Strong Interactions and QCD

Size: px
Start display at page:

Download "Strong Interactions and QCD"

Transcription

1 Strong Interactions and QCD Sourendu Gupta DTP: TIFR DIM 2009 TIFR, Mumbai November 4, 2009 SG (DTP: TIFR) Strong Interactions DIM 09 1 / 14

2 The experimental context of strong interactions 1 Thomson and Rutherford: splitting the atom and the discovery of the atomic nucleus ( ) 2 Cosmic rays and particle accelerators: discovery of hadron families and the quark-model classification (c ) 3 Deep-inelastic scattering (SLAC): discovery of quarks and QCD (c ) 4 CERN, SLAC, DESY: testing and refining the QCD Lagrangian, probing the limits of perturbation theory (c1970 c1995) SG (DTP: TIFR) Strong Interactions DIM 09 2 / 14

3 The experimental context of strong interactions 1 Thomson and Rutherford: splitting the atom and the discovery of the atomic nucleus ( ) 2 Cosmic rays and particle accelerators: discovery of hadron families and the quark-model classification (c ) 3 Deep-inelastic scattering (SLAC): discovery of quarks and QCD (c ) 4 CERN, SLAC, DESY: testing and refining the QCD Lagrangian, probing the limits of perturbation theory (c1970 c1995) 5 Heavy-ion collisions (RHIC, LHC, FAIR, NICA): probe T, µ 0 (2000??) 6 Supernovae and neutron stars: probe T 0, µ 0 (c1925??) 7 Hadron machines (JLAB, KEK, BES, SLAC): glueballs, non quark-model physics, string tension (c1990??) 8 Very low-energy light nuclei: nuclear physics from QCD, fine-tuning in stellar thermonuclear reactions. (c1930??) 9 B-factories, LHC, erhic: semi-perturbative QCD (c2000??) SG (DTP: TIFR) Strong Interactions DIM 09 2 / 14

4 QCD today Nuclear physics few body problem exotic nuclei hadron superfluids nuclear forces nuclear matter thermonuclear reactions plasmas freezeout neutrino diffusion supernovae neutron stars phase transitions Astrophysics Particle physics hadronic molecules, exotic hadrons, glueballs QCD hydrodynamics transport theory nanomaterials colour superconductivity Condensed matter strong coupling Higgs multi jet phenomena large rapidity gaps hadronization flavour physics simulations and algorithms large scale computing network and switching data sharing grid Computer science SG (DTP: TIFR) Strong Interactions DIM 09 3 / 14

5 The QCD phase diagram T Quark gluon plasma Hadron gas Colour superconductor Nuclear gas Nuclear liquid µ SG (DTP: TIFR) Strong Interactions DIM 09 4 / 14

6 Phase diagram of QCD matter Fermion sign-problem, evaded by Taylor expansion around µ = 0. Need to control: N f (now 2), m π (now 230 MeV), V (finite size scaling), a (now 0.19 fm), order of expansion (now 8). (Gavai and SG) SG (DTP: TIFR) Strong Interactions DIM 09 5 / 14

7 Heavy-ion collisions SG (DTP: TIFR) Strong Interactions DIM 09 6 / 14

8 Screening masses: is the fireball large? ρ π ρ π g g g g g m(t)/t g g SU(3), T=2Tc a=1/(8tc) a=1/(16tc) 0 A 1 ++ A 2 -+ A 1 -+ A 2 -- B 1 ++ B 1 -+ B 2 ++ Mesons heavier than glueballs: reversal of T = 0 physics; dimensional reduction works (roughly). Near T c? Below T c? (Banerjee, Dutta, Gavai, SG, Lacaze, Maiti, Mathur) SG (DTP: TIFR) Strong Interactions DIM 09 7 / 14

9 Hydrodynamics and diffusion: is the fireball long lived? Diffusion: x t, outside the lightcone at small t. Use kinetic theory instead? Numerically complicated. KT implies improved diffusion eqn: f 2f + + D 2 f = 0. 2 t t Transport coefficients: D and τ. No change as t. Observable differences for t/τ O(1). Easy to spot in event to event fluctuations in heavy-ion collisions. Preliminary analysis by STAR collaboration positive. τ 6 ΤnHJ,ΗL Η J 1.5 ΤnHJ,ΗL J Η Similarly for Navier-Stokes. However, signals of causal corrections to NS harder to observe. (Bhalerao, SG) SG (DTP: TIFR) Strong Interactions DIM 09 8 / 14

