Specific heat of a fermionic atomic cloud in the bulk and in traps

Size: px
Start display at page:

Download "Specific heat of a fermionic atomic cloud in the bulk and in traps"

Transcription

1 Specific heat of a fermionic atomic cloud in the bulk and in traps Aurel Bulgac,, Joaquin E. Drut, Piotr Magierski University of Washington, Seattle, WA Also in Warsaw

2 Outline Some general remarks Path integral Monte Carlo for many fermions on the lattice at finite temperatures and bulk finite T properties Specific heat of fermionic clouds in traps Conclusions

3 Superconductivity and superfluidity in Fermi systems 20 orders of magnitude over a century of (low temperature) physics Dilute atomic Fermi gases T c ev Liquid 3 He T c 10-7 ev Metals, composite materials T c ev Nuclei, neutron stars T c ev QCD color superconductivity T c ev units (1 ev 10 4 K)

4 A little bit of history

5 Bertsch Many-Body X challenge, Seattle, 1999 What are the ground state properties of the many-body system composed of spin ½ fermions interacting via a zero-range, range, infinite scattering-length contact interaction. Why? Besides pure theoretical curiosity, this problem is relevant t to neutron stars! In 1999 it was not yet clear, either theoretically or experimentally, whether such fermion matter is stable or not! A number of people argued that under such conditions fermionic matter is unstable. - systems of bosons are unstable (Efimov effect) - systems of three or more fermion species are unstable (Efimov effect) Baker (winner of the MBX challenge) concluded that the system is stable. See also Heiselberg (entry to the same competition) Carlson et al (2003) Fixed-Node Green Function Monte Carlo and Astrakharchik et al. (2004) FN-DMC provided the best theoretical estimates for the ground state energy of such systems. Thomas Duke group (2002) demonstrated experimentally that such systems are (meta)stable.

6 Bertsch s regime is nowadays called the unitary regime The system is very dilute, but strongly interacting! n r r 0 n a 3 1 n-1/3 1/3 λ F /2 a n - number density r 0 - range of interaction a - scattering length

7 Expected phases of a two species dilute Fermi system BCS-BEC BEC crossover High T, normal atomic (plus a few molecules) phase T Strong interaction weak interactions weak interaction BCS Superfluid a<0 no 2-body bound state Molecular BEC and Atomic+Molecular Superfluids a>0 shallow 2-body bound state halo dimers 1/a

8 Early theoretical approach to BCS-BEC BEC crossover Dyson (?), Eagles (1969), Leggett (1980) ( k k k k ) gs = u +v a a vacuum BCS wave function k m π 1 1 = ε 2 4 k 2 k 2Ek a 8 e 2 ε F exp π 2k a F gap equation ε µ k n = 2 1 number density equation k E k pairing gap 2 2 E k = ( ε k µ ) + quasi-particle energy ε k 2 2 k ε µ k =, u k + v k = 1, v k= 1 2m 2 E k total k = F + π a +... k n, n = F 2 E 3 3 N 5 2m m 8µ 3π Neglected/overlooked

9 Consequences: Usual BCS solution for small and negative scattering lengths, with exponentially small pairing gap For small and positive scattering lengths this equations describe a gas a weakly repelling (weakly bound/shallow) molecules, essentially all at rest (almost pure BEC state) Ψ ( r, r, r, r,...) A [ ϕ( r ) ϕ( r )...] In BCS limit the particle projected many-body wave function has the same structure (BEC of spatially overlapping Cooper pairs) For both large positive and negative values of the scattering length these equations predict a smooth crossover from BCS to BEC, from a gas of spatially large Cooper pairs to a gas of small molecules

10 What is wrong with this approach: The BCS gap (a<0 and small) is overestimated, thus the critical temperature and the condensation energy are overestimated as well. In BEC limit (a>0 and small) the molecule repulsion is overestimated The approach neglects of the role of the meanfield (HF) interaction, which is the bulk of the interaction energy in both BCS and unitary regime All pairs have zero center of mass momentum, which is reasonable in BCS and BEC limits, but incorrect in the unitary regime, where the interaction between pairs is strong!!! (this situation is similar to superfluid 4 He) Ψ ( r, r, r, r,...) A [ ϕ( r ) ϕ( r )...] Fraction of non-condensed pairs (perturbative( result)!?! n n ex n = na m mm, nm=, amm 0.6 a 3 π 2

11 From a talk of Stefano Giorgini (Trento)

12 What is the best theory for the T=0 case?

13 Fixed-Node Green Function Monte Carlo approach at T=0 8 π BCS ε exp 2 F e 2kFa 7/3 2 π Gorkov ε F exp e 2kFa Carlson et al. PRL 91, (2003) Chang et al. PRA 70, (2004) Astrakharchik et al.prl 93, (2004)

14 Even though two atoms can bind, there is no binding among dimers! Fixed node GFMC results, J. Carlson et al. (2003)

15 Theory for fermions at T >0 in the unitary regime Put the system on a spatio-temporal lattice and use a path integral formulation of the problem

16 A short detour Let us consider the following one-dimensional Hilbert subspace (the generalization to more dimensions is straightforward) P 2 = P projector in this Hilbert subspace π sin π l ( x y) dk xpy exp[ ikx ( y)] l = =, π 2 π π( x y) l ( ) ( x) = P δ x x, = ( x ) = ( x ) = K α α α β α β β α α αβ δ sin π N ( x nl) ψ( x) = c ( x) O(exp( cn)) ( nl) l α α + ψ π α = 1 n ( x nl) l 1 1 c = dx ( x) ψ( x) = ψ( x ), x = nl α K α K α α α α Littlejohn et al. J. Chem. Phys. 116,, 8691 (2002)

