Physics at Hadron Colliders Partons and PDFs

Size: px
Start display at page:

Download "Physics at Hadron Colliders Partons and PDFs"

Transcription

1 Physics at Hadron Colliders Partons and PDFs Marina Cobal Thanks to D. Bettoni Università di Udine 1

2 2

3 How to probe the nucleon / quarks? Scatter high-energy lepton off a proton: Deep-Inelastic Scattering (DIS) In DIS experiments point-like leptons + EM interactions which are well understood are used to probe hadronic structure (which isn t). Relevant scales: d probed = p m large momentum -> short distance (Uncertainty Principle at work!)

4 4

5 e-p scattering

6 DIS (deep inelastic scattering) 6

7 Inelastic scattering When the scattering is not elastic (new particles are produced) the energy and direction of the scattered electron are independent variables, unlike the elastic scattering situation. W is the mass squared of the produced hadronic system e (k,e) N (P,M) e(k',e') γ (q) θ W From the measurement of the direction θ (solid angle element dω) and the energy E ' of the scattered electron, the four momentum transfer Q 2 =-q 2 can be calculated. The differential cross-section is determined as a function of E ' and Q 2. k ' = k q q 2 = 4 EE ' sin 2 θ 2 W 2 = (P + q) 2 = P 2 + 2P q + q 2 = M 2 + 2Mν Q 2 ν = E E '

8 Electron - proton inelastic scattering Bloom et al. (SLAC-MIT group) in 1969 performed an experiment with high-energy electron beams (7-18 GeV). Scattering of electrons from a hydrogen target at 6 0 and Only electrons are detected in the final state - inclusive approach. The data showed peaks when the mass W of the produced hadronic system corresponded to the mass of the known resonances.

9 e-p scattering Rutherford x-sec: e: non-relativistic p: does not recoil Mott x-sec: e: relativistic p does not recoil DIS e-p scattering: e relativistic p recoil spin-spin effect Energy increase 9

10 DIS Kinematics Four-momentum transfer: q 2 = (E E ') 2 ( k k ') ( k k ') = = m 2 e + m 2 e' 2(EE ' k k ' cosθ) = 4EE 'sin 2 θ 2 Q 2 Mott Cross Section (!c=1): L W µν µν : : lepton tensor hadron tensor a virtual photon of fourmomentum q is able to resolve structures of the order!/ q 2

11

12 Form Factors

13 If the proton recoils: Electron-Proton Point-like e-p Scattering scattering

14 14

15 Measuring Electron-Proton G E (qscattering 2 ) and G M (q 2 )

16 Electron-Proton High q 2 Scattering results

17 Summary Electron-Proton of elastic Scattering scattering

18 Inelastic scattering cross-section Similar to the electron-proton elastic scattering, the differential cross-section of electron-proton inelastic scattering can be written in a general form: dσ dωde ' = α 2 cos 2 θ 2 " W 4E 2 sin 4 θ 2 (ν, q 2 )+W 1 (ν, q 2 )tan 2 θ # 2 2 The cross-section is double differential because θ and E ' are independent variables. The expression contains Mott cross-section as a factor and is analogous to the Rosenbluth formula. It isolates the unknown shape of the nucleon target in two structure functions W 1 and W 2, which are the functions of two independent variables ν and q 2. The structure functions correspond to the two possible polarisation states of the virtual photon: longitudinal and transverse. Longitudinal polarisation exists only because photon is virtual and has a mass. For elastic scattering, (P+q) 2 =M 2 and the two variables ν and Q 2 are related by Q 2 =2Mν. $ %

19 Scaling To determine W 1 and W 2 separately it is necessary to measure the differential crosssection at two values of θ and E ' that correspond to the same values of ν and Q 2. This is possible by varying the incident energy E. SLAC result: the ratio of σ /σ Mott depends only weakly on Q 2 for high values of W. For small scattering angles σ /σ Mott W 2. Thus, the structure function W 2 does not depend on Q ,Torino Aram Kotzinian

20 Scaling Instead, at high values of W the function νw 2 depends on the single variable ω = 2Mν / Q 2 (at present the variable x=1/ω is widely used) This is the so-called "scaling" behaviour of the cross-section (structure function). It was first proposed by Bjorken in W 1,2 (ν,q 2 ) W 1,2 (x) when ν,q 2.

21 21

22 22

23 23

24 Observe excited resonance states: Nucleons are composite What do we see in the data for W > 2 GeV? 24

25 First SLAC experiment ( 69): expected from proton form factor: 2 % dσ / de ' dω ( 1 # Q 8 = && 2 2 # (dσ / dω) Mott ' (1 + Q / 0.71) $ First data show big surprise: very weak Q2-dependence form factor -> 1! scattering off point-like objects?. introduce a clever model!

