Effective Field Theory and. the Nuclear Many-Body Problem

Size: px
Start display at page:

Download "Effective Field Theory and. the Nuclear Many-Body Problem"

Transcription

1 Effective Field Theory and the Nuclear Many-Body Problem Thomas Schaefer North Carolina State University 1

2 Schematic Phase Diagram of Dense Matter T nuclear matter µ e neutron matter? quark matter µ 2

3 Nuclear Effective Field Theory Low Energy Nucleons: Nucleons are point particles Interactions are local Long range part: pions Advantages: Systematically improvable Symmetries manifest (Chiral, gauge,...) Connection to lattice QCD 3

4 Effective Field Theory Effective field theory for pointlike, non-relativistic neutrons L eff = ψ ( i M ) ψ C 0 2 (ψ ψ) 2 + C [ 2 (ψψ) (ψ 2 ] ψ) + h.c Simplifications: neutrons only, no pions (very low energy) Match to effective range expansion p cot δ 0 = 1 a Λ2 n ( ) p 2 n+1 r n Λ 2 Coupling constants C 0 = 4πa M C 2 = 4πa2 M r 2 4

5 Few Body Physics: Successes NN scattering: N 3 LO potentials External currents: np dγ etc. Three body systems: Efimov effect, Phillips line Four body physics,... 5

6 The Nuclear Matter Problem is Hard: Traditional View NN Potential has a very strong hard core 3-body forces, isobars, relativity,... important Saturation density too small 6

7 The Nuclear Matter Problem is Hard: EFT View NN Potential has a very strong hard core Short distance behavior not relevant 3-body forces, isobars, relativity,... important 3-body: Yes; Isobars, relativity: Absorbed in counterterms Saturation density too small Yes: NN system and nuclear matter (?) are fine tuned 7

8 Toy Problem (Neutron Matter) Limiting case ( Bertsch problem) (k F a) (k F r) 0 a r k 1 F No Expansion Parameters! Universal properties [E F = k 2 F /(2m), n f = (2mµ) 3/2 /(3π 2 )] (E/A) T =0 = ξ(e (0) /A) = ξ 3 5 E F T =0 = ζe F [T c = ζ T F ] P (T, µ) = 2 5 µn f (µ)f(t/t F ) 8

9 Perfect Liquids sqgp (T=180 MeV) Neutron Matter (T=1 MeV) Trapped Atoms (T=1 nev) 9

10 Universality What do these systems have in common? dilute: rρ 1/3 1 a r k 1 F strongly correlated: aρ 1/3 1 Feshbach Resonance in 6 Li Neutron Matter 10

11 You have to work with the scattering length (and range parameters) you have, not with the scattering length you want! Donald H. Rumsfeld (SecDef, retired) 11

12 Warmup: Low Density Expansion Finite density: L L µψ ψ Modified propagator G 0 (k) αβ = δ αβ ( Perturbative expansion θ(k k F ) k 0 k 2 /2M + iɛ + θ(k F k) ) k 0 k 2 /2M iɛ E A = k2 F 2M [ ( 2 3π (k F a) π 2 (11 2 log(2))(k F a) 2 ) ]

13 Low Density Expansion: Higher orders Effective range corrections Logarithmic terms E A = k2 F 2M 1 10π (k F a) 2 (k F r) E A = k2 F 2M (g 1)(g 2) 16 27π 3 (4π 3 3)(k F a) 4 log(k F a) related to log divergence in 3 3 scattering amplitude local counterterm D(ψ ψ) 3 exists if g 3 13

14 Nonperturbative Methods Lattice Field Theory Other numerical methods: GFMC, VMC,... Expansion in number of species (large N) Expansion in dimensionality (large d, ɛ = 4 d) 14

15 Lattice Field Theory P (MeV/fm 3 ) fc f 1 f 2 b 1 b 2 s 1 s 2 FP ρ/ρ N Lee, Schaefer (2004) pure neutron matter, T = 4 MeV 15

16 Large N approximation(s) Large N gives mean field dynamics. What mean field? Determined by symmetries of the interaction SU(2N) symmetric interaction L = C 0 (ψ f ψ f ) 2 ρ = 1 N ψ ψ N N(C 0 N) Sp(2N) symmetric interaction (J = (σ 2 )... (σ 2 )) L = C 0 ψf J fg ψ g 2 Φ = 1 N ψ f J fg ψ g N N(C 0 N) 16

17 Large N approximations SU(2N): Hartree + ring diagrams (x = Nk F a/π) E A = k2 F 2M [( x N R(x) +... ] ) ( ) Furnstahl & Hammer (2002) Sp(2N): BCS + fluctuations Ω N = d 3 p (2π) 3 { } ɛ 2 p + Φ 2 ɛ p mφ2 p 2 + O(1/N) ξ = /N +... = (N = 1) 17 Sachdev (2006)

18 Large d Limit In medium scattering strongly restricted by phase space P 2 + k P k 2 Find limit in which ladders are leading order λ [ ΩdC0k d 2 F M d(2π) d ] λ = const (d ) ξ = O(1/d) Steele (1999), Schaefer et al (2003) 18