17 Schroedinger equation N ψ ( x) = d F ( x) + O(exp( cn)) α = 1 α α 1 F ( x) = ( x), x = nl, F F = δ K α α α α β αβ α β F T F + V( x ) δ d = Ed α β α αβ β α

18 k y π/l Momentum space π/l k x 2π/L 2 2 π εf,, T 2 2 ml π δε > 2 ml π εf, 2 ml ξ L = 2π δ p > L N l s

19 Grand Canonical Path-Integral Monte Carlo 2 2 ˆ ˆ ˆ 3 3 H = T + V = d x ψ ( x) ψ ( ) ψ ( ) ψ ( ) ˆ ( ) ˆ ( ) x + x x g 2 2 d x n x n x m m ˆ 3 N = d x nˆ ( x) + nˆ ( x), ˆ ( ) = ψ ( ) ψ ( ), =, ns x s x s x s Trotter expansion (trotterization( of the propagator) ( ) ( ) Z( β) = Tr exp β Hˆ µ Nˆ = Tr { exp τ Hˆ µ ˆ } Nτ 1 N, β = = T N τ τ ( ) 1 ET ( ) = Tr Hˆ exp β Hˆ µ Nˆ ZT ( ) ( ) 1 NT ( ) = Tr Nˆ exp β Hˆ µ Nˆ ZT ( ) No approximations so far, except for the fact that the interaction is not well defined!

20 Recast the propagator at each time slice and put the system on a 3d-spatial lattice, in a cubic box of side L=N s l,, with periodic boundary conditions 3 ( Hˆ Nˆ) ( Tˆ Nˆ) Vˆ ( Tˆ Nˆ) O exp τ µ exp τ µ / 2 exp( τ )exp τ µ / 2 + ( τ ) Discrete Hubbard-Stratonovich transformation ˆ 1 exp( τv ) = 1 + σ ( ) ˆ ( ) 1 σ ( ) ˆ ± + ± ( ), = exp( τ ) 1 2 x An x x An x A g x σ ( x ) =± 1 ± σ-fields fluctuate both in space and imaginary time m 1 mkc π = +, k < c 4π a g 2π l Running coupling constant g defined by lattice

21 n(k) How to choose the lattice spacing and the box size 2π/L L box size l - lattice spacing k max =π/l k

22 ZT ( ) = Dσ( x, τ) Tr Uˆ ({ σ}) x, τ ˆ({ σ}) = T exp{ τ[ hˆ({ σ }) µ ]} τ τ One-body evolution operator in imaginary time ET ( ) = x, τ Dσ(,)Tr x τ Uˆ ({ σ}) Tr HU ˆˆ({ σ}) ZT ( ) Tr Uˆ ({ σ}) Uˆ σ = + Uˆ σ = S σ > 2 Tr ({ }) {det[1 ({ })]} exp[ ({ })] 0 No sign problem! Uˆ({ σ }) n (, x y) = n (, x y) = * exp( ik x) ϕ () x ( ), ( ) k 1 + Uˆ ϕ y ϕ x = l k kl, < k ({ σ} ) V c All traces can be expressed through these single-particle density matrices k l

23 More details of the calculations: Lattice sizes used from 6 3 x 300 (high Ts) to 6 3 x 1361 (low Ts) 8 3 running (incomplete, but so far no surprises) and larger sizes to come Effective use of FFT(W) makes all imaginary time propagators diagonal (either in real space or momentum space) and there is no need to store large e matrices Update field configurations using the Metropolis importance sampling algorithm Change randomly at a fraction of all space and time sites the signs s the auxiliary fields σ(x, (x,τ)) so as to maintain a running average of the acceptance rate between 0.4 and 0.6 Thermalize for 50, ,000 MC steps or/and use as a start-up field configuration a σ(x, (x,τ)-field configuration from a different T At low temperatures use Singular Value Decomposition of the evolution operator U({σ}) to stabilize the numerics Use 100,000-2,000,000 σ(x, (x,τ)- field configurations for calculations MC correlation time time steps at T T c

24 a = ± Superfluid to Normal Fermi Liquid Transition Normal Fermi Gas (with vertical offset, solid line) Bogoliubov-Anderson phonons and quasiparticle contribution (dot-dashed dashed lien ) 4 3 3π T Ephonons( T) = εfn, ξ /2 s 5 16ξs εf π T E ( T) = ε N exp T quasi-particles F ε F 7/3 2 π = ε F exp e 2 kfa 4 Bogoliubov-Anderson phonons contribution only (little crosses) People never consider this??? Quasi-particles contribution only (dashed line) µ - chemical potential (circles)

25 S E µ 3 T E = µ N - PV + TS = εf ( n) N e = ε( n) nv 5 εf ( n) N kf kf n = =, ε ( ) 2 F n = V 3π 2m 5 en ( ) µ 3 T 2 S = N = Nσ, P = e( n) n T ε F ( n) 3

26 Specific heat of a fermionic cloud in a trap At T << T c only the Bogoliubov-Anderson modes in a trap are excited 4 ω In a spherical trap Ω nl = ω nn ( + l+ 2) + l ( 2 n+ l) 3 3 In an anisotropic trap 1 Ω( nx, ny, nz) ( nx + ny) ω + nzω 3

27 Now we can estimate E(T) ( nx, ny nz) ( n n n ) ' Ω, 1 Es ( T) Egs +, β = nx, ny, nz exp β x, y, z 1 T Ω 1 Ω( nx, ny, nz) ( nx + ny) ω + nzω 3 ω exp ( β ω ), T ω 2 2 3π T Es ( T) Egs +, ω T ω 6 ω 3/ π T ω T T 3 2 c 30 ωω

