Fate of the neutron-deuteron virtual state as an Efimov level

Size: px
Start display at page:

Download "Fate of the neutron-deuteron virtual state as an Efimov level"

Transcription

1 Fate of the neutron-deuteron virtual state as an Efimov level Gautam Rupak Collaborators: R. Higa (USP), A. Vaghani (MSU), U. van Kolck (IPN-Orsay/UA) Jefferson Laboratory Theory Seminar, Mar 19,

2 Outline Background Efimov levels, experiments, 3-nucleon systems Effective Field Theory Pionless EFT as the fundamental theory Halo EFT of deuteron Results Conclusions 2

3 Efimov levels Two body interaction At gv (r) g = g 0, scattering length a Three-body bound states # 1 a ln r between r A+A+A g<g. -~1 ~ g>g, A+D 1 ma 2 and 1 mr 2 Efimov, PLB33, 563 (1970) geometrical scaling 3

4 Why does it happen? Efimov levels a 1/ V (R)/m 15 1 m 2 R 2 r mr 4

5 Cold Atom Experiments atom loss in Cs-133 He-4 trimers Kunitski et al. Science 348, 551 (2015) Kraemer et al. Nature 440, 315 (2006) Naidon and Endo review paper Rep. Prog. Phys. 80,56001 (2017) 5

6 Nuclear Systems? Triton binding energy ~ 8.5 MeV, deeper state ~ 4.4 GeV. Forget that! Coulomb force introduces new scale. Only very light systems However, neutron-deuteron scattering does have a virtual state Girard and Fuda (1979), Adhikari and Torreao (1983) 6

7 Neutron-Deuteron Virtual State pcotδ (MeV) van Oers & Seagrave (1967): p cot = 1/a + rp2 /2+ p 2 + p Data Kievsky et al. ERE van Oers & Seagrave p (MeV) Pole at p 2 = p MeV 2 Shallow virtual state B~ 0.5 MeV Data: Ref. [1] and [2] in Phys. Lett. 562 (1967) 7

8 Virtual State as Efimov Level? Accumulation of 3-body Efimov levels near unitarity:! a!1,r! 0 1. Achieve unitarity theoretically (not feasible experimentally) Want a model-independent method Universally applicable 2. Model-independent description of shallow virtual state Derive the modified ERE below deuteron breakup For first task: use pionless EFT that produces triton and virtual state as the fundamental theory to generate data For second task: formulate a low energy theory with fundamental deuteron fields (a halo EFT) 8

9 EFT: the long and short of it Identify degrees of freedom! L = c 0 O (0) +c 1 O (1) +c 2 O (2) + expansion in! Hide UV ignorance- short distance IR explicit- long distance Determine c n from data (elastic, inelastic) EFT : ERE + currents + relativistic corrections power counting Not just Ward-Takahashi identity 9

10 Pionless EFT EFT nucleon-nucleon scattering ia(p) = 2 µ 2 µ i p cot 0 ip = 2 µ i 1/a + ip Example: neutron-proton scattering i 1/a + r 2 p2 + ip apple 1+ rp2 /2 1/a + ip + 1 S 0 : a = 23.8 fm, r =2.73 fm, 3 S 1 : a =+5.42 fm, r =1.75 fm., for a ~ 1/p >> r 10

11 Construct EFT Non-relativistic nucleons Short ranged interaction point-like interaction ia(p) = C 0 Weinberg 90! Bedaque, van Kolck 97! Kaplan, Savage, Wise 98 i 1 C 0 + i µ 2 p ) C 0 2 a µ 1/a p Q 1/r m δ S 1 power-counting C 0 1/Q single fine-tuning (rho-pion physics) k (MeV) Chen, Rupak, Savage (1999) Phillips, Rupak, Savage (1999)

12 Neutron-Deuteron Scattering dimer-formulation (auxiliary field) C 0 $ g2 = Tnd = + Tnd Bedaque, Hammer, van Kolck Nucl. Phys. A 676, 357 (2000) + + Tnd h 0 ( ) 4 2 s sin s 0 ln( / ) tan 1 (s 0 ) sin s 0 ln( / ) + tan 1 (s 0 ), 12 3-nucleon coupling limit cycle, Wilson (1971) Phillips line (1968)

13 Limit Cycle, Phillips line λ 2 h0/ Numerical result Analytical form λ (MeV) Bedaque, Rupak, Grießhammer, Hammer Nucl. Phys. A 714, 589 (2003) 13

14 Neutron-Deuteron in pionless EFT 0 50 pionless EFT Input 100 pcotδ (MeV) Data Kievsky et al LO EFT NLO EFT NNLO EFT p (MeV) LO :, a s, a 3 NLO : LO + r t, r s NNLO : NLO + B 3 Bedaque, Rupak, Grießhammer, Hammer (2003) NLO: S. König, J. Vanesse Next proceed to derive a theory with fundamental deuteron fields below breakup 14

15 Phase Shift 0 g s = 1, g t = g s = 0, g t = a s!1, (p/γt)cotδ 4 6 a s = 24 fm, = 46 MeV (p/γt)cotδ 0 50 = 41 MeV Ramsauer-Townsend effect p/γ t p/γ t 8 g s = 0, g t = g s = 0, g t = 0.2 (p/γt)cotδ a s!1, = 27 MeV (p/γt)cotδ a s!1, =9MeV p/γ t p/γ t

