Physics 795 Nuclear Theory at OSU

Size: px
Start display at page:

Download "Physics 795 Nuclear Theory at OSU"

Transcription

1 Physics 795 Nuclear Theory at OSU Department of Physics Ohio State University October, 2006

2 Nuclear Theory Group Bunny Clark Ulrich Heinz Sabine Jeschonnek Yuri Kovchegov Robert Perry

3 Current Students/Postdocs and Openings Furnstahl, Jeschonnek, Perry (NSF + SCIDAC funding) Sunethra Ramanan, Renormalization Group Methods for Nuclear Interactions (finishing Winter, 2007) one or two GRA openings Postdoc: Scott Bogner Heinz (DOE funding) Anthony Kuhlman: azimuthal pion HBT, U+U collisions Evan Frodermann: photon emission, photon HBT Huichao Song: (viscous) hydrodynamic simulations Yezhe Pei: application of hydrodynamic code Postdoc: Magdalena Djordjevic Kovchegov (DOE/OJI funding) new student just starting Postdocs: Javier Albacete, Heribert Weigert

4 Recently Graduated Students Anirban Bhattacharyya (Ph.D 2005, Furnstahl) Density functional theory (DFT) using effective field theory (EFT) Postdoc at Oak Ridge National Lab Rick Mohr (Ph.D 2003, Perry) Quantum mechanical three-body problem with short-range interactions Systems Engineer, Ohio Supercomputing Center Peter Kolb (Ph.D 2002, Heinz) Early thermalization and hydrodynamic expansion in nuclear collisions at RHIC Postdoc, SUNY/Stony Brook = software engineer, Germany

5 What is modern Nuclear Theory? There are 4 known fundamental interactions in nature: STRONG ELECTRIC WEAK GRAVITY

6 STRONG ELECTRIC WEAK GRAVITY Standard Model of Particle Physics (20 th century) 21 st Century NUCLEAR PHYSICS PARTICLE PHYSICS (+ beyond standard model)

7 Quantum Chromodynamics (QCD) QED vs. QCD photon gluon electric charge color charge electric, magnetic fields chromoelectric, chromomagnetic

8 Quantum Chromodynamics (QCD) QED vs. QCD photon gluon electric charge color charge electric, magnetic fields chromoelectric, chromomagnetic e γ e + q q q + q q q e e q g q g q g q e γ e γ e e e + e g q q + + q q g g g +

9 Bridging the islands of nuclear physics RHIC CEBAF quarks gluons few nucleons RIA heavy nuclei vacuum quark-gluon plasma QCD nucleon QCD few-body systems free NN force many-body systems effective NN force

10 Exploring the QCD Phase Diagram early universe temperature T [MeV] atomic nuclei neutron stars baryonic chemical potential µ B [GeV]

11 Exploring the QCD Phase Diagram early universe quark-gluon plasma temperature T [MeV] deconfinement chiral restoration 50 hadron gas atomic nuclei neutron stars baryonic chemical potential µ B [GeV]

12 Exploring the QCD Phase Diagram early universe LHC RHIC quark-gluon plasma temperature T [MeV] SPS thermal freeze-out hadron gas chemical freeze-out AGS SIS atomic nuclei deconfinement chiral restoration neutron stars baryonic chemical potential µ B [GeV]

13 Heavy Ion Collisions Quarks and gluons are confined inside hadrons. In heavy ion collisions people are trying to create a new state of matter called Quark Gluon Plasma: : a soup of de confined quarks and gluons. This state of matter has not been around since the Big Bang! Heavy Ion Collision experiments are running at RHIC Collider at Brookhaven. In the recent past they were performed at SPS at CERN and in the near future they will start at LHC also at CERN.

14 Space time picture of the Collision 1. First particles are produced: Initial Conditions 4. Particles interact with each other and thermalize forming a hot and dense medium Quark Gluon plasma. 9. Plasma cools, undergoes a confining phase transition and becomes a gas of hadrons. 13. The system falls apart: freeze out.

15 Ulrich Heinz Research Interests: Heavy Ion collisions. Hydrodynamic evolution of the system of quarks and gluons produced in heavy ion collisions, HBT determination of the size of the system, elliptic flow. Thermal field theories, QCD equation of state.

16 Yuri Kovchegov's research: High energy interactions of hadrons and nuclei. Dense partonic wave functions of high energy protons and nuclei (Color Glass Condensate) as probed in deep inelastic scattering experiments (DIS). Heavy Ion Collisions: particle production and thermalization of the system leading to creation of Quark Gluon Plasma.

17 DGLAP Equation: an Example of Renormalization Group (RG) Dokshitzer, Gribov, Lipatov, Altarelli, Parisi 72 As we go to smaller and smaller distances we see more particles: The number of particles we resolve at smaller distances is proportional to the number of particles we resolved at larger distances: ln Q 2 xg x, Q2 = S K DGLAP xg x, Q2

18 Nonlinear Equation At very high energy parton recombination becomes important. Partons not only split into more partons, but also recombine. Recombination reduces the number of partons in the wave function. N x, k 2 ln 1/ x = Number of parton pairs ~ N 2 s K BFKL N x, k 2 s [ N x, k 2 ] 2 Yu. K. 99 (large N C QCD) I. Balitsky 96 (effective lagrangian)

19 BK Equation at Work First partons are produced overlapping each other, all of them about the same size. When some critical density is reached no more partons of given size can fit in the wave function. The proton starts producing smaller partons to fit them in. The story repeats itself for smaller partons. The picture is similar to Fermi statistics.this way some critical density is never exceeded. Proton Color Glass Condensate

20 From Quark-Gluon to Hadronic DOF s [Jeschonnek] RHIC CEBAF quarks gluons few nucleons RIA heavy nuclei vacuum quark-gluon plasma QCD nucleon QCD few-body systems free NN force many-body systems effective NN force