19 Pairing in the Large d Limit BCS gap equation = C 0 d d p 2 (2π) d ɛ 2 p + 2 = Solution = 2e γ E F d exp ( 1 ) dλ = + = 0.375E F Pairing energy (subleading in 1/d) O(1) + O ( d 1) E A = d 4 E F ( E F ) 2 1 d. 19

20 Upper and lower critical dimension Zero energy bound state for arbitrary d ψ (r) + d 1 r ψ (r) = 0 (r > r 0 ) d=2: Arbitrarily weak attractive potential has a bound state ξ(d=2) = 1 d=4: Bound state wave function ψ 1/r d 2. Pairs do not overlap ξ(d=4) = 0 Conclude ξ(d=3) 1/2? Try expansion around d = 4 or d = 2? Nussinov & Nussinov (2004) 20

21 Epsilon Expansion EFT version: Compute scattering amplitude (d = 4 ɛ) ig id ig T = 1 Γ ( 1 d 2 ) ( m ) d/2 ( p 0 + ɛ ) 1 d/2 p 8π 2 ɛ 4π 2 m 2 i p 0 + ɛ p 2 + iδ g 2 8π2 ɛ m 2 D(p 0, p) = i p 0 + ɛ p 2 + iδ Weakly interacting bosons and fermions 21

22 Epsilon Expansion Effective lagrangian for atoms Ψ = (ψ, ψ ) and dimers φ L = Ψ ( i 0 + σ 3 2 2m ) Ψ + µψ σ 3 Ψ + Ψ σ + Ψφ + h.c. Perturbative expansion: φ = φ 0 + gϕ. Free part L 0 = Ψ [ 2 i 0 + δµ + σ 3 2m + φ 0(σ + + σ ) ]Ψ+ϕ ( i m Interacting part (g 2, µ = O(ɛ)) L I = g ( Ψ σ + Ψϕ + h.c ) + µψ σ 3 Ψ ϕ ( i m ) ϕ. Nishida & Son (2006) ) ϕ. 22

23 Epsilon Expansion Consistency conditions + = O(ɛ) Also: tadpoles cancel Effective potential O(1) O(1) O(ɛ) ξ = 1 2 ɛ3/ ɛ5/2 ln ɛ ξ(ɛ=1) = ɛ 5/ Problem: Higher order corrections large ( 100 %)! 23

24 Near two dimensions Scattering amplitude near d=2 ( ɛ = d 2) A(p 0, p) = i 2π m ɛ + O( ɛ2 ) Effective potential (similar to (k F a) expansion) g 2 = 2π ɛ m ξ = 1 ɛ + O( ɛ 2 ) O(1) O( ɛ) O( ɛ 2 ) Superfluid gap (BCS + screening correction) = 0 ( ɛ = 1) = 2µ ( e exp 1 ɛ ) 24

25 Combine expansions near d=2 and d= ξ d Conclude ξ = ( ) Arnold et al. (2006) other appl.: Kryjevski,Rupak,Schaefer (2006) 25

26 Few Body Physics Few body physics perturbative despite large scattering length + O(ɛ) O(ɛ 2 ) T ad T aa = 1 ɛ a ad /a = 1.11 (exact 1.18) + O(ɛ 2 ) O(ɛ 3 ) nd scattering (no range terms) T dd T aa = 1 2 ɛ 0.172ɛ a dd /a = 0.66 (exact 0.60) a nd (s=3/2) 4.78 fm a exp nd = 6.35 ± 0.02 fm Also: a DD (s=2) 3.15 fm Rupak (2006) 26

27 Outlook Several systemtic approaches available None of them is perfect, emphasize different aspects Can be combined in interesting ways Real nuclear matter More perturbative. Problem becomes easier? 1/a, range corrections have been studied Explicit pions, three body clusters,... Real nuclei Density functionals (LDA, KS,...) 27

Effective Field Theory and. the Nuclear Many-Body Problem

Effective Field Theory and. the Nuclear Many-Body Problem Effective Field Theory and the Nuclear Many-Body Problem Thomas Schaefer North Carolina State University 1 Nuclear Effective Field Theory Low Energy Nucleons: Nucleons are point particles Interactions

More information

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016 Nuclear structure III: Nuclear and neutron matter Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

More information

Intersections of nuclear physics and cold atom physics

Intersections of nuclear physics and cold atom physics Intersections of nuclear physics and cold atom physics Thomas Schaefer North Carolina State University Unitarity limit Consider simple square well potential a < 0 a =, ǫ B = 0 a > 0, ǫ B > 0 Unitarity

More information

Unitary Fermi gas in the ɛ expansion

Unitary Fermi gas in the ɛ expansion Unitary Fermi gas in the ɛ expansion Yusuke Nishida Department of Physics, University of Tokyo December 006 PhD Thesis Abstract We construct systematic expansions around four and two spatial dimensions

More information

Universality in Few- and Many-Body Systems

Universality in Few- and Many-Body Systems Universality in Few- and Many-Body Systems Lucas Platter Institute for Nuclear Theory University of Washington Collaborators: Braaten, Hammer, Kang, Phillips, Ji Ultracold Gases the scattering length a