16 Halo EFT and modified ERE L =n [i@ 0 + r2 2m N ]n + d a[i@ 0 + r2 2m d ]d a + + 2X i=1 r 2 µ [ (i) a p 3 nd a +h. c.], 2X i=1 (i) [ i + c i (i@ 0 + r2 2M Introduce two auxiliary fields! )] (i) neutron-deuteron amplitude: it t (p) = 2 µ h 1 1+c 1 p 2 /(2µ) i i 1 ip = 2 µ i p cot i Generate modified ERE: calculate as a 2-body amplitude p 2 0 =2µ c 1, 1 a = , 16 2 r =2µ c 1 2,

17 Halo EFT Power-Counting Breakdown scale Λ set by deuteron breakup momentum Zero of T-matrix at Q Virtual state momentum א Initially: Q MeV MeV MeV 2 We define: t g t 45.7g t MeV, s g s /a s = 8.3g s MeV Approach unitarity as: (g s =0,g t! 0) As we tune the pionless EFT, Q 2 gets smaller, changes sign and approaches Λ 2 and exceeds it. Power-counting has to account for the varying relative size of Q 2 (and other fine tunings) 17

18 Consider 3 intervals Power-Counting Continued 0.7. g t. 1 : small a Q 2 /(@ 2 ), large r 2 /(@Q 2 ) 1 2 and c 2 c 1 small shape parameter 0.3. g t. 0.7 : large a r 1/@ Q & 2 1 and still c 2 c 1 Second auxiliary field decouples: regular ERE 0.1. g t. 0.3 : large a 1/@ and r. 1/ Familiar unitary limit EFT with a single auxiliary field Continue on? 18

19 Phase Shift Again 0 g s = 1, g t = g s = 0, g t = (p/γt)cotδ 4 6 (p/γt)cotδ 0 50 (p/γt)cotδ p/γ t g s = 0, g t = 0.6 (p/γt)cotδ p/γ t g s = 0, g t = p/γ t p/γ t

20 Virtual, Bound and Resonance States Look at analytic structure of the S-matrix S t (p) =e 2i (p) =1+ i2p p cot = (p + i 1)(p + i 2 )(p + i 3 ) (p i 1 )(p i 2 )(p i 3 ) ip =1+iµp T t(p) =1+ i2p 1/a+rp 2 /2 p 2 +p 2 0 ip Interpretation of the three poles in halo EFT: = r 2 p2 0, = p 2 0, = p2 0 a 3 rd root not relevant as 3 1 st root is the shallow virtual state 2 nd root on positive imaginary axis triton? 20 No, a redundant pole.

21 Redundant Pole We look at the residue of the S-matrix near the poles S t (p) X i p R i i i + regular pieces, Normalization of bound and virtual states N 1 2 = ir 1 = 2 1( 2 1 p 2 0) ( 1 2 )( 1 3 ), N 2 2 = ir 2 = 2 2( 2 2 p 2 0) ( 2 1 )( 2 3 ) < 0. 2 > 0 is called a redundant/shadow pole Ma, Phys. Rev. 69, 668 (1946) 21

22 Virtual State to Efimov Level Ni 2 (MeV) π 2 π π i (MeV) 22

23 Efimov Levels Excited state, g s = 0 Triton, g s = 0 Triton, g s = 1 mnb3 (MeV) Real world (45.7 MeV) e /s g t γ t (MeV) 23

24 Conclusions Efimov level emerged from the n-d virtual state near unitarity Model-independent analysis using a halo EFT Claim the mechanism for emergence of Efimov levels is universal Atomic systems lattice QCD at unphysical quark masses radiative capture in n-d, p-d system for Big Bang Nucleosynthesis 24

Nuclear Reactions in Lattice EFT

Nuclear Reactions in Lattice EFT Nuclear Reactions in Lattice EFT Gautam Rupak Mississippi State University Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Dean Lee (NCSU) Thomas Luu

More information

INTRODUCTION TO EFFECTIVE FIELD THEORIES OF QCD

INTRODUCTION TO EFFECTIVE FIELD THEORIES OF QCD INTRODUCTION TO EFFECTIVE FIELD THEORIES OF QCD U. van Kolck Institut de Physique Nucléaire d Orsay and University of Arizona Supported in part by CNRS, Université Paris Sud, and US DOE Outline Effective

More information

PoS(Confinement8)147. Universality in QCD and Halo Nuclei

PoS(Confinement8)147. Universality in QCD and Halo Nuclei Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, University of Bonn, Germany E-mail: hammer@itkp.uni-bonn.de Effective Field Theory (EFT) provides a powerful

More information

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University!

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Overview! Introduction! Basic ideas of EFT! Basic Examples of EFT! Algorithm of EFT! Review NN scattering! NN scattering

More information

Nuclear Physics from Lattice Effective Field Theory

Nuclear Physics from Lattice Effective Field Theory Nuclear Physics from Lattice Effective Field Theory Dean Lee (NCSU/Bonn) work done in collaboration with Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Ulf-G. Meißner (Bonn/Jülich) Buḡra Borasoy (now

More information

Nuclear physics around the unitarity limit

Nuclear physics around the unitarity limit Nuclear physics around the unitarity limit Sebastian König Nuclear Theory Workshop TRIUMF, Vancouver, BC February 28, 2017 SK, H.W. Grießhammer, H.-W. Hammer, U. van Kolck, arxiv:1607.04623 [nucl-th] SK,