21 Sabine Jeschonnek Location (F W): Lima Location (R): M2047 Lots of Interaction with Experimentalists at Jefferson Lab, Newport News, VA Main Interest: transition from quark gluon to hadronic degrees of freedom, studied with electron scattering

22 Electron Scattering from light Nuclei Main focus: (e,e p) on the deuteron Things to learn: reaction mechanism (Color Transparency, ), short range structure of light nuclei (correlations, ), the deuteron as a lab for neutron form factor measurements

23 Quark Hadron Duality: Theoretical Modeling of Duality: why? where? how accurate?

24 How to Describe Nuclei from QCD? [Furnstahl/Perry] RHIC CEBAF quarks gluons few nucleons RIA heavy nuclei vacuum quark-gluon plasma QCD nucleon QCD few-body systems free NN force many-body systems effective NN force

25 SciDAC: Building a Universal Nuclear Energy Density Functional Nuclear DFT DME Nuclear Matter PT+ V low k NN N RG Chiral EFT NN N LEC s Lattice QCD Density Functional Theory A>100 Coupled Cluster, Shell Model A<100 Exact methods A 12 GFMC, NCSM Chiral EFT interactions (low-energy theory of QCD) QCD Lagrangian Low-mom. interactions Lattice QCD

26 Nuclear and Cold Atom Many-Body Problems Lennard-Jones and nucleon-nucleon potentials O -O potential (mev) n-n potential (MeV) n-n system O -O system n-n distance (fm) O 2-O 2 distance (nm) Are there universal features of such many-body systems? How can we deal with hard cores in many-body systems?

27 The Many-Body Schrödinger Wave Function [adapted from Joe Carlson] How to represent the wave function for an A-body nucleus? Consider 8 Be (Z = 4 protons, N = 4 neutrons) Ψ = σ,τ χ σ χ τ φ(r) where R are the 3A spatial coordinates χ σ = 1 2 A (2 A terms) = 256 for A = 8 χ τ = n 1 n 2 p A ( A! N!Z! terms) = 70 for 8 Be

28 The Many-Body Schrödinger Wave Function [adapted from Joe Carlson] How to represent the wave function for an A-body nucleus? Consider 8 Be (Z = 4 protons, N = 4 neutrons) Ψ = σ,τ χ σ χ τ φ(r) where R are the 3A spatial coordinates χ σ = 1 2 A (2 A terms) = 256 for A = 8 χ τ = n 1 n 2 p A ( A! N!Z! terms) = 70 for 8 Be So for 8 Be there are 17,920 complex functions in 3A 3 = 21 dimensions!

29 The Many-Body Schrödinger Wave Function [adapted from Joe Carlson] How to represent the wave function for an A-body nucleus? Consider 8 Be (Z = 4 protons, N = 4 neutrons) Ψ = σ,τ χ σ χ τ φ(r) where R are the 3A spatial coordinates χ σ = 1 2 A (2 A terms) = 256 for A = 8 χ τ = n 1 n 2 p A ( A! N!Z! terms) = 70 for 8 Be So for 8 Be there are 17,920 complex functions in 3A 3 = 21 dimensions! Suppose you represent this for a nucleus of size 10 fm with a mesh spacing of 0.5 fm. You would need grid points!

30 Nuclear Matter in Low-Order Perturbation Theory Standard Argonne v 18 potential Brueckner ladders order-by-order 1st order is Hartree-Fock = unbound! Repulsive core = series diverges E/A [MeV] st order 2nd order pp ladder 3rd order pp ladder Argonne v k f [fm -1 ]

31 Principles of Effective Low-Energy Theories

32 Principles of Effective Low-Energy Theories If system is probed at low energies, fine details not resolved

33 Principles of Effective Low-Energy Theories If system is probed at low energies, fine details not resolved use low-energy variables for low-energy processes short-distance structure can be replaced by something simpler without distorting low-energy observables

34 Wavelength and Resolution

35 Wavelength and Resolution

36 Wavelength and Resolution

37 Wavelength and Resolution

38 Wavelength and Resolution

39 Wavelength and Resolution

40 Wavelength and Resolution

41 Wavelength and Resolution

42 Wavelength and Resolution

43 The Deuteron (Bound np) at High Resolution S1 deuteron probability density 0.15 ψ(r) 2 [fm -3 ] 0.1 Argonne v r [fm] Repulsive core = short-distance suppression = important high-momentum (small λ) components Makes the many-body problem complicated!

44 The Deuteron at Lower Resolutions S1 deuteron probability density ψ(r) 2 [fm -3 ] Argonne v 18 Λ = 4.0 fm -1 Λ = 3.0 fm -1 Λ = 2.0 fm r [fm] Smear out potential: V (r)ψ(r) d 3 r V (r, r )ψ(r ) Low-momentum potential = much simpler wave function!

45 Consequence for Basis Expansions [nucl-th/ ] Error in Deuteron Binding vs. Cutoff N max = 40 hω (Ω optimized at each Λ) (E var - E d ) [MeV] sharp cutoff exponential cutoff (n=4) Λ [fm -1 ]

46 Nuclear Matter with NN Ladders Only st order 2nd order pp ladder 3rd order pp ladder Brueckner ladders order-by-order Repulsive core = series diverges E/A [MeV] 50 0 Argonne v k f [fm -1 ]

47 Nuclear Matter with NN Ladders Only st order 2nd order pp ladder 3rd order pp ladder Brueckner ladders order-by-order Repulsive core = series diverges E/A [MeV] 50 0 Argonne v 18 V low k converges! -50 V low k ( Λ=1.9 fm -1 ) k f [fm -1 ]