26 The Quark-Parton Model Assumptions: Proton constituent = Parton Elastic scattering from a quasi-free spin-1/2 quark in the proton Neglect masses and p T s, infinite momentum frame e P e Lets assume: p quark = xp proton parton Since xp 2 M 2 <<Q 2 it follows: ( xp + q) = p' quark = mquark 0 Check limiting case: x 1 2 W = M p + 2M pν Q!! M p 2xP q + q Q Q 0 x = = 2Pq 2Mν ν = (q. p)/m = E e -E e Definition Bjorken scaling variable Therefore: x = 1: elastic scattering and 0 < x < 1

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 The quark structure of nucleons Quark quantum numbers: Spin: ½ S p,n = ( ) = ½ Isopin: ½ I p,n = ( ) = ½ Why fractional charges? Extreme baryons: Z = Assign: z up =+ 2/3, z down = - 1/3 Three families: m c,b,t >> m u,d,s : no role in p,n Structure functions: Isospin symmetry: Average nucleon F 2 (x) with q(x) = q v (x) + q s (x) etc. )] ( ) ( ) ( [ )] ( ) ( ) ( [ s s n s n s n v n s n s n v n s s p s p s p v p s p s p v p s s u u u d d d x F s s u u u d d d x F = = q z q z! " # $ % &! " # $ % &! " # $ % & b t s c d u b s d t c u m m m z m m m z ; ; 0.3 GeV) ( GeV) ( 3 2 << << = << << = + p s p s n s n s p v n v p v n v d u d u u d d u = = = = =,, )] ( ) ( [ )) ( ) ( ( ) ( 9 1, x s x s x x q x q x F F F s s d u n p N = + = 2) 1, ( +

36 36

37 37

38 38

39 39

40 IF, proton was made of 3 quarks each with 1/3 of proton s momentum: no anti-quark! 2 F 2 = x (q(x) + q(x)) e q F 2 or with some smearing 1/3 x The partons are point-like and incoherent then Q 2 shouldn t matter. à Bjorken scaling: F 2 has no Q 2 dependence.

41 Proton Structure Function F 2 F 2 Movies from R. Yoshida, CTEQ Summer School 2007

42 Deep Inelastic Scattering experiments Fixed HERA target collider: DIS H1 at and SLAC, ZEUS FNAL, experiments CERN, now 1992 JLab 2007

43 Modern data PDG 2002 First data (1980): Now.. Scaling violations : weak Q 2 dependence rise at low x what physics??.. QCD

44 44

45 45

46 46

47 47

48 48

49 Quantum Chromodynamics (QCD) Field theory for strong interaction: quarks interact by gluon exchange quarks carry a colour charge exchange bosons (gluons) carry colour self-interactions (cf. QED!) Hadrons are colour neutral: RR, BB, GG or RGB leads to confinement: q q α s g q α s q q, qq or qqq forbidden Effective strength ~ #gluons exch. low Q 2 : more g s: large eff. coupling high Q 2 : few g s: small eff. coupling

50 QCD brings new possibilities: q q quarks can radiate gluons q q gluons can produce qq pairs gluons can radiate gluons!

51 Proton e e *(Q 2 ) r ~1.6 fm (McAllister & Hofstadter 56) Virtuality (4-momentum transfer) Q gives the distance scale r at which the proton is probed. r hc/q = 0.2fm/Q[GeV] CERN, FNAL fixed target DIS: HERA ep collider DIS: r min 1/100 proton dia. r min 1/1000 proton dia. HERA: E e =27.5 GeV, E P =920 GeV (Uncertainty Principle again)

52 F 2 Higher the resolution (i.e. higher the Q 2 ) more low x partons we see. So what do we expect F 2 as a function of x at a fixed Q 2 to look like?

53 F 2 (x) Three quarks with 1/3 of total proton momentum each. F 2 (x) 1/3 x Three quarks with some momentum smearing. 1/3 x F 2 (x) The three quarks radiate partons at low x. 1/3 x.the answer depends on the Q 2!

54 Proton Structure Function F 2 How this change with Q 2 happens quantitatively described by the: Dokshitzer-Gribov- Lipatov-Altarelli- Parisi (DGLAP) equations

55 QCD predictions: scaling violations Originally: F 2 = F 2 (x) but also Q 2 -dependence Why scaling violations? if Q 2 increases: more resolution (~1/ Q 2 ) more sea quarks +gluons Officially known as: Altarelli-Parisi Equations ( DGLAP )

56 DGLAP equations are easy to understand intuitively.. First we have four splitting functions z z z z 1-z 1-z 1-z 1-z P ab (z) : the probability that parton a will radiate a parton b with the fraction z of the original momentum carried by a. These additional contributions to F 2 (x,q 2 ) can be calculated.

57 57

58 Running of α

59

60 60

61 61

62 QCD predictions: the running of a s pqcd valid if a s << 1: Q 2 > 1.0 (GeV/c) 2 pqcd calculation: CERN 2004 PDG π α s ( Q ) = 2 2 ( 33 2n ) ln( Q / Λ ) with Λ exp = 250 MeV/c: asymptotic freedom f Q 2 α s 0 confinement Q 2 0 α s Running coupling constant is quantitative test of QCD.

63 Self Interaction

64 Colour charge strenght

Inelastic scattering

Inelastic scattering Inelastic scattering When the scattering is not elastic (new particles are produced) the energy and direction of the scattered electron are independent variables, unlike the elastic scattering situation.