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Motivation Different phases of QCD occur in the universe Neutron Stars, Big Bang Exploring the phase diagram is important to understanding

More information

Range eects on Emov physics in cold atoms

Range eects on Emov physics in cold atoms Range eects on Emov physics in cold atoms An Eective eld theory approach Chen Ji TRIUMF in collaboration with D. R. Phillips, L. Platter INT workshop, November 7 2012 Canada's national laboratory for particle

More information

Ab initio lattice EFT from light to medium mass nuclei Nuclear Lattice EFT Collaboration

Ab initio lattice EFT from light to medium mass nuclei Nuclear Lattice EFT Collaboration Ab initio lattice EFT from light to medium mass nuclei Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Dean Lee (NC State) Thomas Luu (Jülich/Bonn)

More information

Recent results in lattice EFT for nuclei

Recent results in lattice EFT for nuclei Recent results in lattice EFT for nuclei Dean Lee (NC State) Nuclear Lattice EFT Collaboration Centro de Ciencias de Benasque Pedro Pascua Bound states and resonances in EFT and Lattice QCD calculations

More information

PoS(Confinement8)147. Universality in QCD and Halo Nuclei

PoS(Confinement8)147. Universality in QCD and Halo Nuclei Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, University of Bonn, Germany E-mail: hammer@itkp.uni-bonn.de Effective Field Theory (EFT) provides a powerful

More information

Functional RG for few-body physics

Functional RG for few-body physics Functional RG for few-body physics Michael C Birse The University of Manchester Review of results from: Schmidt and Moroz, arxiv:0910.4586 Krippa, Walet and Birse, arxiv:0911.4608 Krippa, Walet and Birse,

More information

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University!

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Overview! Introduction! Basic ideas of EFT! Basic Examples of EFT! Algorithm of EFT! Review NN scattering! NN scattering

More information

Few-nucleon contributions to π-nucleus scattering

Few-nucleon contributions to π-nucleus scattering Mitglied der Helmholtz-Gemeinschaft Few-nucleon contributions to π-nucleus scattering Andreas Nogga, Forschungszentrum Jülich INT Program on Simulations and Symmetries: Cold Atoms, QCD, and Few-hadron

More information

Renormalization and power counting of chiral nuclear forces. 龙炳蔚 (Bingwei Long) in collaboration with Chieh-Jen Jerry Yang (U.

Renormalization and power counting of chiral nuclear forces. 龙炳蔚 (Bingwei Long) in collaboration with Chieh-Jen Jerry Yang (U. Renormalization and power counting of chiral nuclear forces 龙炳蔚 (Bingwei Long) in collaboration with Chieh-Jen Jerry Yang (U. Arizona) What are we really doing? Correcting Weinberg's scheme about NN contact

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Plan of the lectures 1. QCD and States of Matter 2. The High Temperature Phase: Theory 3. Exploring QCD at High Temperature: Experiment

More information

EFT Approaches to αα and Nα Systems

EFT Approaches to αα and Nα Systems 1 EFT Approaches to αα and Nα Systems Renato Higa Kernfysisch Versneller Instituut University of Groningen Simulations and Symmetries, INT Program, Mar. 30, 2010 2 EFT Approaches to αα and Nα Systems Outline

More information

Carbon-12 in Nuclear Lattice EFT

Carbon-12 in Nuclear Lattice EFT Carbon-12 in Nuclear Lattice EFT Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo A. Lähde (Jülich) Dean Lee (NC State) Thomas Luu (Jülich) Ulf-G. Meißner (Bonn/Jülich)

More information

Lattice Simulations with Chiral Nuclear Forces

Lattice Simulations with Chiral Nuclear Forces Lattice Simulations with Chiral Nuclear Forces Hermann Krebs FZ Jülich & Universität Bonn July 23, 2008, XQCD 2008, NCSU In collaboration with B. Borasoy, E. Epelbaum, D. Lee, U. Meißner Outline EFT and

More information

Effective Field Theory and Finite-Density Systems

Effective Field Theory and Finite-Density Systems ANNUAL REVIEWS Further Click here for quick links to Annual Reviews content online, including: Other articles in this volume Top cited articles Top downloaded articles Our comprehensive search Effective

More information

Nuclear Reactions in Lattice EFT

Nuclear Reactions in Lattice EFT Nuclear Reactions in Lattice EFT Gautam Rupak Mississippi State University Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Dean Lee (NCSU) Thomas Luu

More information

Chiral effective field theory on the lattice: Ab initio calculations of nuclei

Chiral effective field theory on the lattice: Ab initio calculations of nuclei Chiral effective field theory on the lattice: Ab initio calculations of nuclei Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Dean Lee (NC State)

More information

Nuclear Forces / DFT for Nuclei III

Nuclear Forces / DFT for Nuclei III Nuclear Forces / DFT for Nuclei III Department of Physics Ohio State University August, 2008 I. Overview of EFT/RG. II. Chiral effective field theory. III. RG for nuclear forces. EFT for many-body systems.