48 Nuclear Matter with NN Ladders Only st order 2nd order pp ladder 3rd order pp ladder Brueckner ladders order-by-order Repulsive core = series diverges E/A [MeV] 50 0 Argonne v 18 V low k converges! Add 3-body force V low k ( Λ=1.9 fm -1 ) k f [fm -1 ]

49 Nuclear Matter is Perturbative with Λ 2 fm 1! Construct a chiral EFT to a given order Evolve Λ down with RG (to Λ 2 fm 1 for ordinary nuclei) NN interactions fully, NNN interactions approximately 5 0 Λ = 1.6 fm -1 Λ = 1.9 fm -1 Λ = 2.1 fm -1 Λ = 2.3 fm -1 Λ = 2.1 fm -1 [no V 3N ] 5 0 Λ = 1.6 fm -1 Λ = 1.9 fm -1 Λ = 2.1 fm -1 Λ = 2.3 fm -1 Λ = 2.1 fm -1 [no V 3N ] E/A [MeV] -5 E/A [MeV] -5 Hartree-Fock + " 2nd order" -10 Hartree-Fock k F [fm -1 ] k F [fm -1 ] Use this as input to nuclear density functional theory

50 Bethe and Calculating Nuclear Matter Hans Bethe in review of nuclear matter (1971): The theory must be such that it can deal with any nucleon-nucleon (NN) force, including hard or soft core, tensor forces, and other complications. It ought not to be necessary to tailor the NN force for the sake of making the computation of nuclear matter (or finite nuclei) easier, but the force should be chosen on the basis of NN experiments (and possibly subsidiary experimental evidence, like the binding energy of H 3 ). Thirty+ years of working with a difficult potential!

51 EFT and RG Make Physics Easier Weinberg s Third Law of Progress in Theoretical Physics: You may use any degrees of freedom you like to describe a physical system, but if you use the wrong ones, you ll be sorry!

52 EFT and RG Make Physics Easier Weinberg s Third Law of Progress in Theoretical Physics: You may use any degrees of freedom you like to describe a physical system, but if you use the wrong ones, you ll be sorry! There s an old vaudeville joke about a doctor and patient... Patient: Doctor, doctor, it hurts when I do this! Doctor: Then don t do that.

53 Nuclear Theory Group Bunny Clark Ulrich Heinz Sabine Jeschonnek Yuri Kovchegov Robert Perry

Atomic Nuclei at Low Resolution

Atomic Nuclei at Low Resolution Atomic Department of Physics Ohio State University November, 29 Collaborators: E. Anderson, S. Bogner, S. Glazek, E. Jurgenson, R. Perry, S. Ramanan, A. Schwenk + UNEDF collaboration Overview DOFs EFT

More information

Nuclear structure I: Introduction and nuclear interactions

Nuclear structure I: Introduction and nuclear interactions Nuclear structure I: Introduction and nuclear interactions Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July

More information

Bayesian Fitting in Effective Field Theory

Bayesian Fitting in Effective Field Theory Bayesian Fitting in Effective Field Theory Department of Physics Ohio State University February, 26 Collaborators: D. Phillips (Ohio U.), U. van Kolck (Arizona), R.G.E. Timmermans (Groningen, Nijmegen)

More information

EIC Science. Rik Yoshida, EIC-Center at Jefferson Lab Abhay Deshpande, Center for Frontiers in Nuclear Physics, BNL and Stony Brook

EIC Science. Rik Yoshida, EIC-Center at Jefferson Lab Abhay Deshpande, Center for Frontiers in Nuclear Physics, BNL and Stony Brook EIC Science Rik Yoshida, EIC-Center at Jefferson Lab Abhay Deshpande, Center for Frontiers in Nuclear Physics, BNL and Stony Brook Introduction Invited to give a talk EIC Science and JLEIC Status I will

More information

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York Many thanks to my colleagues, A. Deshpande, F. Gelis, B. Surrow

More information

High Energy Frontier Recent Results from the LHC: Heavy Ions I

High Energy Frontier Recent Results from the LHC: Heavy Ions I High Energy Frontier Recent Results from the LHC: Heavy Ions I Ralf Averbeck ExtreMe Matter Institute EMMI and Research Division GSI Helmholtzzentrum für Schwerionenforschung Darmstadt, Germany Winter

More information

Renormalization group methods in nuclear few- and many-body problems

Renormalization group methods in nuclear few- and many-body problems Renormalization group methods in nuclear few- and many-body problems Lecture 2 S.K. Bogner (NSCL/MSU) 2011 National Nuclear Physics Summer School University of North Carolina at Chapel Hill Lecture 2 outline

More information

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April Quarkonia physics in Heavy Ion Collisions Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April 5 2013 1 2 Contents Introduction (QGP, Heavy Ion Collisions, Quarkonia) Quarkonia at the SPS

More information

PHY397K - NUCLEAR PHYSICS - 2

PHY397K - NUCLEAR PHYSICS - 2 PHY397K - NUCLEAR PHYSICS - 2 PHY397K - NUCLEAR PHYSICS Spring 2015, Unique numbers: 57115 RLM 5.116, TTH 12:30-2:00 pm Christina Markert Office: RLM: 10.305 Phone: 512 471 8834 Email: cmarkert@physics.utexas.edu

More information

Applications of Renormalization Group Methods in Nuclear Physics 1

Applications of Renormalization Group Methods in Nuclear Physics 1 Applications of Renormalization Group Methods in Nuclear Physics 1 Dick Furnstahl Department of Physics Ohio State University HUGS 2014 Outline: Lecture 1 Lecture 1: Overview Preview: Running couplings/potentials

More information

The Quark-Gluon plasma in the LHC era

The Quark-Gluon plasma in the LHC era The Quark-Gluon plasma in the LHC era Journées de prospective IN2P3-IRFU, Giens, Avril 2012 t z IPhT, Saclay 1 Quarks and gluons Strong interactions : Quantum Chromo-Dynamics Matter : quarks ; Interaction