More information

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1 High Energy Physics Lecture 9 Deep Inelastic Scattering Scaling Violation HEP Lecture 9 1 Deep Inelastic Scattering: The reaction equation of DIS is written e+ p e+ X where X is a system of outgoing hadrons

More information

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.:

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.: The Development of Particle Physics Dr. Vitaly Kudryavtsev E45, Tel.: 0114 4531 v.kudryavtsev@sheffield.ac.uk The structure of the nucleon Electron - nucleon elastic scattering Rutherford, Mott cross-sections

More information

Deep Inelastic Scattering (DIS) Un-ki Yang Dept. of Physics and Astronomy Seoul National University Un-ki Yang - DIS

Deep Inelastic Scattering (DIS) Un-ki Yang Dept. of Physics and Astronomy Seoul National University Un-ki Yang - DIS Deep Inelastic Scattering (DIS) Un-ki Yang Dept. of Physics and Astronomy Seoul National University ukyang@snu.ac.kr Un-ki Yang - DIS 1 Elastic and Inelastic scattering Electron-Proton Scattering P Electron-proton

More information

Partículas Elementares (2015/2016)

Partículas Elementares (2015/2016) Partículas Elementares (015/016) 11 - Deep inelastic scattering Quarks and Partons Mário Pimenta Lisboa, 10/015 pimenta@lip.pt Elastic scattering kinematics (ep) Lab 1 θ 3 Only one independent variable!

More information

DEEP INELASTIC SCATTERING

DEEP INELASTIC SCATTERING DEEP INELASTIC SCATTERING Electron scattering off nucleons (Fig 7.1): 1) Elastic scattering: E = E (θ) 2) Inelastic scattering: No 1-to-1 relationship between E and θ Inelastic scattering: nucleon gets

More information

BRIEF INTRODUCTION TO HERA PHYSICS

BRIEF INTRODUCTION TO HERA PHYSICS BRIEF INTRODUCTION TO HERA PHYSICS aim: get to exercises as soon as possible cover: HERA accelarator and experiments DIS kinematics, how to compare theory and data:mc generators ==> next step: use them!

More information

Introduction to particle physics Lecture 7

Introduction to particle physics Lecture 7 Introduction to particle physics Lecture 7 Frank Krauss IPPP Durham U Durham, Epiphany term 2009 Outline 1 Deep-inelastic scattering and the structure of protons 2 Elastic scattering Scattering on extended

More information

Experimental Aspects of Deep-Inelastic Scattering. Kinematics, Techniques and Detectors

Experimental Aspects of Deep-Inelastic Scattering. Kinematics, Techniques and Detectors 1 Experimental Aspects of Deep-Inelastic Scattering Kinematics, Techniques and Detectors 2 Outline DIS Structure Function Measurements DIS Kinematics DIS Collider Detectors DIS process description Dirac

More information

3.2 DIS in the quark parton model (QPM)

3.2 DIS in the quark parton model (QPM) Experimental studies of QCD 1. Elements of QCD 2. Tests of QCD in annihilation 3. Studies of QCD in DIS 4. QCD in collisions 3.2 DIS in the quark parton model (QPM) M W Elastic scattering: W = M only one

More information

Deep Inelastic Scattering in Lepton-Hadron Collisions Probing the Parton Structure of the Nucleon with Leptons Basic Formalism (indep.

Deep Inelastic Scattering in Lepton-Hadron Collisions Probing the Parton Structure of the Nucleon with Leptons Basic Formalism (indep. Deep Inelastic Scattering in Lepton-Hadron Collisions Probing the Parton Structure of the Nucleon with Leptons Basic Formalism (indep. of strong dynamics and parton picture) Experimental Development Fixed

More information

Review of hadron-hadron interactions

Review of hadron-hadron interactions Chapter 10 Deep inelastic scattering between leptons and nucleons Confirm quarks are more than mathematical objects High momentum transfer from leptons to hadron constituents QCD predicts small coupling

More information

Lecture 3 Cross Section Measurements. Ingredients to a Cross Section

Lecture 3 Cross Section Measurements. Ingredients to a Cross Section Lecture 3 Cross Section Measurements Ingredients to a Cross Section Prerequisites and Reminders... Natural Units Four-Vector Kinematics Lorentz Transformation Lorentz Boost Lorentz Invariance Rapidity

More information

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York Many thanks to my colleagues, A. Deshpande, F. Gelis, B. Surrow

More information

Experimental results on nucleon structure Lecture I. National Nuclear Physics Summer School 2013

Experimental results on nucleon structure Lecture I. National Nuclear Physics Summer School 2013 Experimental results on nucleon structure Lecture I Barbara Badelek University of Warsaw National Nuclear Physics Summer School 2013 Stony Brook University, July 15 26, 2013 Barbara Badelek (Univ. of Warsaw

More information

Particle Physics WS 2012/13 ( )

Particle Physics WS 2012/13 ( ) Particle Physics WS 01/13 (3.11.01) Stephanie Hansmann-Menzemer Physikalisches Institut, INF 6, 3.101 Content of Today Structure of the proton: Inelastic proton scattering can be described by elastic scattering

More information

2. HEAVY QUARK PRODUCTION

2. HEAVY QUARK PRODUCTION 2. HEAVY QUARK PRODUCTION In this chapter a brief overview of the theoretical and experimental knowledge of heavy quark production is given. In particular the production of open beauty and J/ψ in hadronic

More information

Quantum Chromodynamics at LHC

Quantum Chromodynamics at LHC Quantum Chromodynamics at LHC Zouina Belghobsi LPTh, Université de Jijel EPAM-2011, TAZA 26 Mars 03 Avril Today s high energy colliders past, present and future proton/antiproton colliders Tevatron (1987