More information

Chiral effective field theory on the lattice: Ab initio calculations of nuclei

Chiral effective field theory on the lattice: Ab initio calculations of nuclei Chiral effective field theory on the lattice: Ab initio calculations of nuclei Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Dean Lee (NC State)

More information

Modern Theory of Nuclear Forces

Modern Theory of Nuclear Forces Evgeny Epelbaum, FZ Jülich & University Bonn Lacanau, 28.09.2009 Modern Theory of Nuclear Forces Lecture 1: Lecture 2: Introduction & first look into ChPT EFTs for two nucleons Chiral Perturbation Theory

More information

From Halo EFT to Reaction EFT

From Halo EFT to Reaction EFT SOTANCP 4 Galveston 2018 From Halo EFT to Reaction EFT Marcel Schmidt Technische Universität Darmstadt and University of Tennessee, Knoxville with H.-W. Hammer (TUD) and L. Platter (UTK) May 15, 2018 May

More information

Ab initio lattice EFT from light to medium mass nuclei Nuclear Lattice EFT Collaboration

Ab initio lattice EFT from light to medium mass nuclei Nuclear Lattice EFT Collaboration Ab initio lattice EFT from light to medium mass nuclei Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Dean Lee (NC State) Thomas Luu (Jülich/Bonn)

More information

THE THREE NUCLEON SYSTEM AT LEADING ORDER OF CHIRAL EFFECTIVE THEORY

THE THREE NUCLEON SYSTEM AT LEADING ORDER OF CHIRAL EFFECTIVE THEORY THE THREE NUCLEON SYSTEM AT LEADING ORDER OF CHIRAL EFFECTIVE THEORY Young-Ho Song(RISP, Institute for Basic Science) Collaboration with R. Lazauskas( IPHC, IN2P3-CNRS) U. van Kolck (Orsay, IPN & Arizona

More information

Ab initio alpha-alpha scattering using adiabatic projection method

Ab initio alpha-alpha scattering using adiabatic projection method Ab initio alpha-alpha scattering using adiabatic projection method Serdar Elhatisari Advances in Diagrammatic Monte Carlo Methods for QFT Calculations in Nuclear-, Particle-, and Condensed Matter Physics

More information

Quantum Monte Carlo calculations of two neutrons in finite volume

Quantum Monte Carlo calculations of two neutrons in finite volume Quantum Monte Carlo calculations of two neutrons in finite volume Philipp Klos with J. E. Lynn, I. Tews, S. Gandolfi, A. Gezerlis, H.-W. Hammer, M. Hoferichter, and A. Schwenk Nuclear Physics from Lattice

More information

Recent results in lattice EFT for nuclei

Recent results in lattice EFT for nuclei Recent results in lattice EFT for nuclei Dean Lee (NC State) Nuclear Lattice EFT Collaboration Centro de Ciencias de Benasque Pedro Pascua Bound states and resonances in EFT and Lattice QCD calculations

More information

Effective Field Theory for light nuclear systems

Effective Field Theory for light nuclear systems Effective Field Theory for light nuclear systems Jimmy Rotureau Chalmers University of Technology, Göteborg, Sweden B. Barrett, University of Arizona, Tucson I. Stetcu, University of Washington, Seattle

More information

Hadronic parity-violation in pionless effective field theory

Hadronic parity-violation in pionless effective field theory Hadronic parity-violation in pionless effective field theory Matthias R. Schindler Ohio University PAVI9 June 25, 29 In collaboration with D. R. Phillips and R. P. Springer Introduction Effective Field

More information

Tritium β decay in pionless EFT

Tritium β decay in pionless EFT Ohio University June 0, 207 Recipe for EFT(/π) For momenta p < m π pions can be integrated out as degrees of freedom and only nucleons and external currents are left. Write down all possible terms of nucleons

More information

Electroweak Probes of Three-Nucleon Systems

Electroweak Probes of Three-Nucleon Systems Stetson University July 3, 08 Brief Outline Form factors of three-nucleon systems Hadronic parity-violation in three-nucleon systems Pionless Effective Field Theory Ideally suited for momenta p < m π since

More information

Range eects on Emov physics in cold atoms

Range eects on Emov physics in cold atoms Range eects on Emov physics in cold atoms An Eective eld theory approach Chen Ji TRIUMF in collaboration with D. R. Phillips, L. Platter INT workshop, November 7 2012 Canada's national laboratory for particle

More information

Pion-nucleon scattering around the delta-isobar resonance

Pion-nucleon scattering around the delta-isobar resonance Pion-nucleon scattering around the delta-isobar resonance Bingwei Long (ECT*) In collaboration with U. van Kolck (U. Arizona) What do we really do Fettes & Meissner 2001... Standard ChPT Isospin 3/2 What

More information

EFT Approaches to αα and Nα Systems

EFT Approaches to αα and Nα Systems 1 EFT Approaches to αα and Nα Systems Renato Higa Kernfysisch Versneller Instituut University of Groningen Simulations and Symmetries, INT Program, Mar. 30, 2010 2 EFT Approaches to αα and Nα Systems Outline

More information

Universality in few-body Systems: from few-atoms to few-nucleons

Universality in few-body Systems: from few-atoms to few-nucleons Home Search Collections Journals About Contact us My IOPscience Universality in few-body Systems: from few-atoms to few-nucleons This content has been downloaded from IOPscience. Please scroll down to

More information

Pionless EFT for Few-Body Systems

Pionless EFT for Few-Body Systems Pionless EFT for Few-Body Systems Betzalel Bazak Physique Theorique Institut de Physique Nucleaire d Orsay Nuclear Physics from Lattice QCD Insitute for Nuclear Theory April 7, 2016 Seattle Betzalel Bazak

More information

POWER COUNTING WHAT? WHERE?