More information

The symmetries of QCD (and consequences)

The symmetries of QCD (and consequences) The symmetries of QCD (and consequences) Sinéad M. Ryan Trinity College Dublin Quantum Universe Symposium, Groningen, March 2018 Understand nature in terms of fundamental building blocks The Rumsfeld

More information

Hadronic parity-violation in pionless effective field theory

Hadronic parity-violation in pionless effective field theory Hadronic parity-violation in pionless effective field theory Matthias R. Schindler Ohio University PAVI9 June 25, 29 In collaboration with D. R. Phillips and R. P. Springer Introduction Effective Field

More information

Overview of low energy NN interaction and few nucleon systems

Overview of low energy NN interaction and few nucleon systems 1 Overview of low energy NN interaction and few nucleon systems Renato Higa Theory Group, Jefferson Lab Cebaf Center, A3 (ext6363) higa@jlaborg Lecture II Basics on chiral EFT π EFT Chiral effective field

More information

Charming Nuclear Physics

Charming Nuclear Physics Charming Nuclear Physics Masaoki Kusunoki Univ. of Arizona (with Sean Fleming, Tom Mehen, Bira van Kolck) Outline Charming Nuclear Physics Introduction (Nuclear EFT) X(3872) as shallow DD* bound state

More information

The Big Picture. Thomas Schaefer. North Carolina State University

The Big Picture. Thomas Schaefer. North Carolina State University The Big Picture Thomas Schaefer North Carolina State University 1 Big Questions What is QCD? What is a Phase of QCD? What is a Plasma? What is a (perfect) Liquid? What is a wqgp/sqgp? 2 What is QCD (Quantum

More information

Pion-nucleon scattering around the delta-isobar resonance

Pion-nucleon scattering around the delta-isobar resonance Pion-nucleon scattering around the delta-isobar resonance Bingwei Long (ECT*) In collaboration with U. van Kolck (U. Arizona) What do we really do Fettes & Meissner 2001... Standard ChPT Isospin 3/2 What

More information

From Halo EFT to Reaction EFT

From Halo EFT to Reaction EFT SOTANCP 4 Galveston 2018 From Halo EFT to Reaction EFT Marcel Schmidt Technische Universität Darmstadt and University of Tennessee, Knoxville with H.-W. Hammer (TUD) and L. Platter (UTK) May 15, 2018 May

More information

One-loop corrections as the origin of spontaneous chiral symmetry breaking in the massless chiral sigma model

One-loop corrections as the origin of spontaneous chiral symmetry breaking in the massless chiral sigma model One-loop corrections as the origin of spontaneous chiral symmetry breaking in the massless chiral sigma model a S. Tamenaga, a H. Toki, a, b A. Haga, and a Y. Ogawa a RCNP, Osaka University b Nagoya Institute

More information

BCS-BEC Cross over: Using the ERG

BCS-BEC Cross over: Using the ERG BCS-BEC Cross over: Using the ERG Niels Walet with Mike Birse, Boris Krippa and Judith McGovern School of Physics and Astronomy University of Manchester RPMBT14, Barcelona, 2007 Outline 1 Introduction

More information

Fate of the neutron-deuteron virtual state as an Efimov level

Fate of the neutron-deuteron virtual state as an Efimov level Fate of the neutron-deuteron virtual state as an Efimov level Gautam Rupak Collaborators: R. Higa (USP), A. Vaghani (MSU), U. van Kolck (IPN-Orsay/UA) Jefferson Laboratory Theory Seminar, Mar 19, 2018

More information

Cold and dense QCD matter

Cold and dense QCD matter Cold and dense QCD matter GCOE sympodium Feb. 15, 2010 Yoshimasa Hidaka Quantum ChromoDynamics Atom Electron 10-10 m Quantum ChromoDynamics Atom Nucleon Electron 10-10 m 10-15 m Quantum ElectroDynamics

More information

Open Effective Field Theories and Universality

Open Effective Field Theories and Universality Open Effective Field Theories and Universality H.-W. Hammer Institut für Kernphysik, TU Darmstadt and Extreme Matter Institute EMMI 614. WE-Heraeus Seminar, Bad Honnef, April 18-10, 2016 Open Effective

More information

Super Efimov effect. Sergej Moroz University of Washington. together with Yusuke Nishida and Dam Thanh Son. Tuesday, April 1, 14

Super Efimov effect. Sergej Moroz University of Washington. together with Yusuke Nishida and Dam Thanh Son. Tuesday, April 1, 14 Super Efimov effect together with Yusuke Nishida and Dam Thanh Son Sergej Moroz University of Washington Few-body problems They are challenging but useful: Newton gravity Quantum atoms Quantum molecules

More information

INTRODUCTION TO EFFECTIVE FIELD THEORIES OF QCD

INTRODUCTION TO EFFECTIVE FIELD THEORIES OF QCD INTRODUCTION TO EFFECTIVE FIELD THEORIES OF QCD U. van Kolck Institut de Physique Nucléaire d Orsay and University of Arizona Supported in part by CNRS, Université Paris Sud, and US DOE Outline Effective

