Bayesian Fitting in Effective Field Theory

Size: px
Start display at page:

Download "Bayesian Fitting in Effective Field Theory"

Transcription

1 Bayesian Fitting in Effective Field Theory Department of Physics Ohio State University February, 26 Collaborators: D. Phillips (Ohio U.), U. van Kolck (Arizona), R.G.E. Timmermans (Groningen, Nijmegen)

2 Outline Overview Method Request What Does The Typical Physicist Know About Bayesian Statistics? Nothing! But there are exceptions: Experimentalists searching for weak signatures of particles Some Beyond the Standard Model theorists Some lattice gauge theorists doing constrained curve fitting Even where applied, Bayesian methods are controversial Not applied as yet in EFT or nuclear structure calculations The problem described here is just one (simple) example where Bayesian methods might be useful

3 Outline Overview Method Request Constrained Curve Fitting Example (hep-lat/11175) Monte Carlo estimates of a meson correlator G(t) are generated at 24 time steps, t =, 1,, 23. Theory says the exact correlator has the form: G th (t; A n, E n ) = A n e Ent n=1 Challenge: Fit an infinite number of amplitudes A n and energies E n using only 24 G(t) s. Standard procedure: Keep only first few terms in G th Fit using only Monte Carlo data from t t min But choosing t min is ad hoc

4 Outline Overview Method Request Results From Standard Fits 2 2 Energy 1 E 2 E 1 Energy 1 E 2 E t min Number of Terms 8 Left: 2-term fit to n=1 A ne Ent for t t min Competition between large systematic errors for small t min and large statistical errors for large t max Right: Fit values for lowest two energies vs. # of terms

5 Outline Overview Method Request Unconstrained vs. Constrained Fits Goal: Fit all data using as many terms as we wish Plan: Add priors for reasonable A n s and E n s in n A ne Ent 2 2 Energy 1 E 2 E 1 Energy 1 E 2 E Number of Terms Number of Terms 8 Left: unconstrained. Right: constrained.

6 Outline Outline Overview Method Request Overview: Problem(s) to Be Solved Method: Effective Field Theory (EFT) Request: Advice on Applying Bayesian Methods

7 Outline Outline Overview Method Request Goal Overview: Problem(s) to Be Solved Method: Effective Field Theory (EFT) Request: Advice on Applying Bayesian Methods

8 Figure 1: From QCD vacuum to heavy nuclei: the intellectual Bayesian connection Fitting inbetween EFT the hadronic many-body Outline Overview Method Request Goal The Islands of Strong Interaction Physics RHIC CEBAF quarks gluons few nucleons RIA heavy nuclei vacuum quark-gluon plasma QCD nucleon QCD few-body systems free NN force many-body systems effective NN force

9 Outline Overview Method Request Goal The Big Picture (adapted from

10 Outline Overview Method Request Goal Table of the Nuclides Stable nuclei 126 Known nuclei 82 r-process Protons 2 28 rp-process Terra incognita Neutron stars Neutrons Figure The nuclear landscape, defining the territory of nuclear physics research. On this chart of the nuclides, black squares represent stable nuclei and nuclei with half-lives comparable to or longer than the age of the Earth. These nuclei define the valley of stability. Dick By Furnstahl adding either protons Bayesian or neutrons, Fitting inone EFTmoves away from the valley of

11 Outline Overview Method Request Goal Problems with Extrapolations Mass formulas and energy functionals do well where there is data, but elsewhere... two-neutron separation energies S 2n (MeV) Sn data exist Experiment HFB-SLy4 HFB-SkP HFB-D1S SkX RHB-NL3 LEDF Mass Formulae Neutron Number data do not exist Neutron Number Neutron Number exp FRDM CKZ JM MJ T+ Figure 6: Predicted two-neutron separation energies Bayesian for the even-even FittingSn inisotopes EFT using several

12 Outline Overview Method Request Goal Input to Many-Body Problem: Internucleon Force Reproduce data from scattering protons from neutrons, etc. Difficult problem with long history M.L. Goldberger, at the Midwestern Conference on Theoretical Physics, Purdue University, 196: There are few problems in nuclear theoretical physics which have attracted more attention than that of trying to determine the fundamental interaction between two nucleons. It is also true that scarcely ever has the world of physics owed so little to so many.... It is hard to believe that many of the authors are talking about the same problem or, in fact, that they know what the problem is.

13 Outline Overview Method Request Goal Successful Fits to Phase Shift Data Achieved Fit energies from to 35 MeV, with goal of χ 2 /dof 1 Account only for measurement errors Table from Argonne v 18 paper: No theoretical errors, all data treated equally

14 Outline Outline Overview Method Request EFT Chiral Analogs Overview: Problem(s) to Be Solved Method: Effective Field Theory (EFT) Request: Advice on Applying Bayesian Methods

15 Resolution and the Pointillists George Seurat painted using closely spaced small dots (.4 mm wide) of pure pigment Why do the dots blend together?

16 Resolution and the Pointillists George Seurat painted using closely spaced small dots (.4 mm wide) of pure pigment Why do the dots blend together?

17 Wavelength and Resolution

18 Wavelength and Resolution

19 Wavelength and Resolution

20 Wavelength and Resolution

21 Wavelength and Resolution

22 Wavelength and Resolution

23 Wavelength and Resolution

24 Wavelength and Resolution

25 Wavelength and Resolution

26 Principles of Effective Low-Energy Theories

27 Principles of Effective Low-Energy Theories If system is probed at low energies, fine details not resolved

28 Principles of Effective Low-Energy Theories If system is probed at low energies, fine details not resolved use low-energy variables for low-energy processes short-distance structure can be replaced by something simpler without distorting low-energy observables

29 Effective Field Theory Ingredients From Crossing the Border [nucl-th/864] 1 Use the most general L with low-energy dof s consistent with the global and local symmetries of the underlying theory 2 Declaration of regularization and renormalization scheme 3 Well-defined power counting = expansion parameters