28 The previous estimate used an approximate collective spectrum. Let us use the exact one for spherical traps: 4 4n Ω nl = ω nn ( + l+ 2) + l Ω surf = ω 1 + l 3 3 nl, ( 2l 1) β [ Ω ] ω( 3N ) 4/3 5 ' + Ω ξs nl Es ( T) Egs exp 1 4 nl T 4 4 ω 1/2 4n 3/2 ωl 4n Es ( T) Egs + 2ω 1 + dl l exp 1+ n= 0 3 T 3 ω( 3N ) 4/3 5 ξs T 4 4 ω The last estimate includes only the surface modes

29 Let us try to estimate the contribution from surface modes in a deformed trap (only n=0 modes): 2 FS ( ) Ω surf ( S) = k, F( S) = U( r) m 2 mω ( Ur () = x + y + λ z ) 2 S E ( T) s E + gs 2 dsd k 2 ( π ) Ω surf ( S) 2 exp β Ωsurf ( S) 1 4/3 5 2 ξs ω( N ) T λ ω λ λ 3 96 arctan

30 Let us estimate the maximum temperature for which this formula is reasonable: 2 T 2 l < lmax s N ω ξ ( 24 ) ω( 3N ) 2/3 4/3 ξs 5/2 s( ) < + 140ωξs 24 E T 4 ( N) 5/3 5 ξsω( 3N) T ξsω( 3N) ω 4 4/3 4/3 5/2 s( ) 35 > 35ωξs 24 FT ( N) 5/3 F ( T) n ξ ω( ) π n 4/3 2 2/3 2 3 N (3 N) T 4 6ξ ω 1/2 n

31 Conclusions Fully non-perturbative calculations for a spin ½ many fermion system in the unitary regime at finite temperatures are feasible and apparently the system undergoes a phase transition in the bulk at a T c = 0.22 (3) ε F (One variant of the fortran 90 program, version in matlab, has about 500 lines, and it can be shortened also. This is about as long as a PRL!) Below the transition temperature both phonons and fermionic quasiparticles contribute almost equaly to the specific heat. In more than one way the system is at crossover between a Bose and Fermi systems In a trap the surface modes seem to affect significantly the thermodynamic properties of a fermionic atomic cloud

Is a system of fermions in the crossover BCS-BEC. BEC regime a new type of superfluid?

Is a system of fermions in the crossover BCS-BEC. BEC regime a new type of superfluid? Is a system of fermions in the crossover BCS-BEC BEC regime a new type of superfluid? Finite temperature properties of a Fermi gas in the unitary regime Aurel Bulgac,, Joaquin E. Drut, Piotr Magierski

More information

Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations

Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations Aurel Bulgac,, Joaquin E. Drut and Piotr Magierski University of Washington, Seattle, WA

More information

What do we know about the state of cold fermions in the unitary regime?

What do we know about the state of cold fermions in the unitary regime? What do we know about the state of cold fermions in the unitary regime? Aurel Bulgac,, George F. Bertsch,, Joaquin E. Drut, Piotr Magierski, Yongle Yu University of Washington, Seattle, WA Also in Warsaw

More information

r 0 range of interaction a scattering length

r 0 range of interaction a scattering length The Incredible Many Facets of the Unitary Fermi Gas Aurel Bulgac University of Washington, Seattle, WA Collaborators: Joaquin E. Drut (Seattle, now in Columbus) Michael McNeil Forbes (Seattle, soon at

More information

What ar e t e scatter engt e e ect ve range If the energy is small only the s If the energy is small only the s--wave is re wave is r levant.

What ar e t e scatter engt e e ect ve range If the energy is small only the s If the energy is small only the s--wave is re wave is r levant. The Unitary Fermi Gas: so simple yet so complex! Aurel Bulgac University of Washington, Seattle, WA Collaborators: Joaquin E. Drut (Seattle, now at OSU, Columbus) Michael McNeil Forbes (Seattle, now at

More information

Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas

Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas Piotr Magierski (Warsaw University of Technology/ University of Washington, Seattle) Collaborators: Aurel Bulgac (Seattle)

More information

Signatures of Superfluidity in Dilute Fermi Gases near a Feshbach Resonance

Signatures of Superfluidity in Dilute Fermi Gases near a Feshbach Resonance Signatures of Superfluidity in Dilute ermi Gases near a eshbach Resonance A. Bulgac (Seattle), Y. Yu (Seattle Lund) P.. Bedaque (Berkeley), G.. Bertsch (Seattle), R.A. Broglia (Milan), A.C. onseca (Lisbon)

More information

Why strongly interacting fermion gases are interesting to a many-body theorist? Aurel Bulgac University of Washington, Seattle

Why strongly interacting fermion gases are interesting to a many-body theorist? Aurel Bulgac University of Washington, Seattle Why strongly interacting fermion gases are interesting to a many-body theorist? Aurel Bulgac University of Washington, Seattle People I have been lucky to work with on these problems: Clockwise (starting

More information

Path Integral (Auxiliary Field) Monte Carlo approach to ultracold atomic gases. Piotr Magierski Warsaw University of Technology

Path Integral (Auxiliary Field) Monte Carlo approach to ultracold atomic gases. Piotr Magierski Warsaw University of Technology Path Integral (Auxiliary Field) Monte Carlo approach to ultracold atomic gases Piotr Magierski Warsaw University of Technology Collaborators: A. Bulgac - University of Washington J.E. Drut - University

More information

What ar e t e scatter engt e e ect ve range If the energy is small only the ss--wave is r wave is e r levant.