More information

SPIN STRUCTURE OF THE NUCLEON AND POLARIZATION. Charles Y. Prescott Stanford Linear Accelerator Center Stanford University, Stanford CA 94309

SPIN STRUCTURE OF THE NUCLEON AND POLARIZATION. Charles Y. Prescott Stanford Linear Accelerator Center Stanford University, Stanford CA 94309 SLAC-PUB-662 September 1994 (TE) SPIN STRUCTURE OF THE NUCLEON AND POLARIZATION Charles Y. Prescott Stanford Linear Accelerator Center Stanford University, Stanford CA 9439 Work supported by Department

More information

Electron-Positron Annihilation

Electron-Positron Annihilation Evidence for Quarks The quark model originally arose from the analysis of symmetry patterns using group theory. The octets, nonets, decuplets etc. could easily be explained with coloured quarks and the

More information

Particles and Deep Inelastic Scattering

Particles and Deep Inelastic Scattering Particles and Deep Inelastic Scattering University HUGS - JLab - June 2010 June 2010 HUGS 1 Sum rules You can integrate the structure functions and recover quantities like the net number of quarks. Momentum

More information

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions.

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Overview The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Our understanding is about to take a giant leap.. the Large Hadron Collider

More information

Results on the proton structure from HERA

Results on the proton structure from HERA Results on the proton structure from HERA Shima Shimizu (Univ. of Tokyo) Introduction HERA physics Proton structure The world only e-p collider: HERA electron proton A unique collider at DESY, Hamburg

More information

Zhong-Bo Kang Los Alamos National Laboratory

Zhong-Bo Kang Los Alamos National Laboratory Introduction to pqcd and Jets: lecture 1 Zhong-Bo Kang Los Alamos National Laboratory Jet Collaboration Summer School University of California, Davis July 19 1, 014 Selected references on QCD! QCD and

More information

Form Factors and Structure Functions

Form Factors and Structure Functions Form Factors and Structure Functions Yury Kolomensky Physics 129, Fall 2010 Standard Model Primer 3 fundamental interactions Electromagnetic: U=q 1 q 2 /r Vector couplings Fine structure constant α=e 2

More information

Particles and Deep Inelastic Scattering

Particles and Deep Inelastic Scattering Particles and Deep Inelastic Scattering University HUGS - JLab - June 2010 June 2010 HUGS 1 k q k P P A generic scatter of a lepton off of some target. k µ and k µ are the 4-momenta of the lepton and P

More information

Quark-Hadron Duality in Structure Functions

Quark-Hadron Duality in Structure Functions Approaches to QCD, Oberwoelz, Austria September 10, 2008 Quark-Hadron Duality in Structure Functions Wally Melnitchouk Outline Bloom-Gilman duality Duality in QCD OPE & higher twists Resonances & local

More information

Tercera Sesión. XI Escuela de Física Fundamental. Universidad Veracruzana, Xalapa. 28 de Septiembre de 2016

Tercera Sesión. XI Escuela de Física Fundamental. Universidad Veracruzana, Xalapa. 28 de Septiembre de 2016 Tercera Sesión XI Escuela de Física Fundamental Universidad Veracruzana, Xalapa. 28 de Septiembre de 2016 1 / M.E. Tejeda-Yeomans elena.tejeda@fisica.uson.mx Iniciación a la QCD 1/35 35 3 lectures: three

More information

Lecture 9. Isospin The quark model

Lecture 9. Isospin The quark model Lecture 9 Isospin The quark model There is one more symmetry that applies to strong interactions. isospin or isotopic spin It was useful in formulation of the quark picture of known particles. We can consider

More information

Measurements of Proton Structure at Low Q 2 at HERA

Measurements of Proton Structure at Low Q 2 at HERA Measurements of Proton Structure at Low Q 2 at HERA Victor Lendermann Kirchhoff-Institut für Physik, Universität Heidelberg Im Neuenheimer Feld 227, 69120 Heidelberg Germany Abstract. Inclusive ep scattering

More information

QCD and deep inelastic scattering

QCD and deep inelastic scattering QCD and deep inelastic scattering Alex Tapper Slides available at: http://www.hep.ph.ic.ac.uk/~tapper/lecture.html Outline We ll start with some history of the structure of matter and scattering experiments.

More information

Physics at HERA. Summer Student Lectures August Katja Krüger Kirchhoff Institut für Physik H1 Collaboration

Physics at HERA. Summer Student Lectures August Katja Krüger Kirchhoff Institut für Physik H1 Collaboration Physics at HERA Summer Student Lectures 10 13 August 009 Kirchhoff Institut für Physik H1 Collaboration email: katja.krueger@desy.de Overview Introduction to HERA Inclusive DIS & Structure Functions formalism

More information

Nucleon Valence Quark Structure

Nucleon Valence Quark Structure Nucleon Valence Quark Structure Z.-E. Meziani, S. Kuhn, O. Rondon, W. Melnitchouk Physics Motivation Nucleon spin and flavor structure High-x quark distributions Spin-flavor separation Moments of structure

More information

Evidence for the Strong Interaction

Evidence for the Strong Interaction Evidence for the Strong Interaction Scott Wilbur Scott Wilbur Evidence for the Strong Interaction 1 Overview Continuing search inside fundamental particles Scott Wilbur Evidence for the Strong Interaction