More information

Effective Field Theory for Density Functional Theory I

Effective Field Theory for Density Functional Theory I Effective Field Theory for Density Functional Theory I Department of Physics Ohio State University February, 26 I. Overview of EFT, RG, DFT for fermion many-body systems II. EFT/DFT for dilute Fermi systems

More information

Cold and dense QCD matter

Cold and dense QCD matter Cold and dense QCD matter GCOE sympodium Feb. 15, 2010 Yoshimasa Hidaka Quantum ChromoDynamics Atom Electron 10-10 m Quantum ChromoDynamics Atom Nucleon Electron 10-10 m 10-15 m Quantum ElectroDynamics

More information

Exploring quark-gluon plasma in relativistic heavy-ion collisions

Exploring quark-gluon plasma in relativistic heavy-ion collisions Exploring quark-gluon plasma in relativistic heavy-ion collisions Guang-You Qin 秦广友 Duke University @ University of Science and Technology of China July 12 th, 2011 Outline Introduction Collective flow

More information

The non-linear regime of quantum chromodynamics in the context of relativistic heavy-ion collisions

The non-linear regime of quantum chromodynamics in the context of relativistic heavy-ion collisions a The non-linear regime of quantum chromodynamics in the context of relativistic heavy-ion collisions Pablo Guerrero Rodríguez with advisors: a Javier L. Albacete and Cyrille Marquet CAFPE and Departamento

More information

Big Bang to Little Bang ---- Study of Quark-Gluon Plasma. Tapan Nayak July 5, 2013

Big Bang to Little Bang ---- Study of Quark-Gluon Plasma. Tapan Nayak July 5, 2013 Big Bang to Little Bang ---- Study of Quark-Gluon Plasma Tapan Nayak July 5, 2013 Universe was born through a massive explosion At that moment, all the matter was compressed into a space billions of times

More information

The direct photon puzzle

The direct photon puzzle The direct photon puzzle Jean-François Paquet January 16, 2017 ALICE Journal Club Jean-François Paquet (Stony Brook) 2 What is the direct photon puzzle? > Background

More information

Applications of Renormalization Group Methods in Nuclear Physics 2

Applications of Renormalization Group Methods in Nuclear Physics 2 Applications of Renormalization Group Methods in Nuclear Physics 2 Dick Furnstahl Department of Physics Ohio State University HUGS 2014 Outline: Lecture 2 Lecture 2: SRG in practice Recap from lecture

More information

Quark model. Jan 30, 2006 Lecture 8 1

Quark model. Jan 30, 2006 Lecture 8 1 Quark model Jan 30, 2006 Lecture 8 1 Quark model of hadrons!!!! Developed long before QCD was recognized as the appropriate quantum field theory of the strong interactions Postulate that 1.! All baryons

More information

Renormalization group methods in nuclear few- and many-body problems

Renormalization group methods in nuclear few- and many-body problems Renormalization group methods in nuclear few- and many-body problems Lecture 1 S.K. Bogner (NSCL/MSU) 2011 National Nuclear Physics Summer School University of North Carolina at Chapel Hill Useful readings

More information

Simplifying the Nuclear Many-Body Problem with Low-Momentum Interactions

Simplifying the Nuclear Many-Body Problem with Low-Momentum Interactions Simplifying the Nuclear Many-Body Problem with Low-Momentum Interactions Scott Bogner September 2005 Collaborators: Dick Furnstahl, Achim Schwenk, and Andreas Nogga The Conventional Nuclear Many-Body Problem

More information

Renormalization group methods in nuclear few- and many-body problems

Renormalization group methods in nuclear few- and many-body problems Renormalization group methods in nuclear few- and many-body problems Lecture 1 S.K. Bogner (NSCL/MSU) 2011 National Nuclear Physics Summer School University of North Carolina at Chapel Hill Useful readings

More information

The Quark-Gluon Plasma and the ALICE Experiment

The Quark-Gluon Plasma and the ALICE Experiment The Quark-Gluon Plasma and the ALICE Experiment David Evans The University of Birmingham IoP Nuclear Physics Conference 7 th April 2009 David Evans IoP Nuclear Physics Conference 2009 1 Outline of Talk

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information

Phenomenology of Heavy-Ion Collisions

Phenomenology of Heavy-Ion Collisions Phenomenology of Heavy-Ion Collisions Hendrik van Hees Goethe University Frankfurt and FIAS October 2, 2013 Hendrik van Hees (GU Frankfurt/FIAS) HIC Phenomenology October 2, 2013 1 / 20 Outline 1 Plan

More information

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Lawrence Berkeley National Laboratory Berkeley, US 1 Introduction: Heavy Ion Physics Today t = 5 10 17 sec T=1

More information

QCD in Heavy-ion collisions

QCD in Heavy-ion collisions QCD in Heavy-ion collisions RPP 2012, Montpellier transition t p z q IPhT, Saclay 1 Outline 1 2 3 4 5 6 7 transition 2 1 transition 2 3 4 5 6 transition 7 2 Asymptotic freedom Running coupling : α s =

More information

Heavy-Ion Physics Lecture 1: QCD and the Quark-Gluon Plasma

Heavy-Ion Physics Lecture 1: QCD and the Quark-Gluon Plasma Heavy-Ion Physics Lecture 1: QCD and the Quark-Gluon Plasma Professor David Evans The University of Birmingham Nuclear Physics Summer School Queen s University, Belfast XX th August 2017 Outline of Lectures

More information

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1 High Energy Physics Lecture 9 Deep Inelastic Scattering Scaling Violation HEP Lecture 9 1 Deep Inelastic Scattering: The reaction equation of DIS is written e+ p e+ X where X is a system of outgoing hadrons

More information

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University!