30 Effective Field Theory Ingredients: Chiral NN From Crossing the Border [nucl-th/864] 1 Use the most general L with low-energy dof s consistent with the global and local symmetries of the underlying theory L eft = L ππ + L πn + L NN chiral symmetry = systematic long-distance pion physics 2 Declaration of regularization and renormalization scheme momentum cutoff and Weinberg counting use cutoff sensitivity as measure of uncertainties! 3 Well-defined power counting = expansion parameters use the separation of scales = {p, m π} with Λ Λ χ 1 GeV χ chiral symmetry = V NN = ν=ν min c ν Q ν with ν naturalness: parameters are O(1) in appropriate units

31 Chiral Lagrangian Unified description of ππ, πn, and NN N Lowest orders: L () = 1 2 µπ µ π 1 2 M2 π 2 + N [ i + g A 2F τ σ π 1 4F 1 2 C S(N N)(N N) 1 2 C T (N σn)(n σn) +..., [ L (1) = N 4c 1 M 2 2c 1 F 2 M2 π 2 + c 2 F 2 π2 + c 3 F 2 ( µπ µ π) c ] 4 2F 2 ɛ ijk ɛ abc σ i τ a ( j π b )( k π c ) N ] τ (π π) N 2 D 4F (N N)(N στ N) π 1 2 E (N N)(N τ N) (N τ N) +... Infinite # of unknown parameters in hierarchy

32 Chiral Effective Field Theory for Two Nucleons Epelbaum, Meißner, et al. Also Entem, Machleidt L πn + match at low energy Q ν 1π 2π 4N 1S 3S P 1D D3 3G

33 Chiral Effective Field Theory for Two Nucleons Epelbaum, Meißner, et al. Also Entem, Machleidt L πn + match at low energy Q ν 1π 2π 4N Q 1S 3S P 1D D3 3G

34 Chiral Effective Field Theory for Two Nucleons Epelbaum, Meißner, et al. Also Entem, Machleidt L πn + match at low energy Q ν 1π 2π 4N Q Q 1 1S 3S P 1D D3 3G

35 Chiral Effective Field Theory for Two Nucleons Epelbaum, Meißner, et al. Also Entem, Machleidt L πn + match at low energy Q ν 1π 2π 4N Q Q 1 Q 2 1S 3S P 1D D3 3G

36 Chiral Effective Field Theory for Two Nucleons Epelbaum, Meißner, et al. Also Entem, Machleidt L πn + match at low energy Q ν 1π 2π 4N Q Q 1 Q 2 Q 3 1S 3S P 1D D3 3G

37 Chiral Effective Field Theory for Two Nucleons Epelbaum, Meißner, et al. Also Entem, Machleidt L πn + match at low energy Q ν 1π 2π 4N Q Q 1 Q 2 Q 3 Q 4 many many 4 (15) 1S 3S P 1D D3 3G

38 Motivation For Applying Effective Field Theory Systematic calculations with theoretical error estimates Reliable, model independent extrapolation Analogy between EFT and basic numerical analysis naive error analysis: pick a method and reduce the mesh size (e.g., increase grid points) until the error is acceptable sophisticated error analysis: understand scaling and sources of error (e.g., algorithm vs. round-off errors) = Does it work as well as it should? representation dependence = not all are equally effective! extrapolation: completeness of an expansion basis

39 Error Plots in Numerical Analysis relative error Numerical Derivatives f (x) = [f(x+h)-f(x)]/h + O(h) mesh size h

40 Error Plots in Numerical Analysis relative error Numerical Derivatives f (x) = [f(x+h)-f(x)]/h + O(h) f (x) = [f(x+h/2)-f(x-h/2)]/h + O(h 2 ) mesh size h

41 Error Plots in Numerical Analysis relative error Numerical Derivatives f (x) = [f(x+h)-f(x)]/h + O(h) f (x) = [f(x+h/2)-f(x-h/2)]/h + O(h 2 ) Richardson extrapolation O(h 4 ) mesh size h

42 Error Plots in Numerical Analysis relative error h n to h n Numerical Integration trapezoid rule O(h 2 ) mesh size h

43 Error Plots in Numerical Analysis Numerical Integration relative error h n to h n trapezoid rule O(h 2 ) Simpson s rule O(h 4 ) mesh size h

44 Error Plots in Numerical Analysis Numerical Integration relative error h n to h n trapezoid rule O(h 2 ) Simpson s rule O(h 4 ) Milne s rule O(h 6 ) mesh size h

45 The Representation Can Make A Difference! E.g., elliptic integral: 1 (1 x 2 )(2 x) dx

46 The Representation Can Make A Difference! E.g., elliptic integral: 1 (1 x 2 )(2 x) dx How do the numerical errors behave? relative error h n to h n trapezoid rule O(h 2 ) Simpson s rule O(h 4 ) Milne s rule O(h 6 ) before Numerical Integration mesh size h

47 The Representation Can Make A Difference! E.g., elliptic integral: 1 (1 x 2 )(2 x) dx How do the numerical errors behave? After transformation: π/2 sin 2 y 2 cos y dy relative error h n to h n trapezoid rule O(h 2 ) Simpson s rule O(h 4 ) Milne s rule O(h 6 ) before Numerical Integration after mesh size h

48 The Representation Can Make A Difference! E.g., elliptic integral: 1 (1 x 2 )(2 x) dx How do the numerical errors behave? After transformation: π/2 sin 2 y 2 cos y dy relative error h n to h n trapezoid rule O(h 2 ) Simpson s rule O(h 4 ) Milne s rule O(h 6 ) before Numerical Integration after mesh size h

49 The Representation Can Make A Difference! E.g., elliptic integral: 1 (1 x 2 )(2 x) dx How do the numerical errors behave? After transformation: π/2 sin 2 y 2 cos y dy relative error h n to h n trapezoid rule O(h 2 ) Simpson s rule O(h 4 ) Milne s rule O(h 6 ) before Numerical Integration after mesh size h

50 Error Plots in Effective Field Theory G. P. Lepage, How to Renormalize the Schrödinger Equation! "$# % % & Errors in the 1 S phase shifts versus energy through orders Λ 2 and Λ 4. Fit using data at low energy only.