POWER COUNTING WHAT? WHERE? POWER COUNTING WHAT? WHERE? U. van Kolck Institut de Physique Nucléaire d Orsay and University of Arizona Supported by CNRS and US DOE 1 Outline Meeting the elephant What? Where? Walking out of McDonald

More information

arxiv:nucl-th/ v4 6 Mar 2000

arxiv:nucl-th/ v4 6 Mar 2000 DOE/ER/40561-57-INT99 TRI-PP-99-24 KRL MAP-248 NT@UW-99-30 Effective Theory of the Triton arxiv:nucl-th/9906032v4 6 Mar 2000 P.F. Bedaque a,1, H.-W. Hammer b,2,3, and U. van Kolck c,d,4 a Institute for

More information

Lattice Simulations with Chiral Nuclear Forces

Lattice Simulations with Chiral Nuclear Forces Lattice Simulations with Chiral Nuclear Forces Hermann Krebs FZ Jülich & Universität Bonn July 23, 2008, XQCD 2008, NCSU In collaboration with B. Borasoy, E. Epelbaum, D. Lee, U. Meißner Outline EFT and

More information

C.A. Bertulani, Texas A&M University-Commerce

C.A. Bertulani, Texas A&M University-Commerce C.A. Bertulani, Texas A&M University-Commerce in collaboration with: Renato Higa (University of Sao Paulo) Bira van Kolck (Orsay/U. of Arizona) INT/Seattle, Universality in Few-Body Systems, March 10,

More information

Universality in Halo Systems

Universality in Halo Systems Universality in Halo Systems H.-W. Hammer Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics Universität Bonn EMMI Physics Days, Darmstadt, Nov. 13-14, 2012 Universality

More information

Weakly-Bound Systems in Atomic and Nuclear Physics March 2010

Weakly-Bound Systems in Atomic and Nuclear Physics March 2010 Electroweak properties of Weakly- Bound Light Nuclei Weakly-Bound Systems in Atomic and Nuclear Physics March 2010 INSTITUTE FOR NUCLEAR THEORY Collaborators Sonia Bacca Winfried Leidemann, Giuseppina

More information

arxiv: v1 [nucl-th] 27 Sep 2016

arxiv: v1 [nucl-th] 27 Sep 2016 Charge and Matter Form Factors of Two-Neutron Halo Nuclei in Halo Effective Field Theory at Next-to-leading-order Jared Vanasse, Department of Physics and Astronomy Ohio University, Athens OH 457, USA

More information

Modern Theory of Nuclear Forces

Modern Theory of Nuclear Forces Evgeny Epelbaum, FZ Jülich & University Bonn Lacanau, 29.09.2009 Modern Theory of Nuclear Forces Lecture 1: Lecture 2: Lecture 3: Introduction & first look into ChPT EFTs for two nucleons Nuclear forces

More information

Nuclear Structure and Reactions using Lattice Effective Field Theory

Nuclear Structure and Reactions using Lattice Effective Field Theory Nuclear Structure and Reactions using Lattice Effective Field Theory Dean Lee North Carolina State University Nuclear Lattice EFT Collaboration Frontiers of Nuclear Physics Kavli Institute for Theoretical

More information

arxiv:nucl-th/ v1 22 Sep 2000

arxiv:nucl-th/ v1 22 Sep 2000 1 arxiv:nucl-th/967v1 22 Sep 2 Chiral Dynamics in Few Nucleon Systems E. Epelbaum a, H. Kamada a,b, A. Nogga b, H. Wita la c, W. Glöckle b, and Ulf-G. Meißner a a Forschungszentrum Jülich, Institut für

More information

NUCLEAR STRUCTURE AND REACTIONS FROM LATTICE QCD

NUCLEAR STRUCTURE AND REACTIONS FROM LATTICE QCD NUCLEAR STRUCTURE AND REACTIONS FROM LATTICE QCD U. van Kolck Institut de Physique Nucléaire d Orsay and University of Arizona Supported by CNRS and US DOE 1 Outline QCD at Low Energies and the Lattice

More information

Charming Nuclear Physics

Charming Nuclear Physics Charming Nuclear Physics Masaoki Kusunoki Univ. of Arizona (with Sean Fleming, Tom Mehen, Bira van Kolck) Outline Charming Nuclear Physics Introduction (Nuclear EFT) X(3872) as shallow DD* bound state

More information

Coulomb effects in pionless effective field theory

Coulomb effects in pionless effective field theory Coulomb effects in pionless effective field theory Sebastian König in collaboration with Hans-Werner Hammer Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics,

More information

Efimov Physics and Universality

Efimov Physics and Universality Efimov Physics and Universality Eric Braaten Ohio State University Bonn University support DOE High Energy Physics DOE Basic Energy Sciences Air Force Office of Scientific Research Army Research Office

More information

arxiv:nucl-th/ v2 21 Dec 1999

arxiv:nucl-th/ v2 21 Dec 1999 NT@UW-99-54 Precision Calculation of np dγ Cross Section for Big-Bang Nucleosynthesis arxiv:nucl-th/9911018v 1 ec 1999 Gautam Rupak epartment of Physics, University of Washington, Seattle, WA 98195 Abstract

More information

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn Evgeny Epelbaum KHuK Jahrestagung, GSI, 25.10.2007 Evgeny Epelbaum Forschungszentrum Jülich & Universität Bonn Outline Motivation & Introduction Few nucleons in chiral EFT: where do we stand Work in progress:

More information

improve a reaction calculation

improve a reaction calculation 7Be(p,γ) 8 B: how EFT and Bayesian analysis can improve a reaction calculation Daniel Phillips Work done in collaboration with: K. Nollett (SDSU), X. Zhang (UW) Phys. Rev. C 89, 051602 (2014), Phys. Lett.