10 Equations of state SU(3) p/p SB SU(4) SU(6) ε/ε SB (Datta, Gavai, SG, Mukherjee) SG (DTP: TIFR) Strong Interactions DIM 09 9 / 14

11 New directions Nuclear physics few body problem exotic nuclei hadron superfluids nuclear forces nuclear matter thermonuclear reactions plasmas freezeout neutrino diffusion supernovae neutron stars phase transitions Astrophysics Particle physics hadronic molecules, exotic hadrons, glueballs QCD hydrodynamics transport theory nanomaterials colour superconductivity Condensed matter strong coupling Higgs multi jet phenomena large rapidity gaps hadronization flavour physics simulations and algorithms large scale computing network and switching data sharing grid Computer science SG (DTP: TIFR) Strong Interactions DIM / 14

12 Electrical conductivity σ /T C EM T d p ω =p=0 3 8π ω d Ω T/T c Finite volume effects? Is the analytic continuation stable? SG (DTP: TIFR) Strong Interactions DIM / 14

13 The hadron spectrum SG (DTP: TIFR) Strong Interactions DIM / 14

14 String tension 1000 Mesons: nonstrange 100 ρ c (m) m (MeV) Fits to string tension: σ MeV, depending on pre-exponential factor to Hagedorn exponential! Which is the correct string model? SG (DTP: TIFR) Strong Interactions DIM / 14

15 Nucleon-nucleon scattering lengths 4 m a( 3 S 1 ) π m a( 1 S 0) π Scattering lengths are not natural. Fine-tuned quark masses? SG (DTP: TIFR) Strong Interactions DIM / 14

Extreme QCD. Sourendu Gupta. International Colloquium on Perspectives in Fundamental Research TIFR, Mumbai March 4, 2010 TIFR

Extreme QCD. Sourendu Gupta. International Colloquium on Perspectives in Fundamental Research TIFR, Mumbai March 4, 2010 TIFR Extreme QCD Sourendu Gupta TIFR International Colloquium on Perspectives in Fundamental Research TIFR, Mumbai March 4, 2010 Extreme reductionism Building things up Particles Nuclei and stars Hot matter

More information

MATTER. Sourendu Gupta (TIFR, Mumbai) for the Indian Lattice Gauge Theory Initiative at IIT-Roorkee. March 13, 2005

MATTER. Sourendu Gupta (TIFR, Mumbai) for the Indian Lattice Gauge Theory Initiative at IIT-Roorkee. March 13, 2005 MATTER Sourendu Gupta (TIFR, Mumbai) for the Indian Lattice Gauge Theory Initiative at IIT-Roorkee March 13, 2005 1 Can the mass of this system be computed from the standard model of particle physics?

More information

The Origin of the Visible Mass in the Universe

The Origin of the Visible Mass in the Universe The Origin of the Visible Mass in the Universe Or: Why the Vacuum is not Empty Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA Cyclotron REU Program 2007 Texas

More information

The Quark-Gluon plasma in the LHC era

The Quark-Gluon plasma in the LHC era The Quark-Gluon plasma in the LHC era Journées de prospective IN2P3-IRFU, Giens, Avril 2012 t z IPhT, Saclay 1 Quarks and gluons Strong interactions : Quantum Chromo-Dynamics Matter : quarks ; Interaction

More information

The critical end point of QCD: lattice and experiment

The critical end point of QCD: lattice and experiment The critical end point of QCD: lattice and experiment Sourendu Gupta ILGTI: TIFR Patnitop 2009 January 2, 2010 SG (ILGTI: TIFR) CEP: lattice and experiment Patnitop 09 1 / 28 Outline 1 On lattice 2 In

More information

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V.