What ar e t e scatter engt e e ect ve range If the energy is small only the ss--wave is r wave is e r levant. The Unitary Fermi Gas: so simple yet so complex! Aurel Bulgac University of Washington, Seattle, WA Collaborators: JoaquinE. Drut (Seattle, now inosu, Columbus) Michael McNeil Forbes (Seattle, now at LANL)

More information

Part A - Comments on the papers of Burovski et al. Part B - On Superfluid Properties of Asymmetric Dilute Fermi Systems

Part A - Comments on the papers of Burovski et al. Part B - On Superfluid Properties of Asymmetric Dilute Fermi Systems Part A - Comments on the papers of Burovski et al. Part B - On Superfluid Properties of Asymmetric Dilute Fermi Systems Part A Comments on papers of E. Burovski,, N. Prokof ev ev,, B. Svistunov and M.

More information

Thermodynamics, pairing properties of a unitary Fermi gas

Thermodynamics, pairing properties of a unitary Fermi gas Thermodynamics, pairing properties of a unitary Fermi gas Piotr Magierski (Warsaw University of Technology/ University of Washington, Seattle) Collaborators: Aurel Bulgac (Seattle) Joaquin E. Drut (LANL)

More information

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke BCS-BEC Crossover Hauptseminar: Physik der kalten Gase Robin Wanke Outline Motivation Cold fermions BCS-Theory Gap equation Feshbach resonance Pairing BEC of molecules BCS-BEC-crossover Conclusion 2 Motivation

More information

Thermodynamics of the polarized unitary Fermi gas from complex Langevin. Joaquín E. Drut University of North Carolina at Chapel Hill

Thermodynamics of the polarized unitary Fermi gas from complex Langevin. Joaquín E. Drut University of North Carolina at Chapel Hill Thermodynamics of the polarized unitary Fermi gas from complex Langevin Joaquín E. Drut University of North Carolina at Chapel Hill INT, July 2018 Acknowledgements Organizers Group at UNC-CH (esp. Andrew

More information

Bardeen Bardeen, Cooper Cooper and Schrieffer and Schrieffer 1957

Bardeen Bardeen, Cooper Cooper and Schrieffer and Schrieffer 1957 Unexpected aspects of large amplitude nuclear collective motion Aurel Bulgac University of Washington Collaborators: Sukjin YOON (UW) Kenneth J. ROCHE (ORNL) Yongle YU (now at Wuhan Institute of Physics

More information

What ar e t e scatter engt e e ect ve range If the energy is small only the s If the energy is small only the s--wave is re wave is r levant.

What ar e t e scatter engt e e ect ve range If the energy is small only the s If the energy is small only the s--wave is re wave is r levant. Generation and Dynamics of Vortices in a Superfluid Unitary Gas Aurel Bulgac University of Washington, Seattle, WA Collaborators: Yuan Lung (Alan) Luo (Seattle) Piotr Magierski (Warsaw/Seattle) Kenneth

More information

Equilibrium and nonequilibrium properties of unitary Fermi gas from Quantum Monte Carlo

Equilibrium and nonequilibrium properties of unitary Fermi gas from Quantum Monte Carlo Equilibrium and nonequilibrium properties of unitary ermi gas from Quantum Monte Carlo Piotr Magierski Warsaw University of Technology Collaborators: A. Bulgac - University of Washington J.E. Drut - University

More information

New approaches to strongly interacting Fermi gases

New approaches to strongly interacting Fermi gases New approaches to strongly interacting Fermi gases Joaquín E. Drut The Ohio State University INT Program Simulations and Symmetries Seattle, March 2010 In collaboration with Timo A. Lähde Aalto University,

More information

Small Trapped s-wave Interacting Fermi Gases: How to Quantify Correlations?

Small Trapped s-wave Interacting Fermi Gases: How to Quantify Correlations? Image: Peter Engels group at WSU Small Trapped s-wave Interacting Fermi Gases: How to Quantify Correlations? Doerte Blume and Kevin M. Daily Dept. of Physics and Astronomy, Washington State University,

More information

Equilibrium and nonequilibrium properties of unitary Fermi gas. Piotr Magierski Warsaw University of Technology

Equilibrium and nonequilibrium properties of unitary Fermi gas. Piotr Magierski Warsaw University of Technology Equilibrium and nonequilibrium properties of unitary Fermi gas Piotr Magierski Warsaw University of Technology Collaborators: Aurel Bulgac (U. Washington) Kenneth J. Roche (PNNL) Joaquin E. Drut (U. North

More information

Pomiędzy nadprzewodnictwem a kondensacją Bosego-Einsteina. Piotr Magierski (Wydział Fizyki Politechniki Warszawskiej)

Pomiędzy nadprzewodnictwem a kondensacją Bosego-Einsteina. Piotr Magierski (Wydział Fizyki Politechniki Warszawskiej) Pomiędzy nadprzewodnictwem a kondensacją Bosego-Einsteina Piotr Magierski (Wydział Fizyki Politechniki Warszawskiej) 100 years of superconductivity and superfluidity in Fermi systems Discovery: H. Kamerlingh

More information

The nature of superfluidity in the cold atomic unitary Fermi gas

The nature of superfluidity in the cold atomic unitary Fermi gas The nature of superfluidity in the cold atomic unitary Fermi gas Introduction Yoram Alhassid (Yale University) Finite-temperature auxiliary-field Monte Carlo (AFMC) method The trapped unitary Fermi gas

More information

Condensate fraction for a polarized three-dimensional Fermi gas

Condensate fraction for a polarized three-dimensional Fermi gas Condensate fraction for a polarized three-dimensional Fermi gas Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova, Italy Camerino, June 26, 2014 Collaboration with:

More information

JĄDRA ATOMOWE. Badania naukowe: struktura jądra atomowego. Profesor Stefan Ćwiok Jądra stabilne. Jądra znane. Jądra ciężkie i superciężkie