51 Error Plots in Effective Field Theory G. P. Lepage, How to Renormalize the Schrödinger Equation!#"%$ & & '(' & ) & Errors in the 1 S phase shifts versus energy for different values of the cutoff Λ.

52 Best Calculation: Theoretical Error A Posteriori Phase Shift [deg] Phase Shift [deg] Phase Shift [deg] Phase Shift [deg] ε 1 3 D2 1 S 3 P Lab. Energy [MeV] D2 3 D3 3 S1 3 P P1 3 P2 3 D Lab. Energy [MeV] Lab. Energy [MeV] ε 2

53 Naturalness of Coefficients (Epelbaum et al.) Georgi-Manohar naive dimensional analysis (NDA): ( N ) l ( ) m ( ( )N π µ ) n, m π L χ eft = c lmn fπλ 2 f χ f π Λ πλ 2 2 χ χ f π 1 MeV and Λ χ 1 MeV check NLO, NNLO constants from L NN (cutoff MeV): fπ 2 C S fπ 2 C T fπ 2 Λ 2 χ C fπ 2 Λ 2 χ C f 2 π Λ 2 χ C f 2 π Λ 2 χ C f 2 π Λ 2 χ C f 2 π Λ 2 χ C f 2 π Λ 2 χ C /3 c lmn 3 = natural! = truncation error estimates f 2 π C T unnaturally small = SU(4) spin-isospin symmetry

54 Outline Outline Overview Method Request Overview: Problem(s) to Be Solved Method: Effective Field Theory (EFT) Request: Advice on Applying Bayesian Methods

55 Outline Overview Method Request Summary of (Some of the) Questions How can we incorporate the expected behavior of the theoretical error based on naturalness and the EFT hierarchy? Frequently Asked Question: How much of the scattering data should be fit (i.e., up to what energy)? Traditionalist says: fit all data up to 35 MeV with χ 2 /dof 1 EFT practitioner says: only use the low-energy data How do we use all the data, accounting for the expected better description at low energy? How do we calculate uncertainties in our best-fit parameters? This is particularly important when using the fit to calculate elsewhere (e.g., nuclei)

Effective Field Theory for Many-Body Systems

Effective Field Theory for Many-Body Systems Outline Systems EFT Dilute DFT Future Effective Field Theory for Many-Body Systems Department of Physics Ohio State University February 19, 2004 Outline Systems EFT Dilute DFT Future Principles of Effective

More information

Renormalization group methods in nuclear few- and many-body problems

Renormalization group methods in nuclear few- and many-body problems Renormalization group methods in nuclear few- and many-body problems Lecture 2 S.K. Bogner (NSCL/MSU) 2011 National Nuclear Physics Summer School University of North Carolina at Chapel Hill Lecture 2 outline

More information

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn Evgeny Epelbaum KHuK Jahrestagung, GSI, 25.10.2007 Evgeny Epelbaum Forschungszentrum Jülich & Universität Bonn Outline Motivation & Introduction Few nucleons in chiral EFT: where do we stand Work in progress:

More information

Atomic Nuclei at Low Resolution

Atomic Nuclei at Low Resolution Atomic Department of Physics Ohio State University November, 29 Collaborators: E. Anderson, S. Bogner, S. Glazek, E. Jurgenson, R. Perry, S. Ramanan, A. Schwenk + UNEDF collaboration Overview DOFs EFT

More information

Dense Matter for Dummies (Non-Experts)

Dense Matter for Dummies (Non-Experts) for Dummies (Non-Experts) Department of Physics Ohio State University July, 26 Pictures have been freely borrowed from online sources; I apologize in advance for any omitted citations. Also, inclusion

More information

Modern Theory of Nuclear Forces

Modern Theory of Nuclear Forces Evgeny Epelbaum, FZ Jülich & University Bonn Lacanau, 28.09.2009 Modern Theory of Nuclear Forces Lecture 1: Lecture 2: Introduction & first look into ChPT EFTs for two nucleons Chiral Perturbation Theory

More information

Renormalization and power counting of chiral nuclear forces. 龙炳蔚 (Bingwei Long) in collaboration with Chieh-Jen Jerry Yang (U.

Renormalization and power counting of chiral nuclear forces. 龙炳蔚 (Bingwei Long) in collaboration with Chieh-Jen Jerry Yang (U. Renormalization and power counting of chiral nuclear forces 龙炳蔚 (Bingwei Long) in collaboration with Chieh-Jen Jerry Yang (U. Arizona) What are we really doing? Correcting Weinberg's scheme about NN contact

More information

POWER COUNTING WHAT? WHERE?

POWER COUNTING WHAT? WHERE? POWER COUNTING WHAT? WHERE? U. van Kolck Institut de Physique Nucléaire d Orsay and University of Arizona Supported by CNRS and US DOE 1 Outline Meeting the elephant What? Where? Walking out of McDonald

More information

Nuclear Forces - Lecture 1 -

Nuclear Forces - Lecture 1 - Physics Department, Tohoku University, June 30 July 2, 2014 Nuclear Forces - Lecture 1 - Historical Perspective R. Machleidt University of Idaho 1 Nuclear Forces - Overview of all lectures - Lecture 1:

More information

The theory of nuclear forces: Is the never-ending ending story coming to an end? R. Machleidt University of Idaho

The theory of nuclear forces: Is the never-ending ending story coming to an end? R. Machleidt University of Idaho The theory of nuclear forces: Is the never-ending ending story coming to an end? University of Idaho What s left to say? Put the recent progress into a wider perspective. Fill in some missing details.