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 1 Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Introduction

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Plan of the lectures 1. QCD and States of Matter 2. The High Temperature Phase: Theory 3. Exploring QCD at High Temperature: Experiment

More information

The phase diagram of strongly interacting matter

The phase diagram of strongly interacting matter The phase diagram of strongly interacting matter TIFR Indian Institute of Science, Bangalore November 25, 2011 Introduction 1 Introduction 2 Bulk Strongly Interacting Matter 3 Relativistic Heavy-ion Collisions

More information

The Physics of Particles and Forces David Wilson

The Physics of Particles and Forces David Wilson The Physics of Particles and Forces David Wilson Particle Physics Masterclass 21st March 2018 Overview David Wilson (TCD) Particles & Forces 2/30 Overview of Hadron Spectrum Collaboration (HadSpec) scattering

More information

Laboratory for Nuclear Science

Laboratory for Nuclear Science The Laboratory for Nuclear Science (LNS) provides support for research by faculty and research staff members in the fields of particle, nuclear, and theoretical plasma physics. This includes activities

More information

QCD in Heavy-ion collisions

QCD in Heavy-ion collisions QCD in Heavy-ion collisions RPP 2012, Montpellier transition t p z q IPhT, Saclay 1 Outline 1 2 3 4 5 6 7 transition 2 1 transition 2 3 4 5 6 transition 7 2 Asymptotic freedom Running coupling : α s =

More information

PHY357 Lecture 14. Applications of QCD. Varying coupling constant. Jets and Gluons. Quark-Gluon plasma. Colour counting

PHY357 Lecture 14. Applications of QCD. Varying coupling constant. Jets and Gluons. Quark-Gluon plasma. Colour counting PHY357 Lecture 14 Applications of QCD Varying coupling constant Jets and Gluons Quark-Gluon plasma Colour counting The proton structure function (not all of section 5.8!) Variable Coupling Constants! At

More information

Beyond Standard Model Effects in Flavour Physics: p.1

Beyond Standard Model Effects in Flavour Physics: p.1 Beyond Standard Model Effects in Flavour Physics: Alakabha Datta University of Mississippi Feb 13, 2006 Beyond Standard Model Effects in Flavour Physics: p.1 OUTLINE Standard Model (SM) and its Problems.

More information

QGP event at STAR. Patrick Scott

QGP event at STAR. Patrick Scott QGP event at STAR Patrick Scott Overview What is quark-gluon plasma? Why do we want to study quark-gluon plasma? How do we create quark-gluon plasma? The past and present SPS and RHIC The future LHC and

More information

Big Bang to Little Bang ---- Study of Quark-Gluon Plasma. Tapan Nayak July 5, 2013

Big Bang to Little Bang ---- Study of Quark-Gluon Plasma. Tapan Nayak July 5, 2013 Big Bang to Little Bang ---- Study of Quark-Gluon Plasma Tapan Nayak July 5, 2013 Universe was born through a massive explosion At that moment, all the matter was compressed into a space billions of times

More information

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions.

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Overview The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Our understanding is about to take a giant leap.. the Large Hadron Collider

More information

Contents. Preface to the First Edition Preface to the Second Edition

Contents. Preface to the First Edition Preface to the Second Edition Contents Preface to the First Edition Preface to the Second Edition Notes xiii xv xvii 1 Basic Concepts 1 1.1 History 1 1.1.1 The Origins of Nuclear Physics 1 1.1.2 The Emergence of Particle Physics: the

More information

Finite Chemical Potential in N t = 6 QCD

Finite Chemical Potential in N t = 6 QCD Finite Chemical Potential in N t = 6 QCD Rajiv Gavai and Sourendu Gupta ILGTI: TIFR Lattice 2008, Williamsburg July 15, 2008 Rajiv Gavai and Sourendu Gupta ILGTI: TIFRLattice Finite Chemical 2008, Williamsburg

More information

Evidence for the Strong Interaction

Evidence for the Strong Interaction Evidence for the Strong Interaction Scott Wilbur Scott Wilbur Evidence for the Strong Interaction 1 Overview Continuing search inside fundamental particles Scott Wilbur Evidence for the Strong Interaction

More information

The phase diagram of strongly interacting matter

The phase diagram of strongly interacting matter The phase diagram of strongly interacting matter IOP Bhubaneshwar August 8, 2011 Introduction Introduction Bulk Strongly Interacting Matter Relativistic Heavy-ion Collisions Fluctuations of Conserved Quantities