JĄDRA ATOMOWE. Badania naukowe: struktura jądra atomowego. Profesor Stefan Ćwiok Jądra stabilne. Jądra znane. Jądra ciężkie i superciężkie ur. 1933r. Przeryty Bór k. Tarnowa. Studia: Akademia Górniczo-Hutnicza w Krakowie, Wydział Fizyki Uniwersytetu Moskiewskiego im.łomonosowa. Doktorat: Wydział Fizyki Uniwersytetu Warszawskiego (1969) Adiunkt:

More information

Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA

Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA Lianyi He ( 何联毅 ) Department of Physics, Tsinghua University 2016 Hangzhou Workshop on Quantum Degenerate Fermi Gases,

More information

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016 Nuclear structure III: Nuclear and neutron matter Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

More information

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES 1 INTERNATIONAL SCHOOL OF PHYSICS "ENRICO FERMI" Varenna, July 1st - July 11 th 2008 " QUANTUM COHERENCE IN SOLID STATE SYSTEMS " Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC

More information

Ground-state properties, excitations, and response of the 2D Fermi gas

Ground-state properties, excitations, and response of the 2D Fermi gas Ground-state properties, excitations, and response of the 2D Fermi gas Introduction: 2D FG and a condensed matter perspective Auxiliary-field quantum Monte Carlo calculations - exact* here Results on spin-balanced

More information

Shock waves in the unitary Fermi gas

Shock waves in the unitary Fermi gas Shock waves in the unitary Fermi gas Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova Banff, May 205 Collaboration with: Francesco Ancilotto and Flavio Toigo Summary.

More information

Low- and High-Energy Excitations in the Unitary Fermi Gas

Low- and High-Energy Excitations in the Unitary Fermi Gas Low- and High-Energy Excitations in the Unitary Fermi Gas Introduction / Motivation Homogeneous Gas Momentum Distribution Quasi-Particle Spectrum Low Energy Excitations and Static Structure Function Inhomogeneous

More information

Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover

Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei and CNISM, Università di Padova INO-CNR, Research

More information

F. Chevy Seattle May 2011

F. Chevy Seattle May 2011 THERMODYNAMICS OF ULTRACOLD GASES F. Chevy Seattle May 2011 ENS FERMION GROUPS Li S. Nascimbène Li/K N. Navon L. Tarruell K. Magalhaes FC C. Salomon S. Chaudhuri A. Ridinger T. Salez D. Wilkowski U. Eismann

More information

Superfluid 3 He. Miguel A. Morales

Superfluid 3 He. Miguel A. Morales Superfluid 3 He Miguel A. Morales Abstract In this report I will discuss the main properties of the superfluid phases of Helium 3. First, a brief description of the experimental observations and the phase

More information

Fermionic condensation in ultracold atoms, nuclear matter and neutron stars

Fermionic condensation in ultracold atoms, nuclear matter and neutron stars Fermionic condensation in ultracold atoms, nuclear matter and neutron stars Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova, Italy Prague, July 16, 2013 Collaboration

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

Effective Field Theory and. the Nuclear Many-Body Problem

Effective Field Theory and. the Nuclear Many-Body Problem Effective Field Theory and the Nuclear Many-Body Problem Thomas Schaefer North Carolina State University 1 Nuclear Effective Field Theory Low Energy Nucleons: Nucleons are point particles Interactions

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University January 25, 2011 2 Chapter 12 Collective modes in interacting Fermi

More information

Density Waves and Supersolidity in Rapidly Rotating Atomic Fermi Gases

Density Waves and Supersolidity in Rapidly Rotating Atomic Fermi Gases Density Waves and Supersolidity in Rapidly Rotating Atomic Fermi Gases Nigel Cooper T.C.M. Group, Cavendish Laboratory, University of Cambridge Quantum Gases Conference, Paris, 30 June 2007. Gunnar Möller

More information

Benchmarking the Many-body Problem

Benchmarking the Many-body Problem Benchmarking the Many-body Problem Precision bounds on the Equation of State Michael McNeil Forbes Institute for Nuclear Theory (INT) and the University of Washington (Seattle) 18 May 2011 1 Benchmarks

More information

Equation of state of the unitary Fermi gas

Equation of state of the unitary Fermi gas Equation of state of the unitary Fermi gas Igor Boettcher Institute for Theoretical Physics, University of Heidelberg with S. Diehl, J. M. Pawlowski, and C. Wetterich C o ld atom s Δ13, 11. 1. 2013 tio

More information

Auxiliary-field quantum Monte Carlo methods for nuclei and cold atoms

Auxiliary-field quantum Monte Carlo methods for nuclei and cold atoms Introduction Auxiliary-field quantum Monte Carlo methods for nuclei and cold atoms Yoram Alhassid (Yale University) Auxiliary-field Monte Carlo (AFMC) methods at finite temperature Sign problem and good-sign

More information

Tackling the Sign Problem of Ultracold Fermi Gases with Mass-Imbalance

Tackling the Sign Problem of Ultracold Fermi Gases with Mass-Imbalance Tackling the Sign Problem of Ultracold Fermi Gases with Mass-Imbalance Dietrich Roscher [D. Roscher, J. Braun, J.-W. Chen, J.E. Drut arxiv:1306.0798] Advances in quantum Monte Carlo techniques for non-relativistic

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Towards a quantitative FRG approach for the BCS-BEC crossover

Towards a quantitative FRG approach for the BCS-BEC crossover Towards a quantitative FRG approach for the BCS-BEC crossover Michael M. Scherer Theoretisch Physikalisches Institut, Jena University in collaboration with Sebastian Diehl, Stefan Flörchinger, Holger Gies,

More information

Intersections of nuclear physics and cold atom physics

Intersections of nuclear physics and cold atom physics Intersections of nuclear physics and cold atom physics Thomas Schaefer North Carolina State University Unitarity limit Consider simple square well potential a < 0 a =, ǫ B = 0 a > 0, ǫ B > 0 Unitarity