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information

8 The structure of the nucleon

8 The structure of the nucleon 8 The structure of the nucleon Elastic and deep inelastic scattering from nucleons, 1956 1973 Hadronic scattering experiments produced extensive and rich data revealing resonances and regularities of cross

More information

PHY357 Lecture 14. Applications of QCD. Varying coupling constant. Jets and Gluons. Quark-Gluon plasma. Colour counting

PHY357 Lecture 14. Applications of QCD. Varying coupling constant. Jets and Gluons. Quark-Gluon plasma. Colour counting PHY357 Lecture 14 Applications of QCD Varying coupling constant Jets and Gluons Quark-Gluon plasma Colour counting The proton structure function (not all of section 5.8!) Variable Coupling Constants! At

More information

Structure of Hadrons and the parton model

Structure of Hadrons and the parton model Structure of Hadrons and the parton model Ben Kilminster University of Zürich - Physik Institut Phenomenology of Particle Physics - PPP2 Lecture: 10/3/2015 Topics in this lecture How do we study the structure

More information

Open Issues in DIS The High Energy Perspective

Open Issues in DIS The High Energy Perspective Open Issues in DIS The High Energy Perspective My private point of view using data from DIS in collider mode: Accelerator and Experiments HERA success story: Precision cross sections, structure functions

More information

Lecture 8. CPT theorem and CP violation

Lecture 8. CPT theorem and CP violation Lecture 8 CPT theorem and CP violation We have seen that although both charge conjugation and parity are violated in weak interactions, the combination of the two CP turns left-handed antimuon onto right-handed

More information

CHAPTER 2 ELECTRON-PROTON COLLISION

CHAPTER 2 ELECTRON-PROTON COLLISION CHAPTER ELECTRON-PROTON COLLISION.1 Electron-proton collision at HERA The collision between electron and proton at HERA is useful to obtain the kinematical values of particle diffraction and interaction

More information

Nucleon Spin. Tyler Corbett

Nucleon Spin. Tyler Corbett Nucleon Spin Tyler Corbett Abstract: In 1988 the European Muon Collaboration showed that the quark contribution to spin only accounts for 20-30 percent of the nucleon spin; The "naive quark parton model

More information

Structure Functions and Parton Distribution Functions at the HERA ep Collider

Structure Functions and Parton Distribution Functions at the HERA ep Collider Structure Functions and Parton Distribution Functions at the HERA ep Collider by Chris Targett Adams (University College London) on behalf of the ZEUS and H1 collaborations. Moriond QCD, 16/03/2005 Contents

More information

Quark model. Jan 30, 2006 Lecture 8 1

Quark model. Jan 30, 2006 Lecture 8 1 Quark model Jan 30, 2006 Lecture 8 1 Quark model of hadrons!!!! Developed long before QCD was recognized as the appropriate quantum field theory of the strong interactions Postulate that 1.! All baryons

More information

Constituent Quarks and the Gluonic Contribution to the Spin of the Nucleon

Constituent Quarks and the Gluonic Contribution to the Spin of the Nucleon Constituent Quarks and the Gluonic Contribution to the Spin of the Nucleon Ludwig-Maximilians-Universität München Faculty of Physics Thesis submitted By Gamal Eldahoumi from Benghazi/Libya Munich January

More information

Measurements with Polarized Hadrons

Measurements with Polarized Hadrons Aug 15, 003 Lepton-Photon 003 Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Contents: Introduction: Spin of Proton Polarized Deep Inelastic Lepton-Nucleon Scattering 1.

More information

Results on the proton structure from HERA

Results on the proton structure from HERA Results on the proton structure from HERA Shima Shimizu (CERN) 7/Jan/ @ KEK The world only e-p collider: HERA electron proton A unique collider at DESY, Hamburg H ZEUS Circumference: 6.3 km Operated since

More information

Nucleon Structure 3D!

Nucleon Structure 3D! Meson Electroproduction and Imaging Studies Nucleon Structure 3D! Tanja Horn Tanja Tanja Horn, Horn, Nucleon JMU Structure Seminar, - 3D!, 6 October HUGS 011 01, HUGS Summer School Jefferson National Laboratory

More information

Standard Model of Particle Physics SS 2012

Standard Model of Particle Physics SS 2012 Lecture: Standard Model of Particle Physics Heidelberg SS 2012 W- and Z-Bosons 1 2 Contents Discovery of real W- and Z-bosons Intermezzo: QCD at Hadron Colliders LEP + Detectors W- and Z- Physics at LEP

More information

2. Hadronic Form Factors

2. Hadronic Form Factors PHYS 6610: Graduate Nuclear and Particle Physics I H. W. Grießhammer INS Institute for Nuclear Studies The George Washington University Institute for Nuclear Studies Spring 2018 II. Phenomena 2. Hadronic

More information

Structure Functions at Very High Q 2 From HERA

Structure Functions at Very High Q 2 From HERA Structure Functions at Very High Q 2 From HERA Christopher M. Cormack For the H1 and ZEUS Collaborations Rutherford Appleton Laboratory, Chilton, Didcot, Oxford, OX11 0QX, United Kingdom Abstract. Measurements