More information

Carbon-12 in Nuclear Lattice EFT

Carbon-12 in Nuclear Lattice EFT Carbon-12 in Nuclear Lattice EFT Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo A. Lähde (Jülich) Dean Lee (NC State) Thomas Luu (Jülich) Ulf-G. Meißner (Bonn/Jülich)

More information

Renormalization group methods in nuclear few- and many-body problems

Renormalization group methods in nuclear few- and many-body problems Renormalization group methods in nuclear few- and many-body problems Lecture 2 S.K. Bogner (NSCL/MSU) 2011 National Nuclear Physics Summer School University of North Carolina at Chapel Hill Lecture 2 outline

More information

Resonance properties from finite volume energy spectrum

Resonance properties from finite volume energy spectrum Resonance properties from finite volume energy spectrum Akaki Rusetsky Helmholtz-Institut für Strahlen- und Kernphysik Abteilung Theorie, Universität Bonn, Germany NPB 788 (2008) 1 JHEP 0808 (2008) 024

More information

arxiv: v1 [cond-mat.quant-gas] 23 Oct 2017

arxiv: v1 [cond-mat.quant-gas] 23 Oct 2017 Conformality Lost in Efimov Physics Abhishek Mohapatra and Eric Braaten Department of Physics, The Ohio State University, Columbus, OH 430, USA arxiv:70.08447v [cond-mat.quant-gas] 3 Oct 07 Dated: October

More information

Compositeness of hadrons and near-threshold dynamics Tetsuo Hyodo

Compositeness of hadrons and near-threshold dynamics Tetsuo Hyodo Compositeness of hadrons and near-threshold dynamics Tetsuo Hyodo Yukawa Institute for Theoretical Physics, Kyoto Univ. 2015, May 26th 1 Contents Contents Introduction: compositeness of hadrons Near-threshold

More information

Ab initio nuclear structure from lattice effective field theory

Ab initio nuclear structure from lattice effective field theory Ab initio nuclear structure from lattice effective field theory Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Thomas Luu (Jülich) Dean Lee (NC State)

More information

Effective Field Theories in Nuclear and Hadron Physics

Effective Field Theories in Nuclear and Hadron Physics Effective Field Theories in Nuclear and Hadron Physics Vadim Lensky Theoretical Physics Group, The University of Manchester January 11, 2013 V. Lensky EFTs in Hadron and Nuclear Physics 1 Outline Introduction

More information

The NN system: why and how we iterate

The NN system: why and how we iterate The NN system: why and how we iterate Daniel Phillips Ohio University Research supported by the US department of energy Plan Why we iterate I: contact interactions Why we iterate II: pion exchange How

More information

Functional RG for few-body physics

Functional RG for few-body physics Functional RG for few-body physics Michael C Birse The University of Manchester Review of results from: Schmidt and Moroz, arxiv:0910.4586 Krippa, Walet and Birse, arxiv:0911.4608 Krippa, Walet and Birse,

More information

Three-particle scattering amplitudes from a finite volume formalism*

Three-particle scattering amplitudes from a finite volume formalism* INT-13-53W March 2013 Three-particle scattering amplitudes from a finite volume formalism* Zohreh Davoudi University of Washington *Raul Briceno, ZD, arxiv: 1212.3398 Why a finite volume formalism? Lattice

More information

Alex Gezerlis. New Ideas in Constraining Nuclear Forces ECT*, Trento, Italy June 5, 2018

Alex Gezerlis. New Ideas in Constraining Nuclear Forces ECT*, Trento, Italy June 5, 2018 Quantum Monte Carlo interactions with From microscopic to effective Chiral Effective Field Theory Interactions using Quantum Monte Carlo Alex Gezerlis New Ideas in Constraining Nuclear Forces ECT*, Trento,

More information

EFT as the bridge between Lattice QCD and Nuclear Physics

EFT as the bridge between Lattice QCD and Nuclear Physics EFT as the bridge between Lattice QCD and Nuclear Physics David B. Kaplan QCHSVII Ponta Delgada, Açores, September 2006 National Institute for Nuclear Theory Nuclear physics from lattice QCD? Not yet,

More information

Nucleon-nucleon interaction in covariant chiral effective field theory

Nucleon-nucleon interaction in covariant chiral effective field theory Guilin, China The Seventh Asia-Pacific Conference on Few-Body Problems in Physics Nucleon-nucleon interaction in covariant chiral effective field theory Xiu-Lei Ren School of Physics, Peking University

More information

Review of lattice EFT methods and connections to lattice QCD

Review of lattice EFT methods and connections to lattice QCD Review of lattice EFT methods and connections to lattice QCD Dean Lee Michigan State University uclear Lattice EFT Collaboration Multi-Hadron Systems from Lattice QCD Institute for uclear Theory Feburary