More information

Strong interaction physics with an Electron Ion Collider

Strong interaction physics with an Electron Ion Collider Strong interaction physics with an Electron Ion Collider C. Weiss (JLab), UNAM, Mexico City, 03 April 17 [E-mail] Internal structure of nucleon Quantum Chromodynamics Concepts and methods for structure

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Introduction and motivation: QCD and modern high-energy physics

More information

Lecture 2: The First Second origin of neutrons and protons

Lecture 2: The First Second origin of neutrons and protons Lecture 2: The First Second origin of neutrons and protons Hot Big Bang Expanding and cooling Soup of free particles + anti-particles Symmetry breaking Soup of free quarks Quarks confined into neutrons

More information

Nuclear and Particle Physics

Nuclear and Particle Physics Nuclear and Particle Physics W. S. С Williams Department of Physics, University of Oxford and St Edmund Hall, Oxford CLARENDON PRESS OXFORD 1991 Contents 1 Introduction 1.1 Historical perspective 1 1.2

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Motivation Different phases of QCD occur in the universe Neutron Stars, Big Bang Exploring the phase diagram is important to understanding

More information

Quark Number Susceptibilities & The Wróblewski Parameter

Quark Number Susceptibilities & The Wróblewski Parameter Quark Number Susceptibilities & The Wróblewski Parameter Rajiv V. Gavai T. I. F. R., Mumbai, India In collaboration with Sourendu Gupta, TIFR, Mumbai Hard Probes 2004, Ericeira, Portugal, November 9, 2004

More information

cgrahamphysics.com Particles that mediate force Book pg Exchange particles

cgrahamphysics.com Particles that mediate force Book pg Exchange particles Particles that mediate force Book pg 299-300 Exchange particles Review Baryon number B Total # of baryons must remain constant All baryons have the same number B = 1 (p, n, Λ, Σ, Ξ) All non baryons (leptons

More information

The QCD phase diagram from the lattice

The QCD phase diagram from the lattice The QCD phase diagram from the lattice Sourendu Gupta ILGTI: TIFR CBM Meeting VECC Kolkata July 31, 2010 Zero baryon density Background Exact SU(2) flavour symmetry Exact SU(3) flavour symmetry Broken

More information

Phenomenology of Heavy-Ion Collisions

Phenomenology of Heavy-Ion Collisions Phenomenology of Heavy-Ion Collisions Hendrik van Hees Goethe University Frankfurt and FIAS October 2, 2013 Hendrik van Hees (GU Frankfurt/FIAS) HIC Phenomenology October 2, 2013 1 / 20 Outline 1 Plan

More information

FYS 3510 Subatomic physics with applications in astrophysics. Nuclear and Particle Physics: An Introduction

FYS 3510 Subatomic physics with applications in astrophysics. Nuclear and Particle Physics: An Introduction FYS 3510 Subatomic physics with applications in astrophysics Nuclear and Particle Physics: An Introduction Nuclear and Particle Physics: An Introduction, 2nd Edition Professor Brian Martin ISBN: 978-0-470-74275-4

More information

The symmetries of QCD (and consequences)

The symmetries of QCD (and consequences) The symmetries of QCD (and consequences) Sinéad M. Ryan Trinity College Dublin Quantum Universe Symposium, Groningen, March 2018 Understand nature in terms of fundamental building blocks The Rumsfeld

More information

The critical point of QCD: what measurements can one make?

The critical point of QCD: what measurements can one make? The critical point of QCD: what measurements can one make? Sourendu Gupta ILGTI: TIFR Strong Interactions 2010 TIFR, Mumbai February 10, 2010 Lattice measurements The critical point NLS at finite µ B Experimental

More information

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016 Elementary Particle Physics Glossary Course organiser: Dr Marcella Bona February 9, 2016 1 Contents 1 Terms A-C 5 1.1 Accelerator.............................. 5 1.2 Annihilation..............................

More information

Split SUSY and the LHC

Split SUSY and the LHC Split SUSY and the LHC Pietro Slavich LAPTH Annecy IFAE 2006, Pavia, April 19-21 Why Split Supersymmetry SUSY with light (scalar and fermionic) superpartners provides a technical solution to the electroweak

More information

Viscosity of Quark-Gluon Plasma!