More information

Initial-state splitting

Initial-state splitting QCD lecture (p. 14) 1st order analysis For initial state splitting, hard process occurs after splitting, and momentum entering hard process is modified: p zp. σ g+h (p) σ h (zp) α sc F π dz dkt 1 z kt

More information

Scattering Processes. General Consideration. Kinematics of electron scattering Fermi Golden Rule Rutherford scattering cross section

Scattering Processes. General Consideration. Kinematics of electron scattering Fermi Golden Rule Rutherford scattering cross section Scattering Processes General Consideration Kinematics of electron scattering Fermi Golden Rule Rutherford scattering cross section The form factor Mott scattering Nuclear charge distributions and radii

More information

Nucleon Electromagnetic Form Factors: Introduction and Overview

Nucleon Electromagnetic Form Factors: Introduction and Overview Nucleon Electromagnetic Form Factors: Introduction and Overview Diego Bettoni Istituto Nazionale di Fisica Nucleare, Ferrara Scattering and Annihilation Electromagnetic Processes Trento, 18- February 013

More information

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 5 : Electron-Proton Elastic Scattering. Electron-Proton Scattering

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 5 : Electron-Proton Elastic Scattering. Electron-Proton Scattering Particle Physics Michaelmas Term 2011 Prof Mark Thomson Handout 5 : Electron-Proton Elastic Scattering Prof. M.A. Thomson Michaelmas 2011 149 i.e. the QED part of ( q q) Electron-Proton Scattering In this

More information

Introduction to Quantum ChromoDynamics and the parton model

Introduction to Quantum ChromoDynamics and the parton model Introduction to Quantum ChromoDynamics and the parton model Pavel Nadolsky Southern Methodist University Dallas, TX, USA TMD Collaboration Summer School June 22, 2017 Objectives of the lectures Review

More information

Overview of Elementary Particle Physics

Overview of Elementary Particle Physics Overview of Elementary Particle Physics Michael Gold Physics 330 May 3, 2006 Overview of Elementary Particle Physics Rutherford e p elastic elastic scattering e p inelastic scattering zeus Parton model

More information

LHC Collider Phenomenology

LHC Collider Phenomenology LHC Collider Phenomenology Theorist! You are a theorist working in the CMS experimental collaboration You work on LHC Collider Phenomenology related to CMS By working in the experimental collaboration

More information

Study of Inclusive Jets Production in ep Interactions at HERA

Study of Inclusive Jets Production in ep Interactions at HERA HEP 003 Europhysics Conference in Aachen, Germany Study of Inclusive Jets Production in ep Interactions at HERA Mónica Luisa Vázquez Acosta Universidad Autónoma de Madrid On behalf of the ZEUS & H1 Collaborations

More information

Seeking the Shadowing in ea Processes. M. B. Gay Ducati. V. P. Gonçalves

Seeking the Shadowing in ea Processes. M. B. Gay Ducati. V. P. Gonçalves Seeking the Shadowing in ea Processes M. B. Gay Ducati and V. P. Gonçalves InstitutodeFísica, Univ. Federal do Rio Grande do Sul Caixa Postal 15051, 91501-970 Porto Alegre, RS, BRAZIL Abstract: We consider

More information

Electroweak Physics and Searches for New Physics at HERA

Electroweak Physics and Searches for New Physics at HERA Electroweak Physics and Searches for New Physics at HERA Uwe Schneekloth DESY On behalf of the H1 and ZEUS Collaborations 14th Lomonosov Conference on Elementary Particle Physics 5.08.009 Outline Introduction

More information

The Quark-Parton Model

The Quark-Parton Model The Quark-Parton Model Before uarks and gluons were generally acceted Feynman roosed that the roton was made u of oint-like constituents artons Both Bjorken Scaling and the Callan-Gross relationshi can

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS 754 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS TRINITY TERM 04 Thursday, 9 June,.30 pm 5.45 pm 5 minutes

More information

4th Particle Physcis Workshop. National Center for Physics, Islamabad. Proton Structure and QCD tests at HERA. Jan Olsson, DESY.

4th Particle Physcis Workshop. National Center for Physics, Islamabad. Proton Structure and QCD tests at HERA. Jan Olsson, DESY. th 4 Particle Physics Workshop National Center for Physics, Islamabad Proton Structure and QCD tests at HERA Part 2 The proton structure function F2 NLO QCD describes data over >4 orders of magnitude in

More information

Studying Nuclear Structure

Studying Nuclear Structure Microscope for the Studying Nuclear Structure with s School of Physics Seoul National University November 15, 2004 Outline s Microscope for the s Smaller, smaller Quest for basic building blocks of the

More information

Proton Structure from HERA and the impact for the LHC

Proton Structure from HERA and the impact for the LHC Proton Structure from HERA and the impact for the LHC Katerina Lipka, DESY for the H1 and ZEUS Collaborations Lomonosov Conference on High Energy Physics 13 Proton structure: fundamental subject in matter

More information

hep-ex/ Jun 1995

hep-ex/ Jun 1995 Department of Physics & Astronomy Experimental Particle Physics Group Kelvin Building, University of Glasgow, Glasgow, G 8QQ, Scotland Telephone: +44 ()4 9 8855 Fax: +44 ()4 4 99 GLAS{PPE/95{ 9 th June