More information

Modern Theory of Nuclear Forces

Modern Theory of Nuclear Forces Evgeny Epelbaum, FZ Jülich & University Bonn Lacanau, 29.09.2009 Modern Theory of Nuclear Forces Lecture 1: Lecture 2: Lecture 3: Introduction & first look into ChPT EFTs for two nucleons Nuclear forces

More information

Chiral effective field theory on the lattice: Ab initio calculations of nuclei

Chiral effective field theory on the lattice: Ab initio calculations of nuclei Chiral effective field theory on the lattice: Ab initio calculations of nuclei Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Dean Lee (NC State)

More information

Nuclear Physics from Lattice Effective Field Theory

Nuclear Physics from Lattice Effective Field Theory Nuclear Physics from Lattice Effective Field Theory Dean Lee (NCSU/Bonn) work done in collaboration with Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Ulf-G. Meißner (Bonn/Jülich) Buḡra Borasoy (now

More information

Physics 795 Nuclear Theory at OSU

Physics 795 Nuclear Theory at OSU Physics 795 Nuclear Theory at OSU Department of Physics Ohio State University October, 2006 Nuclear Theory Group Bunny Clark Ulrich Heinz Sabine Jeschonnek Yuri Kovchegov Robert Perry Current Students/Postdocs

More information

Pion-nucleon scattering around the delta-isobar resonance

Pion-nucleon scattering around the delta-isobar resonance Pion-nucleon scattering around the delta-isobar resonance Bingwei Long (ECT*) In collaboration with U. van Kolck (U. Arizona) What do we really do Fettes & Meissner 2001... Standard ChPT Isospin 3/2 What

More information

Neutron matter from chiral effective field theory interactions

Neutron matter from chiral effective field theory interactions Neutron matter from chiral effective field theory interactions Ingo Tews, In collaboration with K. Hebeler, T. Krüger, A. Schwenk, JINA Neutron Stars, May 26, 2016, Athens, OH Chiral effective field theory

More information

THE THREE NUCLEON SYSTEM AT LEADING ORDER OF CHIRAL EFFECTIVE THEORY

THE THREE NUCLEON SYSTEM AT LEADING ORDER OF CHIRAL EFFECTIVE THEORY THE THREE NUCLEON SYSTEM AT LEADING ORDER OF CHIRAL EFFECTIVE THEORY Young-Ho Song(RISP, Institute for Basic Science) Collaboration with R. Lazauskas( IPHC, IN2P3-CNRS) U. van Kolck (Orsay, IPN & Arizona

More information

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University!

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Overview! Introduction! Basic ideas of EFT! Basic Examples of EFT! Algorithm of EFT! Review NN scattering! NN scattering

More information

RG & EFT for nuclear forces

RG & EFT for nuclear forces RG & EFT for nuclear forces Andreas Nogga, Forschungszentrum Jülich ECT* school, Feb/March 2006 Low momentum interactions: Using the RG to simplify the nuclear force for many-body calculations. Application

More information

Overview of low energy NN interaction and few nucleon systems

Overview of low energy NN interaction and few nucleon systems 1 Overview of low energy NN interaction and few nucleon systems Renato Higa Theory Group, Jefferson Lab Cebaf Center, A3 (ext6363) higa@jlaborg Lecture II Basics on chiral EFT π EFT Chiral effective field

More information

Bayesian methods for effective field theories

Bayesian methods for effective field theories Bayesian methods for effective field theories Sarah Wesolowski The Ohio State University INT Bayes Workshop 2016 a1! Prior! Posterior! True value! Dick Furnstahl (OSU) Daniel Phillips (OU) 0! a0! BUQEYE

More information

Nuclear Forces - Lecture 1 - R. Machleidt University of Idaho

Nuclear Forces - Lecture 1 - R. Machleidt University of Idaho CNS Summer School, Univ. of Tokyo, at Wako campus of RIKEN, Aug. 18-23, 2005 Nuclear Forces - Lecture 1 - R. Machleidt University of Idaho 1 Nuclear Forces - Overview of all lectures - Lecture 1: History,

More information

Ab Initio Nuclear Structure Theory

Ab Initio Nuclear Structure Theory Ab Initio Nuclear Structure Theory Lecture 1: Hamiltonian Robert Roth Overview Lecture 1: Hamiltonian Prelude Many-Body Quantum Mechanics Nuclear Hamiltonian Matrix Elements Lecture 2: Correlations Two-Body

More information

Lattice Simulations with Chiral Nuclear Forces

Lattice Simulations with Chiral Nuclear Forces Lattice Simulations with Chiral Nuclear Forces Hermann Krebs FZ Jülich & Universität Bonn July 23, 2008, XQCD 2008, NCSU In collaboration with B. Borasoy, E. Epelbaum, D. Lee, U. Meißner Outline EFT and

More information

hg: Chiral Structure of Few-Nucleon Systems

hg: Chiral Structure of Few-Nucleon Systems Chiral Structure of Few-Nucleon Systems H. W. Grießhammer Center for Nuclear Studies, The George Washington University, Washington DC, USA D. R. Phillips: Chiral Dynamics with πs, Ns and s Done. hg: Chiral

More information

Nuclear Structure and Neutron-Rich Matter

Nuclear Structure and Neutron-Rich Matter Nuclear Structure and Neutron-Rich Matter Dick Furnstahl Department of Physics Ohio State University August, 28 Pictures have been freely borrowed from online sources; I apologize in advance for any omitted

More information

Nuclear structure I: Introduction and nuclear interactions

Nuclear structure I: Introduction and nuclear interactions Nuclear structure I: Introduction and nuclear interactions Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July

More information

Local chiral NN potentials and the structure of light nuclei

Local chiral NN potentials and the structure of light nuclei Local chiral NN potentials and the structure of light nuclei Maria Piarulli @ELBA XIV WORKSHOP June 7-July 1 16, Marciana Marina, Isola d Elba PHYSICAL REVIEW C 91, 43(15) Minimally nonlocal nucleon-nucleon

More information

Quantum Monte Carlo calculations of two neutrons in finite volume

Quantum Monte Carlo calculations of two neutrons in finite volume Quantum Monte Carlo calculations of two neutrons in finite volume Philipp Klos with J. E. Lynn, I. Tews, S. Gandolfi, A. Gezerlis, H.-W. Hammer, M. Hoferichter, and A. Schwenk Nuclear Physics from Lattice