Viscosity of Quark-Gluon Plasma! Viscosity of Quark-Gluon Plasma! Rajendra Pokharel Advisor: Prof. Sean Gavin 2 nd Graduate Research Day " Wayne State University " "Apr 24, 2011! Outlines " " Background Hydrodynamics The Model Results

More information

Heavy-Ion Physics Lecture 1: QCD and the Quark-Gluon Plasma

Heavy-Ion Physics Lecture 1: QCD and the Quark-Gluon Plasma Heavy-Ion Physics Lecture 1: QCD and the Quark-Gluon Plasma Professor David Evans The University of Birmingham Nuclear Physics Summer School Queen s University, Belfast XX th August 2017 Outline of Lectures

More information

arxiv: v3 [hep-ph] 22 Sep 2017

arxiv: v3 [hep-ph] 22 Sep 2017 Towards laboratory detection of topological vortices in superfluid phases of QCD Arpan Das 1,2, Shreyansh S. Dave 1,2, Somnath De 1,2, and Ajit M. Srivastava 1,2 1 Institute of Physics, Bhubaneswar 7515,

More information

High Energy Frontier Recent Results from the LHC: Heavy Ions I

High Energy Frontier Recent Results from the LHC: Heavy Ions I High Energy Frontier Recent Results from the LHC: Heavy Ions I Ralf Averbeck ExtreMe Matter Institute EMMI and Research Division GSI Helmholtzzentrum für Schwerionenforschung Darmstadt, Germany Winter

More information

The QCD phase diagram from the lattice

The QCD phase diagram from the lattice The QCD phase diagram from the lattice Sourendu Gupta ILGTI: TIFR ICPAGQP Student Day Doan Paula, Goa December 5, 2010 Zero baryon density Background Exact SU(2) flavour symmetry Exact SU(3) flavour symmetry

More information

Frontier Particle Accelerators

Frontier Particle Accelerators AAAS February 2005 Frontier Particle Accelerators For Elementary Particle Physics Together with Cosmology and Astrophysics, Elementary Particle Physics seeks understanding of the basic physical character

More information

Highlights from. Part I HEPP-EPS EPS Lisbon, Portugal, July 21 st 27 th, International Europhysics Conference on High Energy Physics

Highlights from. Part I HEPP-EPS EPS Lisbon, Portugal, July 21 st 27 th, International Europhysics Conference on High Energy Physics Highlights from HEPP-EPS EPS 2005 International Europhysics Conference on High Energy Physics Lisbon, Portugal, July 21 st 27 th, 2005 Part I Uta Stösslein (DESY) Zeuthen, September 7 th, 2005 Programme

More information

Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents

Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents Reference: AM and T. Hirano, arxiv:1003:3087 Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents Akihiko Monnai Department of Physics, The University of Tokyo

More information

Lattice QCD Results on Strangeness and Quasi-Quarks in Heavy-Ion Collisions

Lattice QCD Results on Strangeness and Quasi-Quarks in Heavy-Ion Collisions Lattice QCD Results on Strangeness and Quasi-Quarks in Heavy-Ion Collisions Rajiv V. Gavai T. I. F. R., Mumbai, India In collaboration with Sourendu Gupta, TIFR, Mumbai, Phys. Rev. D73, 014004 (2006) Strangeness

More information

Physics 4213/5213 Lecture 1

Physics 4213/5213 Lecture 1 August 28, 2002 1 INTRODUCTION 1 Introduction Physics 4213/5213 Lecture 1 There are four known forces: gravity, electricity and magnetism (E&M), the weak force, and the strong force. Each is responsible

More information

PHY397K - NUCLEAR PHYSICS - 2

PHY397K - NUCLEAR PHYSICS - 2 PHY397K - NUCLEAR PHYSICS - 2 PHY397K - NUCLEAR PHYSICS Spring 2015, Unique numbers: 57115 RLM 5.116, TTH 12:30-2:00 pm Christina Markert Office: RLM: 10.305 Phone: 512 471 8834 Email: cmarkert@physics.utexas.edu