More information

QCD, Colliders & Jets - HW II Solutions. x, x

QCD, Colliders & Jets - HW II Solutions. x, x QCD, Colliders & Jets - HW II Solutions. As discussed in the Lecture the parton distributions do not scale as in the naïve parton model but rather are epected to ehibit the scaling violation predicted

More information

Measurements of charm and beauty proton structure functions F2 c c and F2 b b at HERA

Measurements of charm and beauty proton structure functions F2 c c and F2 b b at HERA Measurements of charm and beauty proton structure functions F c c and F b b at HERA Vladimir Chekelian MPI for Physics, Germany E-mail: shekeln@mail.desy.de Inclusive charm and beauty production is studied

More information

Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo

Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo Particle Physics Fall 2015 1 Course Overview Lecture 1: Introduction, Decay Rates and Cross Sections Lecture 2: The Dirac Equation and Spin

More information

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden Physics at LHC lecture one Sven-Olaf Moch Sven-Olaf.Moch@desy.de DESY, Zeuthen in collaboration with Martin zur Nedden Humboldt-Universität, October 22, 2007, Berlin Sven-Olaf Moch Physics at LHC p.1 LHC

More information

Hunting for Quarks. G n M Co-conspirators: Jerry Gilfoyle for the CLAS Collaboration University of Richmond

Hunting for Quarks. G n M Co-conspirators: Jerry Gilfoyle for the CLAS Collaboration University of Richmond Hunting for Quarks Jerry Gilfoyle for the CLAS Collaboration University of Richmond JLab Mission What we know and don t know. The Neutron Magnetic Form Factor Experiments with CLAS More JLab Highlights

More information

arxiv:hep-ph/ v1 4 Feb 1997

arxiv:hep-ph/ v1 4 Feb 1997 DOUBLE SPIN TRANSVERSE ASYMMETRIES IN DRELL YAN PROCESSES V. Barone a,b, T. Calarco c and A. Drago c a Dipartimento di Fisica Teorica, Università di Torino and INFN, Sezione di Torino, 10125 Torino, Italy

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS A047W SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS TRINITY TERM 05 Thursday, 8 June,.30 pm 5.45 pm 5 minutes

More information

Subatomic Physics: Particle Physics Study Guide

Subatomic Physics: Particle Physics Study Guide Subatomic Physics: Particle Physics Study Guide This is a guide of what to revise for the exam. The other material we covered in the course may appear in uestions but it will always be provided if reuired.

More information

Proton Structure Function Measurements from HERA

Proton Structure Function Measurements from HERA Proton Structure Function Measurements from HERA Jörg Gayler DESY, Notkestrasse 85, 2263 Hamburg, Germany E-mail: gayler@mail.desy.de Abstract. Measurements of proton structure functions made in neutral

More information

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS Class Mechanics My office (for now): Dantziger B Room 121 My Phone: x85200 Office hours: Call ahead, or better yet, email... Even better than office

More information

Electroweak measurements at HERA

Electroweak measurements at HERA Electroweak measurements at HERA Alex Tapper DESY forum 1 th & 13 th September 006 Precision electroweak measurements: What can HERA contribute? Outline Introduction High Q physics at HERA Review of recent

More information

Measuring Form Factors and Structure Functions With CLAS

Measuring Form Factors and Structure Functions With CLAS Measuring Form Factors and Structure Functions With CLAS Jerry Gilfoyle for the CLAS Collaboration Physics Department, University of Richmond, Virginia Outline: 1. Jefferson Lab and the CLAS Detector..

More information

Calculation of the Gluon Distribution Function Using Alternative Method for the Proton Structure Function

Calculation of the Gluon Distribution Function Using Alternative Method for the Proton Structure Function Commun. Theor. Phys. (Beijing, China 40 (2003 pp. 551 557 c International Academic Publishers Vol. 40, No. 5, November 15, 2003 Calculation of the Gluon Distribution Function Using Alternative Method for

More information

EIC meeting, April 6,7, MIT

EIC meeting, April 6,7, MIT F L and the Gluon Density EIC meeting, April 6,7, MIT A. Caldwell Rutherford SLAC-MIT, HERA EIC? Motivation At small x, gluons physics dominates In this region, far from initial conditions: universal properties?

More information

Spin Structure of the Nucleon: quark spin dependence

Spin Structure of the Nucleon: quark spin dependence Spin Structure of the Nucleon: quark spin dependence R. De Vita Istituto Nazionale di Fisica Nucleare Electromagnetic Interactions with Nucleons and Nuclei EINN005 Milos September, 005 The discovery of

More information

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification Weak Interactions Outline Charged Leptonic Weak Interaction Decay of the Muon Decay of the Neutron Decay of the Pion Charged Weak Interactions of Quarks Cabibbo-GIM Mechanism Cabibbo-Kobayashi-Maskawa

More information

Collider overview and kinematics

Collider overview and kinematics 1 Collider overview and kinematics QCD studies at colliders 2 ee - ep - pp QCD collider studies Short Long distance Q: large momentum scale PEP, PETRA, Cornell, LEP, SLD, NLC SLAC, FNAL, CERN, HERA, erhic

More information

PG lectures- Particle Physics Introduction. C.Lazzeroni

PG lectures- Particle Physics Introduction. C.Lazzeroni PG lectures- Particle Physics Introduction C.Lazzeroni Outline - Properties and classification of particles and forces - leptons and hadrons - mesons and baryons - forces and bosons - Relativistic kinematics