More information

Nuclear Structure and Reactions using Lattice Effective Field Theory

Nuclear Structure and Reactions using Lattice Effective Field Theory Nuclear Structure and Reactions using Lattice Effective Field Theory Dean Lee North Carolina State University Nuclear Lattice EFT Collaboration Frontiers of Nuclear Physics Kavli Institute for Theoretical

More information

Nucleon-nucleon interaction in covariant chiral effective field theory

Nucleon-nucleon interaction in covariant chiral effective field theory Guilin, China The Seventh Asia-Pacific Conference on Few-Body Problems in Physics Nucleon-nucleon interaction in covariant chiral effective field theory Xiu-Lei Ren School of Physics, Peking University

More information

Quantum Monte Carlo calculations with chiral Effective Field Theory Interactions

Quantum Monte Carlo calculations with chiral Effective Field Theory Interactions Quantum Monte Carlo calculations with chiral Effective Field Theory Interactions Alexandros Gezerlis East Lansing, MI 3rd International Symposium on Nuclear Symmetry Energy July 25, 2013 Motivation for

More information

Nuclei as Bound States

Nuclei as Bound States Nuclei as Bound States Lecture 1: Hamiltonian Robert Roth Overview Lecture 1: Hamiltonian Prelude Nuclear Hamiltonian Matrix Elements Two-Body Problem Correlations & Unitary Transformations Lecture 2:

More information

Nuclear forces and their impact on structure, reactions and astrophysics

Nuclear forces and their impact on structure, reactions and astrophysics Nuclear forces and their impact on structure, reactions and astrophysics Lectures for Week 2 Dick Furnstahl Ohio State University July, 213 M. Chiral EFT 1 (as); χ-symmetry in NN scattering, QCD 2 (rjf)

More information

Few Body Methods in Nuclear Physics - Lecture I

Few Body Methods in Nuclear Physics - Lecture I Few Body Methods in Nuclear Physics - Lecture I Nir Barnea The Hebrew University, Jerusalem, Israel Sept. 2010 Course Outline 1 Introduction - Few-Body Nuclear Physics 2 Gaussian Expansion - The Stochastic

More information

Hadronic parity-violation in pionless effective field theory

Hadronic parity-violation in pionless effective field theory Hadronic parity-violation in pionless effective field theory Matthias R. Schindler Ohio University PAVI9 June 25, 29 In collaboration with D. R. Phillips and R. P. Springer Introduction Effective Field

More information

Neutrino processes in supernovae from chiral EFT

Neutrino processes in supernovae from chiral EFT Neutrino processes in supernovae from chiral EFT Achim Schwenk CANADA S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS Owned and operated as a joint venture by a consortium of Canadian universities

More information

Effective Field Theories in Nuclear and Hadron Physics

Effective Field Theories in Nuclear and Hadron Physics Effective Field Theories in Nuclear and Hadron Physics Vadim Lensky Theoretical Physics Group, The University of Manchester January 11, 2013 V. Lensky EFTs in Hadron and Nuclear Physics 1 Outline Introduction

More information

Microscopically Based Energy Functionals. S.K. Bogner (NSCL/MSU)

Microscopically Based Energy Functionals. S.K. Bogner (NSCL/MSU) Microscopically Based Energy Functionals S.K. Bogner (NSCL/MSU) Dream Scenario: From QCD to Nuclei 2 SciDAC 2 Project Building a Universal Nuclear Energy Density Functional See http://undef.org for details

More information

EFFECTIVE FIELD THEORY FOR LATTICE NUCLEI

EFFECTIVE FIELD THEORY FOR LATTICE NUCLEI EFFECTIVE FIELD THEORY FOR LATTICE NUCLEI Francesco Pederiva Physics Deparment Unversity of Trento INFN-TIFPA, Trento Institue for Fundamental Physics and Applications LISC, Interdisciplinary Laboratory

More information

Quantum Monte Carlo calculations of neutron and nuclear matter

Quantum Monte Carlo calculations of neutron and nuclear matter Quantum Monte Carlo calculations of neutron and nuclear matter Stefano Gandolfi Los Alamos National Laboratory (LANL) Advances and perspectives in computational nuclear physics, Hilton Waikoloa Village,

More information

Three-nucleon forces and neutron-rich nuclei

Three-nucleon forces and neutron-rich nuclei Three-nucleon forces and neutron-rich nuclei Achim Schwenk Facets of Strong Interaction Physics Hirschegg 40 + Bengt 60, Jan. 18, 2012 Happy Birthday Bengt! Outline Understanding three-nucleon forces Three-body

More information

The nucleon-nucleon system in chiral effective theory

The nucleon-nucleon system in chiral effective theory The nucleon-nucleon system in chiral effective theory Daniel Phillips Ohio University Research supported by the US Department of Energy Plan χet for nuclear forces: the proposal Leading order for S waves

More information

Quantum Monte Carlo calculations of medium mass nuclei

Quantum Monte Carlo calculations of medium mass nuclei Quantum Monte Carlo calculations of medium mass nuclei Diego Lonardoni FRIB Theory Fellow In collaboration with: J. Carlson, LANL S. Gandolfi, LANL X. Wang, Huzhou University, China A. Lovato, ANL & UniTN

More information

Renormalization group methods in nuclear few- and many-body problems

Renormalization group methods in nuclear few- and many-body problems Renormalization group methods in nuclear few- and many-body problems Lecture 1 S.K. Bogner (NSCL/MSU) 2011 National Nuclear Physics Summer School University of North Carolina at Chapel Hill Useful readings

More information

EFT as the bridge between Lattice QCD and Nuclear Physics

EFT as the bridge between Lattice QCD and Nuclear Physics EFT as the bridge between Lattice QCD and Nuclear Physics David B. Kaplan QCHSVII Ponta Delgada, Açores, September 2006 National Institute for Nuclear Theory Nuclear physics from lattice QCD? Not yet,

More information

Pion production in nucleon-nucleon collisions near threshold: complete NNLO calculation in chiral EFT