More information

M. Cobal, PIF 2006/7. Quarks

M. Cobal, PIF 2006/7. Quarks M. Cobal, PIF 2006/7 Quarks Quarks Quarks are s = ½ fermions, subject to all kind of interactions. They have fractional electric charges Quarks and their bound states are the only particles which interact

More information

9.2.E - Particle Physics. Year 12 Physics 9.8 Quanta to Quarks

9.2.E - Particle Physics. Year 12 Physics 9.8 Quanta to Quarks + 9.2.E - Particle Physics Year 12 Physics 9.8 Quanta to Quarks + Atomic Size n While an atom is tiny, the nucleus is ten thousand times smaller than the atom and the quarks and electrons are at least

More information

Nuclear Physics Questions, Directions, Applications

Nuclear Physics Questions, Directions, Applications Nuclear Physics Questions, Directions, Applications Science Questions & Goals of Nuclear Physics Implications of Nuclear Physics for other Fields Applications of Nuclear Physics in other Fields The Nuclear

More information

The Gamma Factory proposal for CERN

The Gamma Factory proposal for CERN The Gamma Factory proposal for CERN Photon-2017 Conference, May 2017 Mieczyslaw Witold Krasny LPNHE, CNRS and University Paris Sorbonne 1 The Gamma Factory in a nutshell Accelerate and store high energy

More information

Nuclear Physics Questions, Achievements, Goals

Nuclear Physics Questions, Achievements, Goals Nuclear Physics Questions, Achievements, Goals Science Questions & Goals of Nuclear Physics Current status and instrumentation Implications of Nuclear Physics for other Fields The Nuclear Chart Proton:

More information

Gluonic superfluid in high energy p-pb collisions. Chris Zin Derek Everett, Sean Gavin, AbhijitMajumder Graduate Research Day Wayne State University

Gluonic superfluid in high energy p-pb collisions. Chris Zin Derek Everett, Sean Gavin, AbhijitMajumder Graduate Research Day Wayne State University Gluonic superfluid in high energy p-pb collisions Chris Zin Derek Everett, Sean Gavin, AbhijitMajumder Graduate Research Day Wayne State University Quark-gluon plasma State of matter consisting of free

More information

Soft physics results from the PHENIX experiment

Soft physics results from the PHENIX experiment Prog. Theor. Exp. Phys. 2015, 03A104 (15 pages) DOI: 10.1093/ptep/ptu069 PHYSICS at PHENIX, 15 years of discoveries Soft physics results from the PHENIX experiment ShinIchi Esumi, Institute of Physics,

More information

Past, Present, and Future of the QGP Physics

Past, Present, and Future of the QGP Physics Past, Present, and Future of the QGP Physics Masayuki Asakawa Department of Physics, Osaka University November 8, 2018 oward Microscopic Understanding In Condensed Matter Physics 1st Macroscopic Properties

More information

Critical lines and points. in the. QCD phase diagram

Critical lines and points. in the. QCD phase diagram Critical lines and points in the QCD phase diagram Understanding the phase diagram Phase diagram for m s > m u,d quark-gluon plasma deconfinement quark matter : superfluid B spontaneously broken nuclear

More information

Dynamical equilibration of stronglyinteracting

Dynamical equilibration of stronglyinteracting Dynamical equilibration of stronglyinteracting infinite parton matter Vitalii Ozvenchuk, in collaboration with E.Bratkovskaya, O.Linnyk, M.Gorenstein, W.Cassing CPOD, Wuhan, China 11 November 2011 1 Motivation

More information

New results in QCD at finite µ

New results in QCD at finite µ New results in QCD at finite µ Rajiv Gavai and Sourendu Gupta ILGTI: TIFR XQCD 28, Duke University July 23, 28 sg (ILGTI: TIFR) New results at finite µ XQCD 8 1 / 37 Outline 1 The finite temperature transition

More information

The God particle at last? Astronomy Ireland, Oct 8 th, 2012

The God particle at last? Astronomy Ireland, Oct 8 th, 2012 The God particle at last? Astronomy Ireland, Oct 8 th, 2012 Cormac O Raifeartaigh Waterford Institute of Technology CERN July 4 th 2012 (ATLAS and CMS ) A new particle of mass 125 GeV I The Higgs boson