More information

Coherent and Incoherent Nuclear Exclusive Processes

Coherent and Incoherent Nuclear Exclusive Processes Coherent and Incoherent Nuclear Exclusive Processes Vadim Guzey Electron-Ion Collider Workshop: Electron-Nucleon Exclusive Reactions Rutgers University, March 14-15, 2010 Outline Coherent and incoherent

More information

2007 Section A of examination problems on Nuclei and Particles

2007 Section A of examination problems on Nuclei and Particles 2007 Section A of examination problems on Nuclei and Particles 1 Section A 2 PHYS3002W1 A1. A fossil containing 1 gramme of carbon has a radioactivity of 0.03 disintegrations per second. A living organism

More information

Hadron Physics with Real and Virtual Photons at JLab

Hadron Physics with Real and Virtual Photons at JLab Hadron Physics with Real and Virtual Photons at JLab Elton S. Smith Jefferson Lab Virtual photons shape of the nucleon Elastic scattering (form factors) Inelastic scattering (uark distributions) Exclusive

More information

The Quark Parton Model

The Quark Parton Model The Quark Parton Model Quark Model Pseudoscalar J P = 0 Mesons Vector J P = 1 Mesons Meson Masses J P = 3 /2 + Baryons J P = ½ + Baryons Resonances Resonance Detection Discovery of the ω meson Dalitz Plots

More information

Novel Measurements of Proton Structure at HERA

Novel Measurements of Proton Structure at HERA Introduction Combined Cross Sections & QCD Fits NC & CC Cross Section Measurements F L Summary Novel Measurements of Proton Structure at HERA Katie Oliver University of Oxford On behalf of the H1 and ZEUS

More information

Longitudinal Structure Function Using Thermodynamical Bag Model. S. Karthiyayini, K.K.Singh

Longitudinal Structure Function Using Thermodynamical Bag Model. S. Karthiyayini, K.K.Singh Longitudinal Structure Function Using Thermodynamical Bag Model Abstract: S. Karthiyayini, K.K.Singh Karthiyayini@bits-dubai.ac.ae; singh@bits-dubai.ac.ae BITS Pilani Dubai Campus Dubai International Academic

More information

Quantum Chromo Dynamics

Quantum Chromo Dynamics Quantum Chromo Dynamics Evidence for Fractional Charges Color Gluons Color Transformations Quark Confinement Scaling Violations The Ratio R Deep Inelastic Scattering Structure of the Proton Introduction

More information

Selected topics in High-energy QCD physics

Selected topics in High-energy QCD physics 1 Selected topics in High-energy QCD physics Outline 2 Recent results in highenergy QCD physics q q q QCD - Theoretical Foundation QCD Features e e + Summary and Outlook QCD Features 3 QCD - Features L

More information

Introduction to Perturbative QCD

Introduction to Perturbative QCD Introduction to Perturbative QCD Lecture 3 Jianwei Qiu Iowa State University/Argonne National Laboratory PHENIX Spinfest at RIKEN 007 June 11 - July 7, 007 RIKEN Wako Campus, Wako, Japan June 6, 007 1

More information

Open Charm Production in Deep Inelastic Diffractive ep Scattering at HERA

Open Charm Production in Deep Inelastic Diffractive ep Scattering at HERA Open Charm Production in Deep Inelastic Diffractive ep Scattering at HERA Joanne Elise Cole High Energy Physics Group Blackett Laboratory Imperial College of Science, Technology and Medicine University

More information

Most of Modern Physics today is concerned with the extremes of matter:

Most of Modern Physics today is concerned with the extremes of matter: Most of Modern Physics today is concerned with the extremes of matter: Very low temperatures, very large numbers of particles, complex systems Æ Condensed Matter Physics Very high temperatures, very large

More information

PoS(DIS 2010)071. Diffractive electroproduction of ρ and φ mesons at H1. Xavier Janssen Universiteit Antwerpen

PoS(DIS 2010)071. Diffractive electroproduction of ρ and φ mesons at H1. Xavier Janssen Universiteit Antwerpen Diffractive electroproduction of ρ and φ mesons at Universiteit Antwerpen E-mail: xavier.janssen@ua.ac.be Diffractive electroproduction of ρ and φ mesons is measured at HERA with the detector in the elastic

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics Heidelberg SS 23 Fermi Theory Standard Model of Particle Physics SS 23 2 Standard Model of Particle Physics SS 23 Weak Force Decay of strange particles Nuclear

More information

Determination of the Gluon Polarisation in the Nucleon using Hadron Pairs with High Transverse Momentum at COMPASS

Determination of the Gluon Polarisation in the Nucleon using Hadron Pairs with High Transverse Momentum at COMPASS Determination of the Gluon Polarisation in the Nucleon using Hadron Pairs with High Transverse Momentum at COMPASS Sonja Hedicke Fakultät für Mathematik und Physik Albert-Ludwigs-Universität Freiburg Determination

More information

Physique des Particules Avancées 2

Physique des Particules Avancées 2 Physique des Particules Avancées Interactions Fortes et Interactions Faibles Leçon 6 Les collisions p p (http://dpnc.unige.ch/~bravar/ppa/l6) enseignant Alessandro Bravar Alessandro.Bravar@unige.ch tél.:

More information