More information

Pairing in many-fermion systems: an exact-renormalisation-group treatment

Pairing in many-fermion systems: an exact-renormalisation-group treatment Pairing in many-fermion systems: an exact-renormalisation-group treatment Michael C Birse, Judith A McGovern (University of Manchester) Boris Krippa, Niels R Walet (UMIST) Birse, Krippa, McGovern and Walet,

More information

Universality in Halo Systems

Universality in Halo Systems Universality in Halo Systems H.-W. Hammer Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics Universität Bonn EMMI Physics Days, Darmstadt, Nov. 13-14, 2012 Universality

More information

!onformali" Los# J.-W. Lee D. T. Son M. Stephanov D.B.K. arxiv: Phys.Rev.D80:125005,2009

!onformali Los# J.-W. Lee D. T. Son M. Stephanov D.B.K. arxiv: Phys.Rev.D80:125005,2009 !onformali" Los# J.-W. Lee D. T. Son M. Stephanov D.B.K arxiv:0905.4752 Phys.Rev.D80:125005,2009 Motivation: QCD at LARGE N c and N f Colors Flavors Motivation: QCD at LARGE N c and N f Colors Flavors

More information

Pionless EFT for Few-Body Systems

Pionless EFT for Few-Body Systems Pionless EFT for Few-Body Systems Betzalel Bazak Physique Theorique Institut de Physique Nucleaire d Orsay Nuclear Physics from Lattice QCD Insitute for Nuclear Theory April 7, 2016 Seattle Betzalel Bazak

More information

Small Trapped s-wave Interacting Fermi Gases: How to Quantify Correlations?

Small Trapped s-wave Interacting Fermi Gases: How to Quantify Correlations? Image: Peter Engels group at WSU Small Trapped s-wave Interacting Fermi Gases: How to Quantify Correlations? Doerte Blume and Kevin M. Daily Dept. of Physics and Astronomy, Washington State University,

More information

Nuclear physics around the unitarity limit

Nuclear physics around the unitarity limit Nuclear physics around the unitarity limit Sebastian König Nuclear Theory Workshop TRIUMF, Vancouver, BC February 28, 2017 SK, H.W. Grießhammer, H.-W. Hammer, U. van Kolck, arxiv:1607.04623 [nucl-th] SK,

More information

Pions in the quark matter phase diagram

Pions in the quark matter phase diagram Pions in the quark matter phase diagram Daniel Zabłocki Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski, Poland Institut für Physik, Universität Rostock, Germany Bogoliubov Laboratory of Theoretical

More information

C.A. Bertulani, Texas A&M University-Commerce

C.A. Bertulani, Texas A&M University-Commerce C.A. Bertulani, Texas A&M University-Commerce in collaboration with: Renato Higa (University of Sao Paulo) Bira van Kolck (Orsay/U. of Arizona) INT/Seattle, Universality in Few-Body Systems, March 10,

More information

Renormalization group methods in nuclear few- and many-body problems

Renormalization group methods in nuclear few- and many-body problems Renormalization group methods in nuclear few- and many-body problems Lecture 1 S.K. Bogner (NSCL/MSU) 2011 National Nuclear Physics Summer School University of North Carolina at Chapel Hill Useful readings

More information

Similarity RG and Many-Body Operators

Similarity RG and Many-Body Operators Similarity RG and Many-Body Operators Department of Physics Ohio State University February, 2010 Collaborators: E. Anderson, S. Bogner, S. Glazek, E. Jurgenson, P. Navratil, R. Perry, L. Platter, A. Schwenk,

More information

Review of lattice EFT methods and connections to lattice QCD

Review of lattice EFT methods and connections to lattice QCD Review of lattice EFT methods and connections to lattice QCD Dean Lee Michigan State University uclear Lattice EFT Collaboration Multi-Hadron Systems from Lattice QCD Institute for uclear Theory Feburary

More information

Spin-Orbit Interactions in Nuclei and Hypernuclei

Spin-Orbit Interactions in Nuclei and Hypernuclei Ab-Initio Nuclear Structure Bad Honnef July 29, 2008 Spin-Orbit Interactions in Nuclei and Hypernuclei Wolfram Weise Phenomenology Aspects of Chiral Dynamics and Spin-Orbit Forces Nuclei vs. -Hypernuclei:

More information

Non-local 1/m b corrections to B X s γ

Non-local 1/m b corrections to B X s γ Non-local 1/m b corrections to B X s γ Michael Benzke TU München September 16, 2010 In collaboration with S. J. Lee, M. Neubert, G. Paz Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Motivation Different phases of QCD occur in the universe Neutron Stars, Big Bang Exploring the phase diagram is important to understanding

More information

Low- and High-Energy Excitations in the Unitary Fermi Gas

Low- and High-Energy Excitations in the Unitary Fermi Gas Low- and High-Energy Excitations in the Unitary Fermi Gas Introduction / Motivation Homogeneous Gas Momentum Distribution Quasi-Particle Spectrum Low Energy Excitations and Static Structure Function Inhomogeneous