Pion production in nucleon-nucleon collisions near threshold: complete NNLO calculation in chiral EFT Pion production in nucleon-nucleon collisions near threshold: complete NNLO calculation in chiral EFT a, V. Baru ab, E. Epelbaum a, C. Hanhart c, H. Krebs a, and F. Myhrer d a Institut für Theoretische

More information

Recent results in lattice EFT for nuclei

Recent results in lattice EFT for nuclei Recent results in lattice EFT for nuclei Dean Lee (NC State) Nuclear Lattice EFT Collaboration Centro de Ciencias de Benasque Pedro Pascua Bound states and resonances in EFT and Lattice QCD calculations

More information

Nuclear few- and many-body systems in a discrete variable representation basis

Nuclear few- and many-body systems in a discrete variable representation basis Nuclear few- and many-body systems in a discrete variable representation basis Jeremy W. Holt* Department of Physics University of Washington *with A. Bulgac, M. M. Forbes L. Coraggio, N. Itaco, R. Machleidt,

More information

N and (1232) masses and the γn transition. Marc Vanderhaeghen College of William & Mary / Jefferson Lab

N and (1232) masses and the γn transition. Marc Vanderhaeghen College of William & Mary / Jefferson Lab N and (1232) masses and the γn transition Marc Vanderhaeghen College of William & Mary / Jefferson Lab Hadron Structure using lattice QCD, INT, April 4, 2006 Outline 1) N and masses : relativistic chiral

More information

INTRODUCTION TO EFFECTIVE FIELD THEORIES OF QCD

INTRODUCTION TO EFFECTIVE FIELD THEORIES OF QCD INTRODUCTION TO EFFECTIVE FIELD THEORIES OF QCD U. van Kolck Institut de Physique Nucléaire d Orsay and University of Arizona Supported in part by CNRS, Université Paris Sud, and US DOE Outline Effective

More information

Hadronic Weak Interactions

Hadronic Weak Interactions 1 / 44 Hadronic Weak Interactions Matthias R. Schindler Fundamental Neutron Physics Summer School 2015 Some slides courtesy of N. Fomin 2 / 44 Weak interactions - One of fundamental interactions - Component

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information

Nuclear Forces - Lecture 6 -

Nuclear Forces - Lecture 6 - Physics Department, Tohoku University, June 30 July 2, 2014 Nuclear Forces - Lecture 6 - Nuclear many-body forces from chiral EFT R. Machleidt University of Idaho 1 Nuclear Forces - Overview of all lectures

More information

Abstract. 1 r 2n+m (1)

Abstract. 1 r 2n+m (1) MENU 27 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September1-14, 27 IKP, Forschungzentrum Jülich, Germany RENORMALIZING THE SCHRÖDINGER EQUATION FOR NN SCATTERING

More information

Applications of Renormalization Group Methods in Nuclear Physics 2

Applications of Renormalization Group Methods in Nuclear Physics 2 Applications of Renormalization Group Methods in Nuclear Physics 2 Dick Furnstahl Department of Physics Ohio State University HUGS 2014 Outline: Lecture 2 Lecture 2: SRG in practice Recap from lecture

More information

Carbon-12 in Nuclear Lattice EFT

Carbon-12 in Nuclear Lattice EFT Carbon-12 in Nuclear Lattice EFT Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo A. Lähde (Jülich) Dean Lee (NC State) Thomas Luu (Jülich) Ulf-G. Meißner (Bonn/Jülich)

More information

Ab initio lattice EFT from light to medium mass nuclei Nuclear Lattice EFT Collaboration

Ab initio lattice EFT from light to medium mass nuclei Nuclear Lattice EFT Collaboration Ab initio lattice EFT from light to medium mass nuclei Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Dean Lee (NC State) Thomas Luu (Jülich/Bonn)

More information

Alex Gezerlis. New Ideas in Constraining Nuclear Forces ECT*, Trento, Italy June 5, 2018

Alex Gezerlis. New Ideas in Constraining Nuclear Forces ECT*, Trento, Italy June 5, 2018 Quantum Monte Carlo interactions with From microscopic to effective Chiral Effective Field Theory Interactions using Quantum Monte Carlo Alex Gezerlis New Ideas in Constraining Nuclear Forces ECT*, Trento,

More information

Department of Physics, University of Idaho, Moscow, ID 83844, USA; Tel.:

Department of Physics, University of Idaho, Moscow, ID 83844, USA; Tel.: S S symmetry Article Chiral Symmetry and the Nucleon-Nucleon Interaction Ruprecht Machleidt Department of Physics, University of Idaho, Moscow, ID 83844, USA; machleid@uidaho.edu; Tel.: +1-28-885-638 Academic

More information

arxiv: v1 [nucl-th] 31 Oct 2013

arxiv: v1 [nucl-th] 31 Oct 2013 Renormalization Group Invariance in the Subtractive Renormalization Approach to the NN Interactions S. Szpigel and V. S. Timóteo arxiv:1311.61v1 [nucl-th] 31 Oct 13 Faculdade de Computação e Informática,

More information

NUCLEAR FORCES. Historical perspective

NUCLEAR FORCES. Historical perspective NUCLEAR FORCES Figure 1: The atomic nucleus made up from protons (yellow) and neutrons (blue) and held together by nuclear forces. Nuclear forces (also known as nuclear interactions or strong forces) are

More information

Some new developments in relativistic point-coupling models

Some new developments in relativistic point-coupling models Some new developments in relativistic point-coupling models T. J. Buervenich 1, D. G. Madland 1, J. A. Maruhn 2, and P.-G. Reinhard 3 1 Los Alamos National Laboratory 2 University of Frankfurt 3 University

More information

Meson Baryon Scattering

Meson Baryon Scattering Meson Baryon Scattering Aaron Torok Department of Physics, Indiana University May 31, 2010 Meson Baryon Scattering in Lattice QCD Calculation of the π + Σ +, and π + Ξ 0 scattering lengths Aaron Torok