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Overview! Introduction! Basic ideas of EFT! Basic Examples of EFT! Algorithm of EFT! Review NN scattering! NN scattering

More information

QGP event at STAR. Patrick Scott

QGP event at STAR. Patrick Scott QGP event at STAR Patrick Scott Overview What is quark-gluon plasma? Why do we want to study quark-gluon plasma? How do we create quark-gluon plasma? The past and present SPS and RHIC The future LHC and

More information

Creating a Quark Gluon Plasma With Heavy Ion Collisions

Creating a Quark Gluon Plasma With Heavy Ion Collisions Creating a Quark Gluon Plasma With Heavy Ion Collisions David Hofman UIC Special thanks to my Collaborators in PHOBOS, STAR, & CMS and B. Back, M. Baker, R. Hollis, K. Rajagopal, R. Seto, and P. Steinberg

More information

Physics at Hadron Colliders Partons and PDFs

Physics at Hadron Colliders Partons and PDFs Physics at Hadron Colliders Partons and PDFs Marina Cobal Thanks to D. Bettoni Università di Udine 1 2 How to probe the nucleon / quarks? Scatter high-energy lepton off a proton: Deep-Inelastic Scattering

More information

Studies of QCD Matter From E178 at NAL to CMS at LHC

Studies of QCD Matter From E178 at NAL to CMS at LHC Studies of QCD Matter From E178 at NAL to CMS at LHC Wit Busza MIT Wit Busza Fermilab Colloquium, May 2012 1 The Study of the Condensed Matter of QCD, more commonly known as Relativistic Heavy Ion Physics

More information

New Frontiers in Nuclear Structure Theory

New Frontiers in Nuclear Structure Theory New Frontiers in Nuclear Structure Theory From Realistic Interactions to the Nuclear Chart Robert Roth Institut für Kernphysik Technical University Darmstadt Overview Motivation Nucleon-Nucleon Interactions

More information

Nuclear Observables at Low Resolution

Nuclear Observables at Low Resolution Nuclear Observables at Low Resolution Eric R. Anderson Department of Physics The Ohio State University September 13, 2011 In Collaboration with: S.K Bogner, R.J. Furnstahl, K. Hebeler, E.D. Jurgenson,

More information

Constraining the QCD equation of state in hadron colliders

Constraining the QCD equation of state in hadron colliders Constraining the QCD equation of state in hadron colliders Akihiko Monnai (KEK, Japan) with Jean-Yves Ollitrault (IPhT Saclay, France) AM and J.-Y. Ollitrault, Phys. Rev. C 96, 044902 (2017) New Frontiers

More information

Critical lines and points. in the. QCD phase diagram

Critical lines and points. in the. QCD phase diagram Critical lines and points in the QCD phase diagram Understanding the phase diagram Phase diagram for m s > m u,d quark-gluon plasma deconfinement quark matter : superfluid B spontaneously broken nuclear

More information

A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider

A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider Berndt Mueller (Duke University) LANL Theory Colloquium 2 June 2005 The Road to the Quark-Gluon Plasma

More information

Nucleons in the Nuclear Environment

Nucleons in the Nuclear Environment Nucleons in the Nuclear Environment "The next seven years..." John Arrington Argonne National Lab Topic: Study of nucleons (hadrons, quarks) in nuclei 1 - The EMC effect and related measurements 2 - Color

More information

Opportunities in low x physics at a future Electron-Ion Collider (EIC) facility

Opportunities in low x physics at a future Electron-Ion Collider (EIC) facility 1 Opportunities in low x physics at a future Electron-Ion Collider (EIC) facility Motivation Quantum Chromo Dynamics Proton=uud Visible Universe Galaxies, stars, people, Silent Partners: Protons & Neutrons

More information

PHY357 Lecture 14. Applications of QCD. Varying coupling constant. Jets and Gluons. Quark-Gluon plasma. Colour counting

PHY357 Lecture 14. Applications of QCD. Varying coupling constant. Jets and Gluons. Quark-Gluon plasma. Colour counting PHY357 Lecture 14 Applications of QCD Varying coupling constant Jets and Gluons Quark-Gluon plasma Colour counting The proton structure function (not all of section 5.8!) Variable Coupling Constants! At

More information

A Senior Honors Thesis

A Senior Honors Thesis A Study Using Relativistic Hydrodynamics for Ultrarelativistic Heavy-Ion Collisions: The Quark-Gluon-Plasma to Hadron Phase Transition and LHC Predictions A Senior Honors Thesis Presented in Partial Fulfillment

More information

arxiv: v1 [nucl-ex] 7 Nov 2009

arxiv: v1 [nucl-ex] 7 Nov 2009 Low-x QCD at the LHC with the ALICE detector Magdalena Malek for the ALICE Collaboration arxiv:0911.1458v1 [nucl-ex] 7 Nov 2009 Institut de Physique Nucléaire d Orsay (IPNO) - France CNRS: UMR8608 - IN2P3

More information

The Physics of Particles and Forces David Wilson

The Physics of Particles and Forces David Wilson The Physics of Particles and Forces David Wilson Particle Physics Masterclass 21st March 2018 Overview David Wilson (TCD) Particles & Forces 2/30 Overview of Hadron Spectrum Collaboration (HadSpec) scattering

More information

Particles in the Early Universe

Particles in the Early Universe Particles in the Early Universe David Morrissey Saturday Morning Physics, October 16, 2010 Using Little Stuff to Explain Big Stuff David Morrissey Saturday Morning Physics, October 16, 2010 Can we explain

More information

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma Recent Results from RHIC: On the trail of the Quark-Gluon Plasma Single Au+Au Collision seen by STAR@RHIC Gunther Roland Gunther Roland/MIT July 15 2003 MPI Munich 15/7/2003 Gunther Roland/MIT www.spiegel.de

More information

FINAL EXAM PHYS 625 (Fall 2013), 12/10/13

FINAL EXAM PHYS 625 (Fall 2013), 12/10/13 FINAL EXAM PHYS 625 (Fall 2013), 12/10/13 Name: Signature: Duration: 120 minutes Show all your work for full/partial credit Quote your answers in units of MeV (or GeV) and fm, or combinations thereof No.