More information

Nuclear few- and many-body systems in a discrete variable representation basis

Nuclear few- and many-body systems in a discrete variable representation basis Nuclear few- and many-body systems in a discrete variable representation basis Jeremy W. Holt* Department of Physics University of Washington *with A. Bulgac, M. M. Forbes L. Coraggio, N. Itaco, R. Machleidt,

More information

Nuclear Physics from Lattice Effective Field Theory

Nuclear Physics from Lattice Effective Field Theory Nuclear Physics from Lattice Effective Field Theory Dean Lee (NCSU/Bonn) work done in collaboration with Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Ulf-G. Meißner (Bonn/Jülich) Buḡra Borasoy (now

More information

Renormalization group methods in nuclear few- and many-body problems

Renormalization group methods in nuclear few- and many-body problems Renormalization group methods in nuclear few- and many-body problems Lecture 1 S.K. Bogner (NSCL/MSU) 2011 National Nuclear Physics Summer School University of North Carolina at Chapel Hill Useful readings

More information

Dense Matter and Neutrinos. J. Carlson - LANL

Dense Matter and Neutrinos. J. Carlson - LANL Dense Matter and Neutrinos J. Carlson - LANL Neutron Stars and QCD phase diagram Nuclear Interactions Quantum Monte Carlo Low-Density Equation of State High-Density Equation of State Neutron Star Matter

More information

A.A. Godizov. Institute for High Energy Physics, Protvino, Russia

A.A. Godizov. Institute for High Energy Physics, Protvino, Russia arxiv:1410.886v1 [hep-ph] 0 Oct 2014 QCD and nuclear physics. How to explain the coincidence between the radius of the strong interaction of nucleons and the characteristic scale of neutron-neutron electrostatic

More information

Quantum Monte Carlo calculations of medium mass nuclei

Quantum Monte Carlo calculations of medium mass nuclei Quantum Monte Carlo calculations of medium mass nuclei Diego Lonardoni FRIB Theory Fellow In collaboration with: J. Carlson, LANL S. Gandolfi, LANL X. Wang, Huzhou University, China A. Lovato, ANL & UniTN

More information

Thermodynamics of the polarized unitary Fermi gas from complex Langevin. Joaquín E. Drut University of North Carolina at Chapel Hill

Thermodynamics of the polarized unitary Fermi gas from complex Langevin. Joaquín E. Drut University of North Carolina at Chapel Hill Thermodynamics of the polarized unitary Fermi gas from complex Langevin Joaquín E. Drut University of North Carolina at Chapel Hill INT, July 2018 Acknowledgements Organizers Group at UNC-CH (esp. Andrew

More information

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center 2014 National Nuclear Physics Summer School Lectures on Effective Field Theory I. Removing heavy particles II. Removing large scales III. Describing Goldstone bosons IV. Interacting with Goldstone bosons

More information

Renormalization group methods in nuclear few- and many-body problems

Renormalization group methods in nuclear few- and many-body problems Renormalization group methods in nuclear few- and many-body problems Lecture 2 S.K. Bogner (NSCL/MSU) 2011 National Nuclear Physics Summer School University of North Carolina at Chapel Hill Lecture 2 outline

More information

Effective Field Theory for Many-Body Systems

Effective Field Theory for Many-Body Systems Outline Systems EFT Dilute DFT Future Effective Field Theory for Many-Body Systems Department of Physics Ohio State University February 19, 2004 Outline Systems EFT Dilute DFT Future Principles of Effective

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/27 History/motivation BCS/BEC crossover Unitarity regime Schrödinger symmetry Plan Geometric

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn Evgeny Epelbaum KHuK Jahrestagung, GSI, 25.10.2007 Evgeny Epelbaum Forschungszentrum Jülich & Universität Bonn Outline Motivation & Introduction Few nucleons in chiral EFT: where do we stand Work in progress:

More information

Is the up-quark massless? Hartmut Wittig DESY

Is the up-quark massless? Hartmut Wittig DESY Is the up-quark massless? Hartmut Wittig DESY Wuppertal, 5 November 2001 Quark mass ratios in Chiral Perturbation Theory Leutwyler s ellipse: ( mu m d ) 2 + 1 Q 2 ( ms m d ) 2 = 1 25 m s m d 38 R 44 0

More information

Electromagnetic and spin polarisabilities from lattice QCD

Electromagnetic and spin polarisabilities from lattice QCD Lattice Hadron Physics 2006 Electromagnetic and spin polarisabilities from lattice QCD William Detmold [ WD, BC Tiburzi and A Walker-Loud, PRD73, 114505] I: How to extract EM and spin polarisabilities

More information

Mesonic and nucleon fluctuation effects in nuclear medium

Mesonic and nucleon fluctuation effects in nuclear medium Mesonic and nucleon fluctuation effects in nuclear medium Research Center for Nuclear Physics Osaka University Workshop of Recent Developments in QCD and Quantum Field Theories National Taiwan University,