More information

Superfluidity in bosonic systems

Superfluidity in bosonic systems Superfluidity in bosonic systems Rico Pires PI Uni Heidelberg Outline Strongly coupled quantum fluids 2.1 Dilute Bose gases 2.2 Liquid Helium Wieman/Cornell A. Leitner, from wikimedia When are quantum

More information

Reference for most of this talk:

Reference for most of this talk: Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding ultracold Fermi gases. in Ultracold Fermi Gases, Proceedings of the International School

More information

Physics 127c: Statistical Mechanics. Application of Path Integrals to Superfluidity in He 4

Physics 127c: Statistical Mechanics. Application of Path Integrals to Superfluidity in He 4 Physics 17c: Statistical Mechanics Application of Path Integrals to Superfluidity in He 4 The path integral method, and its recent implementation using quantum Monte Carlo methods, provides both an intuitive

More information

arxiv: v2 [cond-mat.stat-mech] 21 Aug 2008

arxiv: v2 [cond-mat.stat-mech] 21 Aug 2008 Quantum Monte Carlo Simulations of the BCS-BEC Crossover at Finite Temperature Aurel Bulgac 1, Joaquín E. Drut 1 and Piotr Magierski 2 1 Department of Physics, University of Washington, Seattle, WA 98195

More information

in-medium pair wave functions the Cooper pair wave function the superconducting order parameter anomalous averages of the field operators

in-medium pair wave functions the Cooper pair wave function the superconducting order parameter anomalous averages of the field operators (by A. A. Shanenko) in-medium wave functions in-medium pair-wave functions and spatial pair particle correlations momentum condensation and ODLRO (off-diagonal long range order) U(1) symmetry breaking

More information

Benchmarking the Hartree-Fock and Hartree-Fock-Bogoliubov approximations to level densities. G.F. Bertsch, Y. Alhassid, C.N. Gilbreth, and H.

Benchmarking the Hartree-Fock and Hartree-Fock-Bogoliubov approximations to level densities. G.F. Bertsch, Y. Alhassid, C.N. Gilbreth, and H. Benchmarking the Hartree-Fock and Hartree-Fock-Bogoliubov approximations to level densities G.F. Bertsch, Y. Alhassid, C.N. Gilbreth, and H. Nakada 5th Workshop on Nuclear Level Density and Gamma Strength,

More information

Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them

Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them Introduction Yoram Alhassid (Yale University) Finite-temperature auxiliary-field Monte Carlo methods in Fock

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon INT workshop Frontiers in quantum simulation with cold atoms University of Washington, April 2, 2015 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner,

More information

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Institut für Experimentalphysik Universität Innsbruck Dresden, 12.10. 2004 BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Johannes Hecker Denschlag The lithium team Selim Jochim Markus Bartenstein

More information

Strongly paired fermions

Strongly paired fermions Strongly paired fermions Alexandros Gezerlis TALENT/INT Course on Nuclear forces and their impact on structure, reactions and astrophysics July 4, 2013 Strongly paired fermions Neutron matter & cold atoms

More information

2D Bose and Non-Fermi Liquid Metals

2D Bose and Non-Fermi Liquid Metals 2D Bose and Non-Fermi Liquid Metals MPA Fisher, with O. Motrunich, D. Sheng, E. Gull, S. Trebst, A. Feiguin KITP Cold Atoms Workshop 10/5/2010 Interest: A class of exotic gapless 2D Many-Body States a)

More information

(Biased) Theory Overview: Few-Body Physics

(Biased) Theory Overview: Few-Body Physics Image: Peter Engels group at WSU (Biased) Theory Overview: Few-Body Physics Doerte Blume Dept. of Physics and Astronomy, Washington State University, Pullman. With graduate students Kevin M. Daily and

More information

Superfluidity and superconductivity. IHP, Paris, May 7 and 9, 2007

Superfluidity and superconductivity. IHP, Paris, May 7 and 9, 2007 Superfluidity and superconductivity. IHP, Paris, May 7 and 9, 2007 L.P. Pitaevskii Dipartimento di Fisica, Universita di Trento, INFM BEC CNR,Trento, Italy; Kapitza Institute for Physical Problems, ul.

More information

Particle-number projection in finite-temperature mean-field approximations to level densities

Particle-number projection in finite-temperature mean-field approximations to level densities Particle-number projection in finite-temperature mean-field approximations to level densities Paul Fanto (Yale University) Motivation Finite-temperature mean-field theory for level densities Particle-number

More information

Nuclear Fission and Fusion Reactions within Superfluid TDDFT

Nuclear Fission and Fusion Reactions within Superfluid TDDFT Nuclear Fission and Fusion Reactions within Superfluid TDDFT Piotr Magierski (Warsaw University of Technology) Collaborators: Aurel Bulgac (Univ. of Washington) Kenneth J. Roche (PNNL) Ionel Stetcu (LANL)

More information

Diagrammatic Monte Carlo

Diagrammatic Monte Carlo Sign Problems and Complex Actions, ECT*, Trento, March 2-6, 2009 Diagrammatic Monte Carlo Boris Svistunov University of Massachusetts, Amherst Nikolay Prokof ev Kris Van Houcke (Umass/Ghent) Evgeny Kozik

More information

Quantum phase transitions and pairing in Strongly Attractive Fermi Atomic Gases

Quantum phase transitions and pairing in Strongly Attractive Fermi Atomic Gases Quantum phase transitions and pairing in Strongly Attractive Fermi Atomic Gases M.T. Batchelor Department of Theoretical Physics and Mathematical Sciences Institute In collaboration with X.W. Guan, C.