More information

Zhong-Bo Kang Los Alamos National Laboratory

Zhong-Bo Kang Los Alamos National Laboratory Introduction to pqcd and Jets: lecture 1 Zhong-Bo Kang Los Alamos National Laboratory Jet Collaboration Summer School University of California, Davis July 19 1, 014 Selected references on QCD! QCD and

More information

Axel Maas. 6 th of January 2005 RHI Seminar WS 2004/2005

Axel Maas. 6 th of January 2005 RHI Seminar WS 2004/2005 QCD Phase Transition(s) & The Early Universe Axel Maas 6 th of January 2005 RHI Seminar WS 2004/2005 Overview QCD Finite Temperature QCD Unsettled Issues Early Universe - Summary Overview Aspects of QCD

More information

Threshold Photo-production of J/5 Mesons J. Dunne Jefferson Lab

Threshold Photo-production of J/5 Mesons J. Dunne Jefferson Lab hreshold Photo-production of J/5 Mesons J. Dunne Jefferson Lab Introduction With the advent of higher energies at Jefferson Lab, the study of charmonium becomes possible. he threshold production of J/5

More information

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC Benjamin Dönigus 03.12.2009 Seminar WS 2009/2010 Relativistische Schwerionenphysik Interface of Quark-Gluon Plasma and

More information

arxiv:nucl-th/ v1 4 May 1999

arxiv:nucl-th/ v1 4 May 1999 QUARK-GLUON PLASMA Stanis law MRÓWCZYŃSKI So ltan Institute for Nuclear Studies ul. Hoża 69, PL - 00-681 Warsaw, Poland and Institute of Physics, Pedagogical University ul. Konopnickiej 15, PL - 25-406

More information

Overview* of experimental results in heavy ion collisions

Overview* of experimental results in heavy ion collisions Overview* of experimental results in heavy ion collisions Dipartimento di Fisica Sperimentale dell Universita di Torino and INFN Torino * The selection criteria of the results presented here are (to some

More information

Future Directions for Nuclear Theory INT

Future Directions for Nuclear Theory INT Future Directions for Nuclear Theory INT David Kaplan - DNP Meeting - October 11, 2007 What are some of the big advances in physics of recent years? INT David Kaplan - QCD Town Meeting - January 12-14,

More information

Laboratory for Nuclear Science

Laboratory for Nuclear Science The Laboratory for Nuclear Science (LNS) provides support for research by faculty and research staff members in the fields of particle, nuclear, and theoretical plasma physics. This includes activities

More information

Parton Distribution Functions, Part 1. Daniel Stump. Department of Physics and Astronomy Michigan State University

Parton Distribution Functions, Part 1. Daniel Stump. Department of Physics and Astronomy Michigan State University Parton Distribution Functions, Part 1 Daniel Stump Department of Physics and Astronomy Michigan State University A. Introduction B. Properties of the PDFs C. Results of CT10-NNLO Global Analysis D. Uncertainties

More information

Strong Interactions and QCD

Strong Interactions and QCD Strong Interactions and QCD Sourendu Gupta DTP: TIFR DIM 2009 TIFR, Mumbai November 4, 2009 SG (DTP: TIFR) Strong Interactions DIM 09 1 / 14 The experimental context of strong interactions 1 Thomson and

More information

Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN. = GeV at RHIC

Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN. = GeV at RHIC Journal of Physics: Conference Series PAPER OPEN ACCESS Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN = 39-200 GeV at RHIC To cite this article: S S Vdovkina 2017 J.

More information

Structure of Hadrons. gluons. gluons

Structure of Hadrons. gluons. gluons gluons Gluons are the exchange particles which couple to the color charge. They carry simultaneously color and anticolor. What is the total number of gluons? According to SU 3, 3x3 color combinations form

More information

High-p T Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC

High-p T Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC High- Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC K. Reygers for the WA98 and the PHENIX collaboration Institut für Kernphysik der Universität Münster Wilhelm-Klemm-Str. 9, D-4849 Münster,

More information

NUCLEAR FORCES. Historical perspective

NUCLEAR FORCES. Historical perspective NUCLEAR FORCES Figure 1: The atomic nucleus made up from protons (yellow) and neutrons (blue) and held together by nuclear forces. Nuclear forces (also known as nuclear interactions or strong forces) are

More information

HIGHER ORDER THERMAL CORRECTIONS TO PHOTON SELF ENERGY

HIGHER ORDER THERMAL CORRECTIONS TO PHOTON SELF ENERGY HIGHER ORDER THERMAL CORRECTIONS TO PHOTON SELF ENERGY Mahnaz Q. Haseeb Physics Department COMSATS Institute of Information Technology Islamabad Outline Relevance Finite Temperature Effects One Loop Corrections

More information

Experimental results on nucleon structure Lecture I. National Nuclear Physics Summer School 2013

Experimental results on nucleon structure Lecture I. National Nuclear Physics Summer School 2013 Experimental results on nucleon structure Lecture I Barbara Badelek University of Warsaw National Nuclear Physics Summer School 2013 Stony Brook University, July 15 26, 2013 Barbara Badelek (Univ. of Warsaw