More information

arxiv: v1 [cond-mat.quant-gas] 23 Oct 2017

arxiv: v1 [cond-mat.quant-gas] 23 Oct 2017 Conformality Lost in Efimov Physics Abhishek Mohapatra and Eric Braaten Department of Physics, The Ohio State University, Columbus, OH 430, USA arxiv:70.08447v [cond-mat.quant-gas] 3 Oct 07 Dated: October

More information

Effective Field Theory for Density Functional Theory III

Effective Field Theory for Density Functional Theory III Effective Field Theory for Density Functional Theory III Department of Physics Ohio State University September, 25 I. Overview of EFT, RG, DFT for fermion many-body systems II. EFT/DFT for dilute Fermi

More information

(Super) Fluid Dynamics. Thomas Schaefer, North Carolina State University

(Super) Fluid Dynamics. Thomas Schaefer, North Carolina State University (Super) Fluid Dynamics Thomas Schaefer, North Carolina State University Hydrodynamics Hydrodynamics (undergraduate version): Newton s law for continuous, deformable media. Fluids: Gases, liquids, plasmas,...

More information

Quantum Monte Carlo calculations of two neutrons in finite volume

Quantum Monte Carlo calculations of two neutrons in finite volume Quantum Monte Carlo calculations of two neutrons in finite volume Philipp Klos with J. E. Lynn, I. Tews, S. Gandolfi, A. Gezerlis, H.-W. Hammer, M. Hoferichter, and A. Schwenk Nuclear Physics from Lattice

More information

The critical point in QCD

The critical point in QCD The critical point in QCD Thomas Scha fer North Carolina State University The phase diagram of QCD L = q f (id/ m f )q f 1 4g 2 Ga µνg a µν 2000: Dawn of the collider era at RHIC Au + Au @200 AGeV What

More information

Speculations on extensions of symmetry and interctions to GUT energies Lecture 16

Speculations on extensions of symmetry and interctions to GUT energies Lecture 16 Speculations on extensions of symmetry and interctions to GUT energies Lecture 16 1 Introduction The use of symmetry, as has previously shown, provides insight to extensions of present physics into physics

More information

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State QCD and Instantons: 12 Years Later Thomas Schaefer North Carolina State 1 ESQGP: A man ahead of his time 2 Instanton Liquid: Pre-History 1975 (Polyakov): The instanton solution r 2 2 E + B A a µ(x) = 2

More information

Ab initio nuclear structure from lattice effective field theory

Ab initio nuclear structure from lattice effective field theory Ab initio nuclear structure from lattice effective field theory Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Thomas Luu (Jülich) Dean Lee (NC State)

More information

Toward a unified description of equilibrium and dynamics of neutron star matter

Toward a unified description of equilibrium and dynamics of neutron star matter Toward a unified description of equilibrium and dynamics of neutron star matter Omar Benhar INFN and Department of Physics Sapienza Università di Roma I-00185 Roma, Italy Based on work done in collaboration

More information

Sarma phase in relativistic and non-relativistic systems

Sarma phase in relativistic and non-relativistic systems phase in relativistic and non-relativistic systems Tina Katharina Herbst In Collaboration with I. Boettcher, J. Braun, J. M. Pawlowski, D. Roscher, N. Strodthoff, L. von Smekal and C. Wetterich arxiv:149.5232

More information

Nuclear Structure and Reactions using Lattice Effective Field Theory

Nuclear Structure and Reactions using Lattice Effective Field Theory Nuclear Structure and Reactions using Lattice Effective Field Theory Dean Lee North Carolina State University Nuclear Lattice EFT Collaboration Frontiers of Nuclear Physics Kavli Institute for Theoretical

More information

Neutron matter from chiral effective field theory interactions

Neutron matter from chiral effective field theory interactions Neutron matter from chiral effective field theory interactions Ingo Tews, In collaboration with K. Hebeler, T. Krüger, A. Schwenk, JINA Neutron Stars, May 26, 2016, Athens, OH Chiral effective field theory

More information

Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA

Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA Lianyi He ( 何联毅 ) Department of Physics, Tsinghua University 2016 Hangzhou Workshop on Quantum Degenerate Fermi Gases,

More information

Scattering amplitudes from lattice QCD

Scattering amplitudes from lattice QCD Scattering amplitudes from lattice QCD David Wilson Old Dominion University Based on work in collaboration with J.J. Dudek, R.G. Edwards and C.E. Thomas. Jefferson lab theory center 20th October 2014.

