFF OCT. 21, 2015 In a landmark

More information

Topological order in insulators and metals

Topological order in insulators and metals HARVARD Topological order in insulators and metals 34th Jerusalem Winter School in Theoretical Physics New Horizons in Quantum Matter December 27, 2016 - January 5, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information