More information

Introduction to Saturation Physics

Introduction to Saturation Physics Introduction to Saturation Physics Introduction to Saturation Physics April 4th, 2016 1 / 32 Bibliography F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, Ann. Rev. Nucl. Part. Sci. 60, 463 (2010)

More information

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape Outline: Non-central collision of spherical nuclei or central collision of deformed nuclei Overlapping zone is of almond shape Co ordinate space anisotropy is converted into momentum space anisotropy via

More information

Experimental Hadronic Physics at Florida State

Experimental Hadronic Physics at Florida State Experimental Hadronic Physics at Florida State Prof. Volker Credé Prof. Paul Eugenio & Dr. Alexander Ostrovidov and graduate students N. Sparks, A. Wilson, C. Hanretty, S. Park, C. Bookwalter, M. Saini

More information

3.2 DIS in the quark parton model (QPM)

3.2 DIS in the quark parton model (QPM) Experimental studies of QCD 1. Elements of QCD 2. Tests of QCD in annihilation 3. Studies of QCD in DIS 4. QCD in collisions 3.2 DIS in the quark parton model (QPM) M W Elastic scattering: W = M only one

More information

Glauber modelling in high-energy nuclear collisions. Jeremy Wilkinson

Glauber modelling in high-energy nuclear collisions. Jeremy Wilkinson Glauber modelling in high-energy nuclear collisions Jeremy Wilkinson 16/05/2014 1 Introduction: Centrality in Pb-Pb collisions Proton-proton collisions: large multiplicities of charged particles produced

More information

Monte Carlo Non-Linear Flow modes studies with AMPT

Monte Carlo Non-Linear Flow modes studies with AMPT Monte Carlo Non-Linear Flow modes studies with AMP Daniel Noel Supervised by: Naghmeh Mohammadi 2 July - 31 August 218 1 Introduction Heavy-ion collisions at the Large Hadron Collider (LHC) generate such

More information

DEEP INELASTIC SCATTERING

DEEP INELASTIC SCATTERING DEEP INELASTIC SCATTERING Electron scattering off nucleons (Fig 7.1): 1) Elastic scattering: E = E (θ) 2) Inelastic scattering: No 1-to-1 relationship between E and θ Inelastic scattering: nucleon gets

More information

Small bits of cold, dense matter

Small bits of cold, dense matter Small bits of cold, dense matter Alessandro Roggero (LANL) with: S.Gandolfi & J.Carlson (LANL), J.Lynn (TUD) and S.Reddy (INT) ArXiv:1712.10236 Nuclear ab initio Theories and Neutrino Physics INT - Seattle

More information

Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents

Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents Reference: AM and T. Hirano, arxiv:1003:3087 Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents Akihiko Monnai Department of Physics, The University of Tokyo

More information

EPOS 2 and LHC Results

EPOS 2 and LHC Results EPOS 2 and LHC Results Tanguy Pierog, K. Werner, Y. Karpenko Institut für Kernphysik, Karlsruhe, Germany 46th Rencontres de Moriond, QCD, La Thuile, France March the 24th 2011 T. Pierog, KIT - 1/19 Outline

More information

Photoabsorption and Photoproduction on Nuclei in the Resonance Region

Photoabsorption and Photoproduction on Nuclei in the Resonance Region Photoabsorption and Photoproduction on Nuclei in the Resonance Region Susan Schadmand Institut für Kernphysik First Workshop on Quark-Hadron Duality Frascati, June 6-8, 2005 electromagnetic probes Hadron

More information

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned:

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned: Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned: Particle spectral shapes in thermal model ( static medium) are exponential in m T with common slope for all particles.

More information

QGP Thermodynamics and Phase Transitions. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad

QGP Thermodynamics and Phase Transitions. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad QGP Thermodynamics and Phase Transitions Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad Outline Thermodynamics in QGP What are the phase transitions? Order of the phase transition Where to study

More information

Jet quenching in heavy-ion collisions at the LHC. Marta Verweij CERN

Jet quenching in heavy-ion collisions at the LHC. Marta Verweij CERN Jet quenching in heavy-ion collisions at the LHC Marta Verweij CERN EPFL Seminar May. 2, 2016 Thousands of particles are produced in one heavy ion collision Marta Verweij 2 Heavy ion collision Marta Verweij

More information

Dense Matter for Dummies (Non-Experts)

Dense Matter for Dummies (Non-Experts) for Dummies (Non-Experts) Department of Physics Ohio State University July, 26 Pictures have been freely borrowed from online sources; I apologize in advance for any omitted citations. Also, inclusion

More information

Electromagnetic emission from the CGC at early stages of heavy ion collisions

Electromagnetic emission from the CGC at early stages of heavy ion collisions Electromagnetic emission from the CGC at early stages of heavy ion collisions François Gelis CEA / DSM / SPhT François Gelis 2005 Electromagnetic Probes of Hot and Dense Matter, ECT*, Trento, June 2005

More information

Physics 4213/5213 Lecture 1

Physics 4213/5213 Lecture 1 August 28, 2002 1 INTRODUCTION 1 Introduction Physics 4213/5213 Lecture 1 There are four known forces: gravity, electricity and magnetism (E&M), the weak force, and the strong force. Each is responsible

More information

Seeking the Shadowing in ea Processes. M. B. Gay Ducati. V. P. Gonçalves

Seeking the Shadowing in ea Processes. M. B. Gay Ducati. V. P. Gonçalves Seeking the Shadowing in ea Processes M. B. Gay Ducati and V. P. Gonçalves InstitutodeFísica, Univ. Federal do Rio Grande do Sul Caixa Postal 15051, 91501-970 Porto Alegre, RS, BRAZIL Abstract: We consider

More information

Renormalization group methods in nuclear few- and many-body problems

Renormalization group methods in nuclear few- and many-body problems Renormalization group methods in nuclear few- and many-body problems Lecture 3 S.K. Bogner (NSCL/MSU) 2011 National Nuclear Physics Summer School University of North Carolina at Chapel Hill Lecture 2 outline