More information

Structure of near-threshold s-wave resonances

Structure of near-threshold s-wave resonances Structure of near-threshold s-wave resonances Tetsuo Hyodo Yukawa Institute for Theoretical Physics, Kyoto 203, Sep. 0th Introduction Structure of hadron excited states Various excitations of baryons M

More information

L. David Roper

L. David Roper The Heavy Proton L. David Roper mailto:roperld@vt.edu Introduction The proton is the nucleus of the hydrogen atom, which has one orbiting electron. The proton is the least massive of the baryons. Its mass

More information

arxiv: v1 [nucl-th] 5 Jun 2014

arxiv: v1 [nucl-th] 5 Jun 2014 Constraints on a possible dineutron state from pionless EFT arxiv:406.359v [nucl-th] 5 Jun 04 H.-W. Hammer,, 3, 4, 5, and Sebastian König Institut für Kernphysik, Technische Universität Darmstadt, 6489

More information

Effective Field Theory and. the Nuclear Many-Body Problem

Effective Field Theory and. the Nuclear Many-Body Problem Effective Field Theory and the Nuclear Many-Body Problem Thomas Schaefer North Carolina State University 1 Schematic Phase Diagram of Dense Matter T nuclear matter µ e neutron matter? quark matter µ 2

More information

Universality in Few- and Many-Body Systems

Universality in Few- and Many-Body Systems Universality in Few- and Many-Body Systems Lucas Platter Institute for Nuclear Theory University of Washington Collaborators: Braaten, Hammer, Kang, Phillips, Ji Ultracold Gases the scattering length a

More information

Open Effective Field Theories and Universality

Open Effective Field Theories and Universality Open Effective Field Theories and Universality H.-W. Hammer Institut für Kernphysik, TU Darmstadt and Extreme Matter Institute EMMI 614. WE-Heraeus Seminar, Bad Honnef, April 18-10, 2016 Open Effective

More information

Nuclear few- and many-body systems in a discrete variable representation basis

Nuclear few- and many-body systems in a discrete variable representation basis Nuclear few- and many-body systems in a discrete variable representation basis Jeremy W. Holt* Department of Physics University of Washington *with A. Bulgac, M. M. Forbes L. Coraggio, N. Itaco, R. Machleidt,

More information

Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory

Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory Achim Schwenk Astrophysical Transients: Multi-Messenger Probes of Nuclear Physics INT, July 29, 2011 Outline

More information

FROM QCD TO NUCLEI: ASPECTS OF NUCLEAR THEORY IN FRANCE

FROM QCD TO NUCLEI: ASPECTS OF NUCLEAR THEORY IN FRANCE FROM QCD TO NUCLEI: ASPECTS OF NUCLEAR THEORY IN FRANCE Ubirajara van Kolck Institut de Physique Nucléaire 1 Outline Hadronic theory in France Nuclear forces from QCD Low-energy nuclear theory in France

More information

EFFECTIVE FIELD THEORY FOR LATTICE NUCLEI

EFFECTIVE FIELD THEORY FOR LATTICE NUCLEI EFFECTIVE FIELD THEORY FOR LATTICE NUCLEI Francesco Pederiva Physics Deparment Unversity of Trento INFN-TIFPA, Trento Institue for Fundamental Physics and Applications LISC, Interdisciplinary Laboratory

More information

Three-nucleon potentials in nuclear matter. Alessandro Lovato

Three-nucleon potentials in nuclear matter. Alessandro Lovato Three-nucleon potentials in nuclear matter Alessandro Lovato PRC 83, 054003 (2011) arxiv:1109.5489 Outline Ab initio many body method Nuclear Hamiltonian: 2- and 3- body potentials Density dependent potential

More information

Neutron matter from chiral effective field theory interactions

Neutron matter from chiral effective field theory interactions Neutron matter from chiral effective field theory interactions Ingo Tews, In collaboration with K. Hebeler, T. Krüger, A. Schwenk, JINA Neutron Stars, May 26, 2016, Athens, OH Chiral effective field theory

More information

N and (1232) masses and the γn transition. Marc Vanderhaeghen College of William & Mary / Jefferson Lab

N and (1232) masses and the γn transition. Marc Vanderhaeghen College of William & Mary / Jefferson Lab N and (1232) masses and the γn transition Marc Vanderhaeghen College of William & Mary / Jefferson Lab Hadron Structure using lattice QCD, INT, April 4, 2006 Outline 1) N and masses : relativistic chiral

More information

NUCLEAR FORCES. Historical perspective

NUCLEAR FORCES. Historical perspective NUCLEAR FORCES Figure 1: The atomic nucleus made up from protons (yellow) and neutrons (blue) and held together by nuclear forces. Nuclear forces (also known as nuclear interactions or strong forces) are

More information

hg: Chiral Structure of Few-Nucleon Systems

hg: Chiral Structure of Few-Nucleon Systems Chiral Structure of Few-Nucleon Systems H. W. Grießhammer Center for Nuclear Studies, The George Washington University, Washington DC, USA D. R. Phillips: Chiral Dynamics with πs, Ns and s Done. hg: Chiral

More information

Towards an Understanding of Clustering in Nuclei from First Principles

Towards an Understanding of Clustering in Nuclei from First Principles 1 Towards an Understanding of Clustering in Nuclei from First Principles Ulf-G. Meißner, Univ. Bonn & FZ Jülich Supported by DFG, SFB/TR-16 and by DFG, SFB/TR-11 and by CAS, PIFI by HGF VIQCD VH-VI-417