More information

The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure

The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure Stefano Gandolfi Los Alamos National Laboratory (LANL) Nuclear Structure and Reactions: Weak, Strange and Exotic International

More information

TRIUMF. Three-body forces in nucleonic matter. Weakly-Bound Systems in Atomic and Nuclear Physics. Kai Hebeler (TRIUMF) INT, Seattle, March 11, 2010

TRIUMF. Three-body forces in nucleonic matter. Weakly-Bound Systems in Atomic and Nuclear Physics. Kai Hebeler (TRIUMF) INT, Seattle, March 11, 2010 Three-body forces in nucleonic matter Kai Hebeler (TRIUMF) INT, Seattle, March 11, 21 TRIUMF A. Schwenk, T. Duguet, T. Lesinski, S. Bogner, R. Furnstahl Weakly-Bound Systems in Atomic and Nuclear Physics

More information

Modern Theory of Nuclear Forces

Modern Theory of Nuclear Forces Evgeny Epelbaum, FZ Jülich & University Bonn Lacanau, 29.09.2009 Modern Theory of Nuclear Forces Lecture 1: Lecture 2: Lecture 3: Introduction & first look into ChPT EFTs for two nucleons Nuclear forces

More information

Chiral Symmetry Breaking from Monopoles and Duality

Chiral Symmetry Breaking from Monopoles and Duality Chiral Symmetry Breaking from Monopoles and Duality Thomas Schaefer, North Carolina State University with A. Cherman and M. Unsal, PRL 117 (2016) 081601 Motivation Confinement and chiral symmetry breaking

More information

Lattice QCD and Proton Structure:

Lattice QCD and Proton Structure: Lattice QCD and Proton Structure: How can Lattice QCD complement Experiment? Workshop on Future Opportunities in QCD Washington D.C. December 15, 006 How can Lattice QCD Complement Experiment? 1. Quantitative

More information

Electroweak Probes of Three-Nucleon Systems

Electroweak Probes of Three-Nucleon Systems Stetson University July 3, 08 Brief Outline Form factors of three-nucleon systems Hadronic parity-violation in three-nucleon systems Pionless Effective Field Theory Ideally suited for momenta p < m π since

More information

Tackling the Sign Problem of Ultracold Fermi Gases with Mass-Imbalance

Tackling the Sign Problem of Ultracold Fermi Gases with Mass-Imbalance Tackling the Sign Problem of Ultracold Fermi Gases with Mass-Imbalance Dietrich Roscher [D. Roscher, J. Braun, J.-W. Chen, J.E. Drut arxiv:1306.0798] Advances in quantum Monte Carlo techniques for non-relativistic

More information

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) 1 m N m ρ Λ QCD 0 m π m u,d In a generic physical system, there are often many scales involved. However, for a specific

More information

Non Fermi liquid effects in dense matter. Kai Schwenzer, Thomas Schäfer INT workshop From lattices to stars Seattle,

Non Fermi liquid effects in dense matter. Kai Schwenzer, Thomas Schäfer INT workshop From lattices to stars Seattle, Non Fermi liquid effects in dense matter Kai Schwenzer, Thomas Schäfer INT workshop From lattices to stars Seattle, 27.5.2004 1 Introduction Possible phases at high density...... all involve condensed

More information

Universal behaviour of four-boson systems from a functional renormalisation group

Universal behaviour of four-boson systems from a functional renormalisation group Universal behaviour of four-boson systems from a functional renormalisation group Michael C Birse The University of Manchester Results from: Jaramillo Avila and Birse, arxiv:1304.5454 Schmidt and Moroz,

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/20 What is common for strong coupled cold atoms and QGP? Cold atoms and AdS/CFT p.2/20

More information

Effective Field Theory and Ultracold Atoms

Effective Field Theory and Ultracold Atoms Effective Field Theory and Ultracold Atoms Eric Braaten Ohio State University support Department of Energy Air Force Office of Scientific Research Army Research Office 1 Effective Field Theory and Ultracold

More information

1 Introduction. 2 The hadronic many body problem

1 Introduction. 2 The hadronic many body problem Models Lecture 18 1 Introduction In the next series of lectures we discuss various models, in particluar models that are used to describe strong interaction problems. We introduce this by discussing the

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

Vacuum Energy and Effective Potentials

Vacuum Energy and Effective Potentials Vacuum Energy and Effective Potentials Quantum field theories have badly divergent vacuum energies. In perturbation theory, the leading term is the net zero-point energy E zeropoint = particle species

More information

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II Lecture 6 8.34 Relativistic Quantum Field Theory II Fall 8.34 Relativistic Quantum Field Theory II MIT OpenCourseWare Lecture Notes Hong Liu, Fall α(μ) Lecture 6 5.3.3: Beta-Functions of Quantum Electrodynamics

More information

RG & EFT for nuclear forces

RG & EFT for nuclear forces RG & EFT for nuclear forces Andreas Nogga, Forschungszentrum Jülich ECT* school, Feb/March 2006 Low momentum interactions: Using the RG to simplify the nuclear force for many-body calculations. Application

More information

At the end of Section 4, a summary of basic principles for low-energy effective theories was given, which we recap here.

At the end of Section 4, a summary of basic principles for low-energy effective theories was given, which we recap here. Nuclear Forces 2 (last revised: September 30, 2014) 6 1 6. Nuclear Forces 2 a. Recap: Principles of low-energy effective theories Figure 1: Left: high-resolution, with wavelength of probe short compared

More information

Effective Field Theory

Effective Field Theory Effective Field Theory Iain Stewart MIT The 19 th Taiwan Spring School on Particles and Fields April, 2006 Physics compartmentalized Quantum Field Theory String Theory? General Relativity short distance

More information