More information

Hadronization with JLab 6/12 GeV

Hadronization with JLab 6/12 GeV Hadronization with JLab 6/12 GeV Next generation nuclear physics with JLab12 and EIC Florida International University February 10-13th, 2016 Lamiaa El Fassi (On behalf of EG2 and CLAS Collaborations) Outline

More information

Microscopically Based Energy Functionals. S.K. Bogner (NSCL/MSU)

Microscopically Based Energy Functionals. S.K. Bogner (NSCL/MSU) Microscopically Based Energy Functionals S.K. Bogner (NSCL/MSU) Dream Scenario: From QCD to Nuclei 2 SciDAC 2 Project Building a Universal Nuclear Energy Density Functional See http://undef.org for details

More information

Lecture 2: The First Second origin of neutrons and protons

Lecture 2: The First Second origin of neutrons and protons Lecture 2: The First Second origin of neutrons and protons Hot Big Bang Expanding and cooling Soup of free particles + anti-particles Symmetry breaking Soup of free quarks Quarks confined into neutrons

More information

Standard Model of Particle Physics SS 2012

Standard Model of Particle Physics SS 2012 Lecture: Standard Model of Particle Physics Heidelberg SS 2012 W- and Z-Bosons 1 2 Contents Discovery of real W- and Z-bosons Intermezzo: QCD at Hadron Colliders LEP + Detectors W- and Z- Physics at LEP

More information

Introduction to Relativistic Heavy Ion Physics

Introduction to Relativistic Heavy Ion Physics 1 Introduction to Relativistic Heavy Ion Physics Lecture 3: Approaching Perfection Columbia University Reminder- From Lecture 2 2 A new state of matter (QGP?) is formed in Au+Au collisions at RHIC Densities

More information

Improving the kinematics in BK/BFKL to resum the dominant part of higher orders

Improving the kinematics in BK/BFKL to resum the dominant part of higher orders Improving the kinematics in BK/BFKL to resum the dominant part of higher orders Guillaume Beuf Brookhaven National Laboratory QCD Evolution Workshop: from collinear to non collinear case Jefferson Lab,

More information

FACULTY OF SCIENCE. High Energy Physics. WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON

FACULTY OF SCIENCE. High Energy Physics. WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON FACULTY OF SCIENCE High Energy Physics WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON AIM: To explore nature on the smallest length scales we can achieve Current status (10-20 m)

More information

Quark Gluon Plasma Recent Advances

Quark Gluon Plasma Recent Advances Quark Gluon Plasma Recent Advances Lawrence Berkeley National Laboratory LP01, Rome, July 2001 Introduction P.C. Sereno et al. Science, Nov. 13, 1298(1998). (Spinosaurid) We may not see the entire body

More information

E. Fermi: Notes on Thermodynamics and Statistics (1953))

E. Fermi: Notes on Thermodynamics and Statistics (1953)) E. Fermi: Notes on Thermodynamics and Statistics (1953)) Neutron stars below the surface Surface is liquid. Expect primarily 56 Fe with some 4 He T» 10 7 K ' 1 KeV >> T melting ( 56 Fe) Ionization: r Thomas-Fermi

More information

Status of Heavy-Ion Physics at the LHC

Status of Heavy-Ion Physics at the LHC Status of Heavy-Ion Physics at the LHC Yvonne Pachmayer, Heidelberg University J. Jowett LHC Page 1 2 Motivation: What is the question? ALICE/LHC Pb+Pb snn = 2760 GeV What happens if you make matter Hotter

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

Introduction to Relativistic Heavy Ion Physics

Introduction to Relativistic Heavy Ion Physics 1 Introduction to Relativistic Heavy Ion Physics Lecture 2: Experimental Discoveries Columbia University Reminder- From Lecture 1 2 General arguments suggest that for temperatures T ~ 200 MeV, nuclear

More information

LABORATORI NAZIONALI DI FRASCATI SIS-Pubblicazioni

LABORATORI NAZIONALI DI FRASCATI SIS-Pubblicazioni LABORATORI NAZIONALI DI FRASCATI SIS-Pubblicazioni LNF-06/22 (P) 29 August 2006 HADRON PROPERTIES IN THE NUCLEAR MEDIUM THE PANDA PROGRAM WITH pa REACTIONS Olaf N. Hartmann INFN, Laboratori Nazionali di

More information

Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory

Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory Achim Schwenk Astrophysical Transients: Multi-Messenger Probes of Nuclear Physics INT, July 29, 2011 Outline

More information

Similarity Renormalization Groups (SRG) for nuclear forces Nuclear structure and nuclear astrophysics

Similarity Renormalization Groups (SRG) for nuclear forces Nuclear structure and nuclear astrophysics Similarity Renormalization Groups (SRG) for nuclear forces Nuclear structure and nuclear astrophysics Philipp Dijkstal 12.05.2016 1 Introduction The talk on Similarity Renormalization Groups (SRG) from

More information

Inclusive spectrum of charged jets in central Au+Au collisions at s NN = 200 GeV by STAR

Inclusive spectrum of charged jets in central Au+Au collisions at s NN = 200 GeV by STAR Inclusive spectrum of charged jets in central Au+Au collisions at s NN = 200 GeV by SAR Nuclear Physics Institute, Academy of Sciencis of Czech Republic, Na ruhlarce 39/64, 180 86 Prague, Czech Republic

More information

Effective Field Theory

Effective Field Theory Effective Field Theory Iain Stewart MIT The 19 th Taiwan Spring School on Particles and Fields April, 2006 Physics compartmentalized Quantum Field Theory String Theory? General Relativity short distance

More information