More information

arxiv: v1 [nucl-th] 18 Jan 2018

arxiv: v1 [nucl-th] 18 Jan 2018 Nuclear deformation in the configuration-interaction shell model arxiv:181.6175v1 [nucl-th] 18 Jan 218 Y. Alhassid, 1 G.F. Bertsch 2,3 C.N. Gilbreth, 2 and M.T. Mustonen 1 1 Center for Theoretical Physics,

More information

Fermi gas model. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 2, 2011

Fermi gas model. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 2, 2011 Fermi gas model Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 February 2, 2011 NUCS 342 (Lecture 9) February 2, 2011 1 / 34 Outline 1 Bosons and fermions NUCS 342 (Lecture

More information

Low-dimensional Bose gases Part 1: BEC and interactions

Low-dimensional Bose gases Part 1: BEC and interactions Low-dimensional Bose gases Part 1: BEC and interactions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Photonic, Atomic and Solid State Quantum Systems Vienna, 2009 Introduction

More information

arxiv:cond-mat/ v1 [cond-mat.other] 19 Dec 2005

arxiv:cond-mat/ v1 [cond-mat.other] 19 Dec 2005 Released momentum distribution of a Fermi gas in the BCS-BEC crossover arxiv:cond-mat/5246v [cond-mat.other] 9 Dec 25 M.L. Chiofalo, S. Giorgini 2,3 and M. Holland 2 INFM and Classe di Scienze, Scuola

More information

Quantum Monte Carlo Simulations of Exciton Condensates

Quantum Monte Carlo Simulations of Exciton Condensates Quantum Monte Carlo Simulations of Exciton Condensates J. Shumway a and D. M. Ceperley b a Dept. of Physics and Astronomy, Arizona State University, Tempe, AZ 8583 b Dept. of Physics, University of Illinois,

More information

Simulation of neutron-rich dilute nuclear matter using ultracold Fermi gases

Simulation of neutron-rich dilute nuclear matter using ultracold Fermi gases APCTP Focus Program on Quantum Condensation (QC12) Simulation of neutron-rich dilute nuclear matter using ultracold Fermi gases Munekazu Horikoshi Photon Science Center of University of Tokyo Grant-In-Aid

More information

Lecture 6 Photons, electrons and other quanta. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku

Lecture 6 Photons, electrons and other quanta. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku Lecture 6 Photons, electrons and other quanta EECS 598-002 Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku From classical to quantum theory In the beginning of the 20 th century, experiments

More information

Physics 127a: Class Notes

Physics 127a: Class Notes Physics 127a: Class Notes Lecture 15: Statistical Mechanics of Superfluidity Elementary excitations/quasiparticles In general, it is hard to list the energy eigenstates, needed to calculate the statistical

More information

Pairing in Nuclear and Neutron Matter Screening effects

Pairing in Nuclear and Neutron Matter Screening effects Pairing Degrees of Freedom in Nuclei and Nuclear Medium Seattle, Nov. 14-17, 2005 Outline: Pairing in Nuclear and Neutron Matter Screening effects U. Lombardo pairing due to the nuclear (realistic) interaction

More information

Equation of State of Strongly Interacting Fermi Gas

Equation of State of Strongly Interacting Fermi Gas he 19 th Particle and Nuclei International Conference (PANIC11) Equation of State of Strongly Interacting ermi Gas Mark Ku, Ariel Sommer, Lawrence Cheuk, Andre Schirotzek, Martin Zwierlein heory collaborators

More information

Lattice modulation experiments with fermions in optical lattices and more

Lattice modulation experiments with fermions in optical lattices and more Lattice modulation experiments with fermions in optical lattices and more Nonequilibrium dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University Rajdeep Sensarma Harvard

More information

Stabilizing Canonical- Ensemble Calculations in the Auxiliary-Field Monte Carlo Method

Stabilizing Canonical- Ensemble Calculations in the Auxiliary-Field Monte Carlo Method Stabilizing Canonical- Ensemble Calculations in the Auxiliary-Field Monte Carlo Method C. N. Gilbreth In collaboration with Y. Alhassid Yale University Advances in quantum Monte Carlo techniques for non-relativistic

More information

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT ICAP Summer School, Paris, 2012 Three lectures on quantum gases Wolfgang Ketterle, MIT Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding

More information

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES College de France, May 14, 2013 SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INFM PLAN OF THE LECTURES Lecture 1. Superfluidity in ultra cold atomic gases: examples

More information

BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP

BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP May 2007 Cold Atom Collaborators: Qijin Chen J. Stajic (U Chicago; LANL) Yan He (U. Chicago) ChihChun Chien (U. Chicago)

More information

Unitary Fermi gas in the ɛ expansion

Unitary Fermi gas in the ɛ expansion Unitary Fermi gas in the ɛ expansion Yusuke Nishida Department of Physics, University of Tokyo December 006 PhD Thesis Abstract We construct systematic expansions around four and two spatial dimensions

More information

Many-Body Problems and Quantum Field Theory

Many-Body Problems and Quantum Field Theory Philippe A. Martin Francois Rothen Many-Body Problems and Quantum Field Theory An Introduction Translated by Steven Goldfarb, Andrew Jordan and Samuel Leach Second Edition With 102 Figures, 7 Tables and

More information

liquid He

liquid He 8.333: Statistical Mechanics I Problem Set # 6 Due: 12/6/13 @ mid-night According to MIT regulations, no problem set can have a due date later than 12/6/13, and I have extended the due date to the last

More information

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11 Quantum Optics VII, Zakopane, 11 June 09 Strongly interacting Fermi gases Rudolf Grimm Center for Quantum Optics in Innsbruck University of Innsbruck Austrian Academy of Sciences ultracold fermions: species

More information

Bose-Hubbard Model (BHM) at Finite Temperature

Bose-Hubbard Model (BHM) at Finite Temperature Bose-Hubbard Model (BHM) at Finite Temperature - a Layman s (Sebastian Schmidt) proposal - pick up Diploma work at FU-Berlin with PD Dr. Axel Pelster (Uni Duisburg-Essen) ~ Diagrammatic techniques, high-order,