More information

HALO/CLUSTER EFFECTIVE FIELD THEORY. U. van Kolck

HALO/CLUSTER EFFECTIVE FIELD THEORY. U. van Kolck Unité mixte de reherhe CNRS-INP3 Université Paris-Sud 9406 Orsay Cedex http://ipnweb.inp3.fr HALO/CLUSTER EFFECTIVE FIELD THEORY U. van Kolk Université Paris-Sud and University of Arizona Supported in

More information

The nucleon-nucleon system in chiral effective theory

The nucleon-nucleon system in chiral effective theory The nucleon-nucleon system in chiral effective theory Daniel Phillips Ohio University Research supported by the US Department of Energy Plan χet for nuclear forces: the proposal Leading order for S waves

More information

The 1/N c Expansion in Hadron Effective Field Theory

The 1/N c Expansion in Hadron Effective Field Theory Commun. Theor. Phys. 70 (2018) 683 688 Vol. 70, No. 6, December 1, 2018 The 1/N c Expansion in Hadron Effective Field Theory Guo-Ying Chen ( 陈国英 ) Department of Physics and Astronomy, Hubei University

More information

Quark-Hadron Duality: Connecting the Perturbative and Non-Perturbative QCD Regimes

Quark-Hadron Duality: Connecting the Perturbative and Non-Perturbative QCD Regimes Quark-Hadron Duality: Connecting the Perturbative and Non-Perturbative QCD Regimes Simona Malace Norfolk State University Light Cone 2015, September 21-25 2015, INFN Frascati What is Quark-hadron duality?

More information

arxiv:nucl-th/ v1 18 Feb 1999

arxiv:nucl-th/ v1 18 Feb 1999 FZJ-IKP(TH)-1999-04 arxiv:nucl-th/9902042v1 18 Feb 1999 Charge independence breaking and charge symmetry breaking in the nucleon nucleon interaction from effective field theory E. Epelbaum, a,b#1 Ulf-G.

More information

RG & EFT for nuclear forces

RG & EFT for nuclear forces RG & EFT for nuclear forces Andreas Nogga, Forschungszentrum Jülich ECT* school, Feb/March 2006 Low momentum interactions: Using the RG to simplify the nuclear force for many-body calculations. Application

More information

INTRODUCTION TO NUCLEAR EFFECTIVE FIELD THEORIES

INTRODUCTION TO NUCLEAR EFFECTIVE FIELD THEORIES INTRODUCTION TO NUCLEAR EFFECTIVE FIELD THEORIES Ubirajara U. van Kolck Institut de Physique Nucléaire d Orsay and University of Arizona c Supported in part by CNRS and US DOE 1 Simplicity, like everything

More information

Evidence for Efimov Quantum states

Evidence for Efimov Quantum states KITP, UCSB, 27.04.2007 Evidence for Efimov Quantum states in Experiments with Ultracold Cesium Atoms Hanns-Christoph Nägerl bm:bwk University of Innsbruck TMR network Cold Molecules ultracold.atoms Innsbruck

More information

Wilsonian Renormalization Group and the Lippmann-Schwinger Equation with a Multitude of Cutoff Parameters

Wilsonian Renormalization Group and the Lippmann-Schwinger Equation with a Multitude of Cutoff Parameters Commun. Theor. Phys. 69 (208) 303 307 Vol. 69, No. 3, March, 208 Wilsonian Renormalization Group and the Lippmann-Schwinger Equation with a Multitude of Cutoff Parameters E. Epelbaum, J. Gegelia, 2,3 and

More information

Effective field theory for halo nuclei: shallow p-wave states

Effective field theory for halo nuclei: shallow p-wave states Nuclear Physics A 71 (00) 37 58 www.elsevier.com/locate/npe Effective field theory for halo nuclei: shallow p-wave states C.A. Bertulani a, H.-W. Hammer b,u.vankolck c,d a National Superconducting Cyclotron

More information

Neutrino processes in supernovae from chiral EFT

Neutrino processes in supernovae from chiral EFT Neutrino processes in supernovae from chiral EFT Achim Schwenk CANADA S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS Owned and operated as a joint venture by a consortium of Canadian universities

More information

Effective Field Theory and. the Nuclear Many-Body Problem

Effective Field Theory and. the Nuclear Many-Body Problem Effective Field Theory and the Nuclear Many-Body Problem Thomas Schaefer North Carolina State University 1 Nuclear Effective Field Theory Low Energy Nucleons: Nucleons are point particles Interactions

More information

Alpha particles in effective field theory

Alpha particles in effective field theory Alpha particles in effective field theory. aniu itation: AIP onference Proceedings 625, 77 204; View online: https://doi.org/0.063/.490788 View Table of ontents: http://aip.scitation.org/toc/apc/625/ Published

More information

Nuclear forces and their impact on structure, reactions and astrophysics

Nuclear forces and their impact on structure, reactions and astrophysics Nuclear forces and their impact on structure, reactions and astrophysics Lectures for Week 2 Dick Furnstahl Ohio State University July, 213 M. Chiral EFT 1 (as); χ-symmetry in NN scattering, QCD 2 (rjf)

More information

Hadronic Weak Interactions

Hadronic Weak Interactions 1 / 44 Hadronic Weak Interactions Matthias R. Schindler Fundamental Neutron Physics Summer School 2015 Some slides courtesy of N. Fomin 2 / 44 Weak interactions - One of fundamental interactions - Component