More information

Ultracold atoms and neutron-rich matter in nuclei and astrophysics

Ultracold atoms and neutron-rich matter in nuclei and astrophysics Ultracold atoms and neutron-rich matter in nuclei and astrophysics Achim Schwenk NORDITA program Pushing the boundaries with cold atoms Stockholm, Jan. 23, 2013 Outline Advances in nuclear forces 3N forces

More information

Light hypernuclei based on chiral and phenomenological interactions

Light hypernuclei based on chiral and phenomenological interactions Mitglied der Helmholtz-Gemeinschaft Light hypernuclei based on chiral and phenomenological interactions Andreas Nogga, Forschungszentrum Jülich International Conference on Hypernuclear and Strange Particle

More information

Effective Field Theory for Density Functional Theory I

Effective Field Theory for Density Functional Theory I Effective Field Theory for Density Functional Theory I Department of Physics Ohio State University February, 26 I. Overview of EFT, RG, DFT for fermion many-body systems II. EFT/DFT for dilute Fermi systems

More information

Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory

Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory Achim Schwenk Astrophysical Transients: Multi-Messenger Probes of Nuclear Physics INT, July 29, 2011 Outline

More information

Chiral dynamics and NN potential

Chiral dynamics and NN potential Chiral dynamics and NN potential Department of Physics University of Bologna 40126 Bologna (Italy) paolo.finelli@bo.infn.it Otranto Summer School 1935 Yukawa: Meson Theory The Pion Theories 1950 s One-Pion

More information

Effective Field Theory

Effective Field Theory Effective Field Theory Iain Stewart MIT The 19 th Taiwan Spring School on Particles and Fields April, 2006 Physics compartmentalized Quantum Field Theory String Theory? General Relativity short distance

More information

Current status and challenges of ab-initio computations of nuclei

Current status and challenges of ab-initio computations of nuclei Current status and challenges of ab-initio computations of nuclei Gaute Hagen Oak Ridge National Laboratory INT workshop on Nuclear Physics from Lattice QCD INT, May 5th, 2016 Computing real nuclei from

More information

Nuclear structure Anatoli Afanasjev Mississippi State University

Nuclear structure Anatoli Afanasjev Mississippi State University Nuclear structure Anatoli Afanasjev Mississippi State University 1. Nuclear theory selection of starting point 2. What can be done exactly (ab-initio calculations) and why we cannot do that systematically?

More information

Electroweak Probes of Three-Nucleon Systems

Electroweak Probes of Three-Nucleon Systems Stetson University July 3, 08 Brief Outline Form factors of three-nucleon systems Hadronic parity-violation in three-nucleon systems Pionless Effective Field Theory Ideally suited for momenta p < m π since

More information

Three-nucleon potentials in nuclear matter. Alessandro Lovato

Three-nucleon potentials in nuclear matter. Alessandro Lovato Three-nucleon potentials in nuclear matter Alessandro Lovato PRC 83, 054003 (2011) arxiv:1109.5489 Outline Ab initio many body method Nuclear Hamiltonian: 2- and 3- body potentials Density dependent potential

More information

The Nucleon-Nucleon Interaction

The Nucleon-Nucleon Interaction Brazilian Journal of Physics, vol. 34, no. 3A, September, 2004 845 The Nucleon-Nucleon Interaction J. Haidenbauer Forschungszentrum Jülich, Institut für Kernphysik, D-52425 Jülich, Germany Received on

More information

The non-perturbative N/D method and the 1 S 0 NN partial wave

The non-perturbative N/D method and the 1 S 0 NN partial wave HADRONet p. 1 The non-perturbative N/D method and the 1 S NN partial wave 2nd Spanish Hadron Network Days Madrid, September 216 D.R. Entem, J.A. Oller University of Salamanca HADRONet p. 2 Summary The

More information

arxiv:nucl-th/ v1 28 Aug 2001

arxiv:nucl-th/ v1 28 Aug 2001 A meson exchange model for the Y N interaction J. Haidenbauer, W. Melnitchouk and J. Speth arxiv:nucl-th/1862 v1 28 Aug 1 Forschungszentrum Jülich, IKP, D-52425 Jülich, Germany Jefferson Lab, 1 Jefferson

More information

Modern Theory of Nuclear Forces

Modern Theory of Nuclear Forces Evgeny Epelbaum PAX Meeting, Stockholm, 15.06.2010 Modern Theory of Nuclear Forces Evgeny Epelbaum, Ruhr-Universität Bochum Outline Chiral EFT for nuclear forces Some hot topics (work in progress) Deuteron

More information

FROM QCD TO NUCLEI: ASPECTS OF NUCLEAR THEORY IN FRANCE

FROM QCD TO NUCLEI: ASPECTS OF NUCLEAR THEORY IN FRANCE FROM QCD TO NUCLEI: ASPECTS OF NUCLEAR THEORY IN FRANCE Ubirajara van Kolck Institut de Physique Nucléaire 1 Outline Hadronic theory in France Nuclear forces from QCD Low-energy nuclear theory in France

More information

Three-nucleon forces and shell structure of neutron-rich Ca isotopes

Three-nucleon forces and shell structure of neutron-rich Ca isotopes Three-nucleon forces and shell structure of neutron-rich Ca isotopes Javier Menéndez Institut für Kernphysik (TU Darmstadt) and ExtreMe Matter Institute (EMMI) NUSTAR Week 3, Helsinki, 9 October 13 Outline

More information

U. van Kolck. Institut de Physique Nucléaire d Orsay. and University of Arizona. Supported in part by CNRS, Université Paris Sud, and US DOE

U. van Kolck. Institut de Physique Nucléaire d Orsay. and University of Arizona. Supported in part by CNRS, Université Paris Sud, and US DOE THE NON-PC STORY A SERMON OF ABOUT CHIRAL PC EFT U. van Kolck Institut de Physique Nucléaire d Orsay and University of Arizona Supported in part by CNRS, Université Paris Sud, and US DOE 1 Why? Chiral

More information

Nuclear structure from chiral-perturbation-theory two- plus three-nucleon interactions