More information

Effective Field Theory and. the Nuclear Many-Body Problem

Effective Field Theory and. the Nuclear Many-Body Problem Effective Field Theory and the Nuclear Many-Body Problem Thomas Schaefer North Carolina State University 1 Schematic Phase Diagram of Dense Matter T nuclear matter µ e neutron matter? quark matter µ 2

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

Squeezing and superposing many-body states of Bose gases in confining potentials

Squeezing and superposing many-body states of Bose gases in confining potentials Squeezing and superposing many-body states of Bose gases in confining potentials K. B. Whaley Department of Chemistry, Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley Quantum Information and

More information

Universality in Few- and Many-Body Systems

Universality in Few- and Many-Body Systems Universality in Few- and Many-Body Systems Lucas Platter Institute for Nuclear Theory University of Washington Collaborators: Braaten, Hammer, Kang, Phillips, Ji Ultracold Gases the scattering length a

More information

The BCS-BEC Crossover and the Unitary Fermi Gas

The BCS-BEC Crossover and the Unitary Fermi Gas Lecture Notes in Physics 836 The BCS-BEC Crossover and the Unitary Fermi Gas Bearbeitet von Wilhelm Zwerger 1. Auflage 2011. Taschenbuch. xvi, 532 S. Paperback ISBN 978 3 642 21977 1 Format (B x L): 15,5

More information

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs i ( ) t Φ (r, t) = 2 2 2m + V ext(r) + g Φ (r, t) 2 Φ (r, t) (Mewes et al., 1996) 26/11/2009 Stefano Carignano 1 Contents 1 Introduction

More information

Mean-Field Theory: HF and BCS

Mean-Field Theory: HF and BCS Mean-Field Theory: HF and BCS Erik Koch Institute for Advanced Simulation, Jülich N (x) = p N! ' (x ) ' 2 (x ) ' N (x ) ' (x 2 ) ' 2 (x 2 ) ' N (x 2 )........ ' (x N ) ' 2 (x N ) ' N (x N ) Slater determinant

More information

Giuseppe Morandi and me. PhD In Bologna years : very fruitful and formative period. Collaboration continued for some years after.

Giuseppe Morandi and me. PhD In Bologna years : very fruitful and formative period. Collaboration continued for some years after. Giuseppe Morandi and me PhD In Bologna years 1994-96: very fruitful and formative period. Collaboration continued for some years after. What I have learned from him Follow the beauty (and don t care too

More information

Quantum gases in the unitary limit and...

Quantum gases in the unitary limit and... Quantum gases in the unitary limit and... Andre LeClair Cornell university Benasque July 2 2010 Outline The unitary limit of quantum gases S-matrix based approach to thermodynamics Application to the unitary

More information

AFDMC Method for Nuclear Physics and Nuclear Astrophysics

AFDMC Method for Nuclear Physics and Nuclear Astrophysics AFDMC Method for Nuclear Physics and Nuclear Astrophysics Thanks to INFN and to F. Pederiva (Trento) Outline Motivations: NN scattering data few body theory. Few-body many body experiments/observations?

More information

Cold fermions, Feshbach resonance, and molecular condensates (II)

Cold fermions, Feshbach resonance, and molecular condensates (II) Cold fermions, Feshbach resonance, and molecular condensates (II) D. Jin JILA, NIST and the University of Colorado I. Cold fermions II. III. Feshbach resonance BCS-BEC crossover (Experiments at JILA) $$

More information

Unitary Fermi Gas: Quarky Methods

Unitary Fermi Gas: Quarky Methods Unitary Fermi Gas: Quarky Methods Matthew Wingate DAMTP, U. of Cambridge Outline Fermion Lagrangian Monte Carlo calculation of Tc Superfluid EFT Random matrix theory Fermion L Dilute Fermi gas, 2 spins

More information

The Ginzburg-Landau Theory

The Ginzburg-Landau Theory The Ginzburg-Landau Theory A normal metal s electrical conductivity can be pictured with an electron gas with some scattering off phonons, the quanta of lattice vibrations Thermal energy is also carried

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon Enrico Fermi School Quantum Matter at Ultralow Temperatures Varenna, July 8, 2014 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner, C.S. Lithium

More information

Population imbalance and condensate fraction with SU(3) superfluid fermions

Population imbalance and condensate fraction with SU(3) superfluid fermions Population imbalance and condensate fraction with SU(3) superfluid fermions Luca Salasnich Dipartimento di Fisica Galileo Galilei and CNISM, Università di Padova Sarajevo, July 11, 211 Main results published

More information

Landau s Fermi Liquid Theory

Landau s Fermi Liquid Theory Thors Hans Hansson Stockholm University Outline 1 Fermi Liquids Why, What, and How? Why Fermi liquids? What is a Fermi liquids? Fermi Liquids How? 2 Landau s Phenomenological Approach The free Fermi gas

More information

From neutrons to atoms (in 2D) and back

From neutrons to atoms (in 2D) and back From neutrons to atoms (in 2D) and back Alex Gezerlis Exploring nuclear physics with ultracold atoms workshop ECT*, Trento, Italy June 18, 2018 Outline Motivation Credit: Dany Page 2D cold gases Static

More information

Thermodynamic Measurements in a Strongly Interacting Fermi Gas

Thermodynamic Measurements in a Strongly Interacting Fermi Gas J Low Temp Phys (2009) 154: 1 29 DOI 10.1007/s10909-008-9850-2 Thermodynamic Measurements in a Strongly Interacting Fermi Gas Le Luo J.E. Thomas Received: 25 July 2008 / Accepted: 12 October 2008 / Published

More information