More information

Overview of low energy NN interaction and few nucleon systems

Overview of low energy NN interaction and few nucleon systems 1 Overview of low energy NN interaction and few nucleon systems Renato Higa Theory Group, Jefferson Lab Cebaf Center, A3 (ext6363) higa@jlaborg Lecture II Basics on chiral EFT π EFT Chiral effective field

More information

Restless pions,, nuclear forces and statistical noise in lattice QCD. Paulo Bedaque U. of Maryland, College Park

Restless pions,, nuclear forces and statistical noise in lattice QCD. Paulo Bedaque U. of Maryland, College Park Restless pions,, nuclear forces and statistical noise in lattice QCD Paulo Bedaque U. of Maryland, College Park What do we know? 1) NN phase shifts 1 S 0 neutron-proton What do we know? 2) Several potentials

More information

Quantum Monte Carlo calculations with chiral Effective Field Theory Interactions

Quantum Monte Carlo calculations with chiral Effective Field Theory Interactions Quantum Monte Carlo calculations with chiral Effective Field Theory Interactions Alexandros Gezerlis East Lansing, MI 3rd International Symposium on Nuclear Symmetry Energy July 25, 2013 Motivation for

More information

Bound states in a box

Bound states in a box Bound states in a box Sebastian König in collaboration with D. Lee, H.-W. Hammer; S. Bour, U.-G. Meißner Dr. Klaus Erkelenz Preis Kolloquium HISKP, Universität Bonn December 19, 2013 Bound states in a

More information

Universality in Four-Boson Systems

Universality in Four-Boson Systems Universality in Four-Boson Systems M. R. Hadizadeh INPP, Department of Physics & Astronomy, Ohio University hadizadm@ohio.edu Work done in collaboration with: M.T. Yamashita & L. Tomio (UNESP), A. Delfino

More information

The theory of nuclear forces: Is the never-ending ending story coming to an end? R. Machleidt University of Idaho

The theory of nuclear forces: Is the never-ending ending story coming to an end? R. Machleidt University of Idaho The theory of nuclear forces: Is the never-ending ending story coming to an end? University of Idaho What s left to say? Put the recent progress into a wider perspective. Fill in some missing details.

More information

Modern Theory of Nuclear Forces

Modern Theory of Nuclear Forces Evgeny Epelbaum PAX Meeting, Stockholm, 15.06.2010 Modern Theory of Nuclear Forces Evgeny Epelbaum, Ruhr-Universität Bochum Outline Chiral EFT for nuclear forces Some hot topics (work in progress) Deuteron

More information

Three-nucleon forces and neutron-rich nuclei

Three-nucleon forces and neutron-rich nuclei Three-nucleon forces and neutron-rich nuclei Achim Schwenk Facets of Strong Interaction Physics Hirschegg 40 + Bengt 60, Jan. 18, 2012 Happy Birthday Bengt! Outline Understanding three-nucleon forces Three-body

More information

Nuclear structure I: Introduction and nuclear interactions

Nuclear structure I: Introduction and nuclear interactions Nuclear structure I: Introduction and nuclear interactions Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July

More information

arxiv: v1 [hep-ph] 22 Apr 2008

arxiv: v1 [hep-ph] 22 Apr 2008 New formula for a resonant scattering near an inelastic threshold L. Leśniak arxiv:84.3479v [hep-ph] 22 Apr 28 The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, 3-342

More information

Three- and Four-Nucleon Dynamics at Intermediate Energies

Three- and Four-Nucleon Dynamics at Intermediate Energies Three- and Four-Nucleon Dynamics at Intermediate Energies By: Ghanshyam Khatri 05 June, 2013 G. Khatri, MPD Symposium, Kraków 1 \ 20 Outline Motivation 3N dynamics Experiment with BINA: present work -

More information

Chiral dynamics and baryon resonances

Chiral dynamics and baryon resonances Chiral dynamics and baryon resonances Tetsuo Hyodo a Tokyo Institute of Technology a supported by Global Center of Excellence Program Nanoscience and Quantum Physics 2009, June 5th 1 Contents Contents

More information

Axial-Current Matrix Elements in Light Nuclei from Lattice QCD. Department of Physics, University of Washington, Box , Seattle, WA 98195, USA.

Axial-Current Matrix Elements in Light Nuclei from Lattice QCD. Department of Physics, University of Washington, Box , Seattle, WA 98195, USA. Axial-Current Matrix Elements in Light Nuclei from Lattice QCD, Emmanuel Chang and Michael L. Wagman Institute for Nuclear Theory, Seattle, Washington 98195-155, USA. E-mail: mjs5@uw.edu Silas R. Beane

More information

Bayesian Fitting in Effective Field Theory

Bayesian Fitting in Effective Field Theory Bayesian Fitting in Effective Field Theory Department of Physics Ohio State University February, 26 Collaborators: D. Phillips (Ohio U.), U. van Kolck (Arizona), R.G.E. Timmermans (Groningen, Nijmegen)

More information

Renormalization and power counting of chiral nuclear forces. 龙炳蔚 (Bingwei Long) in collaboration with Chieh-Jen Jerry Yang (U.

Renormalization and power counting of chiral nuclear forces. 龙炳蔚 (Bingwei Long) in collaboration with Chieh-Jen Jerry Yang (U. Renormalization and power counting of chiral nuclear forces 龙炳蔚 (Bingwei Long) in collaboration with Chieh-Jen Jerry Yang (U. Arizona) What are we really doing? Correcting Weinberg's scheme about NN contact

More information