Nuclear structure from chiral-perturbation-theory two- plus three-nucleon interactions Nuclear structure from chiral-perturbation-theory two- plus three-nucleon interactions Petr Navratil Lawrence Livermore National Laboratory* Collaborators: W. E. Ormand (LLNL), J. P. Vary (ISU), E. Caurier

More information

Chiral EFT for nuclear forces with Delta isobar degrees of freedom

Chiral EFT for nuclear forces with Delta isobar degrees of freedom with Delta isobar degrees of freedom Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn, Nußallee 4-6, D-535 Bonn, Germany E-mail: hkrebs@itkp.uni-bonn.de

More information

Hyperon-Nucleon Scattering

Hyperon-Nucleon Scattering Hyperon-Nucleon Scattering In A Covariant Chiral Effective Field Theory Approach Kai-Wen Li In collaboration with Xiu-Lei Ren, Bing-Wei Long and Li-Sheng Geng @INPC, Adelaide September, 2016 School of

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Motivation Different phases of QCD occur in the universe Neutron Stars, Big Bang Exploring the phase diagram is important to understanding

More information

The Nuclear Force Problem: Is the Never-Ending Story Coming to an End?

The Nuclear Force Problem: Is the Never-Ending Story Coming to an End? The Nuclear Force Problem: Is the Never-Ending Story Coming to an End? R. Machleidt Department of Physics, University of Idaho, Moscow, Idaho, USA Abstract. The attempts to find the right (underlying)

More information

Role of Spin in NN NNπ

Role of Spin in NN NNπ Spin Physics (SPIN2014) International Journal of Modern Physics: Conference Series Vol. 40 (2016) 1660061 (6 pages) c The Author(s) DOI: 10.1142/S2010194516600612 Role of Spin in NN NNπ Vadim Baru Institut

More information

Constraints on neutron stars from nuclear forces

Constraints on neutron stars from nuclear forces Constraints on neutron stars from nuclear forces Achim Schwenk Workshop on the formation and evolution of neutron stars Bonn, Feb. 27, 2012 Main points Advances in nuclear forces and nuclear matter theory

More information

The symmetries of QCD (and consequences)

The symmetries of QCD (and consequences) The symmetries of QCD (and consequences) Sinéad M. Ryan Trinity College Dublin Quantum Universe Symposium, Groningen, March 2018 Understand nature in terms of fundamental building blocks The Rumsfeld

More information

The Nuclear Many-Body Problem

The Nuclear Many-Body Problem The Nuclear Many-Body Problem relativistic heavy ions vacuum electron scattering quarks gluons radioactive beams heavy few nuclei body quark-gluon soup QCD nucleon QCD few body systems many body systems

More information

Renormalization group methods in nuclear few- and many-body problems

Renormalization group methods in nuclear few- and many-body problems Renormalization group methods in nuclear few- and many-body problems Lecture 1 S.K. Bogner (NSCL/MSU) 2011 National Nuclear Physics Summer School University of North Carolina at Chapel Hill Useful readings

More information

The NN system: why and how we iterate

The NN system: why and how we iterate The NN system: why and how we iterate Daniel Phillips Ohio University Research supported by the US department of energy Plan Why we iterate I: contact interactions Why we iterate II: pion exchange How

More information

Coupled-cluster theory for nuclei

Coupled-cluster theory for nuclei Coupled-cluster theory for nuclei Thomas Papenbrock and G. Hagen D. J. Dean M. Hjorth-Jensen B. Velamur Asokan INT workshop Weakly-bound systems in atomic and nuclear physics Seattle, March 8-12, 2010

More information

Flavor Asymmetry of the Nucleon Sea and W-Boson Production*

Flavor Asymmetry of the Nucleon Sea and W-Boson Production* Flavor Asymmetry of the Nucleon Sea and W-Boson Production* Department of Physics University of Illinois 7 December 2012 *R. Yang, J.C. Peng, M. Grosse-Perdekamp, Phys. Lett. B 680 (2009) 231-234 What

More information

Weakly-Bound Systems in Atomic and Nuclear Physics March 2010

Weakly-Bound Systems in Atomic and Nuclear Physics March 2010 Electroweak properties of Weakly- Bound Light Nuclei Weakly-Bound Systems in Atomic and Nuclear Physics March 2010 INSTITUTE FOR NUCLEAR THEORY Collaborators Sonia Bacca Winfried Leidemann, Giuseppina

More information

PoS(Confinement8)147. Universality in QCD and Halo Nuclei

PoS(Confinement8)147. Universality in QCD and Halo Nuclei Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, University of Bonn, Germany E-mail: hammer@itkp.uni-bonn.de Effective Field Theory (EFT) provides a powerful

More information

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center 2014 National Nuclear Physics Summer School Lectures on Effective Field Theory I. Removing heavy particles II. Removing large scales III. Describing Goldstone bosons IV. Interacting with Goldstone bosons

More information

arxiv: v2 [nucl-th] 9 Jan 2013

arxiv: v2 [nucl-th] 9 Jan 2013 Reduced regulator dependence of neutron-matter predictions with perturbative chiral interactions arxiv:9.5537v [nucl-th] 9 Jan 3 L. Coraggio, J. W. Holt,, 3 N. Itaco,, R. Machleidt, 5 and F. Sammarruca

More information

arxiv:nucl-th/ v1 18 Feb 1999

arxiv:nucl-th/ v1 18 Feb 1999 FZJ-IKP(TH)-1999-04 arxiv:nucl-th/9902042v1 18 Feb 1999 Charge independence breaking and charge symmetry breaking in the nucleon nucleon interaction from effective field theory E. Epelbaum, a,b#1 Ulf-G.

More information

Hadronic Interactions and Nuclear Physics

Hadronic Interactions and Nuclear Physics Williamsburg,VA LATT2008 7/2008 p. 1/35 Hadronic Interactions and Nuclear Physics Silas Beane University of New Hampshire Williamsburg,VA LATT2008 7/2008 p. 2/35 Outline Motivation Signal/Noise Estimates

More information