More information

EIC Science. Rik Yoshida, EIC-Center at Jefferson Lab Abhay Deshpande, Center for Frontiers in Nuclear Physics, BNL and Stony Brook

EIC Science. Rik Yoshida, EIC-Center at Jefferson Lab Abhay Deshpande, Center for Frontiers in Nuclear Physics, BNL and Stony Brook EIC Science Rik Yoshida, EIC-Center at Jefferson Lab Abhay Deshpande, Center for Frontiers in Nuclear Physics, BNL and Stony Brook Introduction Invited to give a talk EIC Science and JLEIC Status I will

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York Many thanks to my colleagues, A. Deshpande, F. Gelis, B. Surrow

More information

How can we understand the strong force?

How can we understand the strong force? How can we understand the strong force? Gösta Gustafson Department of Astronomy and Theoretical Physics Lund University Seminar 5 March 2014 How can we understand the strong force 1 Gösta Gustafson Lund

More information

Applications of scattering theory! From the structure of the proton! to protein structure!

Applications of scattering theory! From the structure of the proton! to protein structure! Applications of scattering theory From the structure of the proton to protein structure Nicuşor Tîmneanu 2016 Contents and goals What is scattering and why study it? How is the structure of matter determined?

More information

arxiv:hep-ph/ v1 27 Nov 2001

arxiv:hep-ph/ v1 27 Nov 2001 Color Superconductivity and Blinking Proto-Neutron Stars arxiv:hep-ph/0111353v1 27 Nov 2001 G. W. Carter Department of Physics and Astronomy State University of New York Stony Brook, NY 11794-3800 1 Introduction

More information

Experimental Aspects of Deep-Inelastic Scattering. Kinematics, Techniques and Detectors

Experimental Aspects of Deep-Inelastic Scattering. Kinematics, Techniques and Detectors 1 Experimental Aspects of Deep-Inelastic Scattering Kinematics, Techniques and Detectors 2 Outline DIS Structure Function Measurements DIS Kinematics DIS Collider Detectors DIS process description Dirac

More information

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics Basic Lattice

More information

A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider

A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider Berndt Mueller (Duke University) LANL Theory Colloquium 2 June 2005 The Road to the Quark-Gluon Plasma

More information

Unsolved Problems in Theoretical Physics V. BASHIRY CYPRUS INTRNATIONAL UNIVERSITY

Unsolved Problems in Theoretical Physics V. BASHIRY CYPRUS INTRNATIONAL UNIVERSITY Unsolved Problems in Theoretical Physics V. BASHIRY CYPRUS INTRNATIONAL UNIVERSITY 1 I am going to go through some of the major unsolved problems in theoretical physics. I mean the existing theories seem

More information

Hadronic equation of state and relativistic heavy-ion collisions

Hadronic equation of state and relativistic heavy-ion collisions Hadronic equation of state and relativistic heavy-ion collisions Pasi Huovinen J. W. Goethe Universität Workshop on Excited Hadronic States and the Deconfinement Transition Feb 23, 2011, Thomas Jefferson

More information

THE PHYSICS/COSMOLOGY CONNECTION. 1. Summary of Particle Physics: The Standard Model limitations of the standard model

THE PHYSICS/COSMOLOGY CONNECTION. 1. Summary of Particle Physics: The Standard Model limitations of the standard model THE PHYSICS/COSMOLOGY CONNECTION 1. Summary of Particle Physics: The Standard Model limitations of the standard model 2. Summary of Cosmology: The Big Bang Model limitations of the Big Bang model 3. Unifying

More information

Experimental results on nucleon structure Lecture I. National Nuclear Physics Summer School 2013

Experimental results on nucleon structure Lecture I. National Nuclear Physics Summer School 2013 Experimental results on nucleon structure Lecture I Barbara Badelek University of Warsaw National Nuclear Physics Summer School 2013 Stony Brook University, July 15 26, 2013 Barbara Badelek (Univ. of Warsaw

More information

Unravelling the Mysteries of Matter with the CERN Large Hadron Collider An Introduction/Overview of Particle Physics

Unravelling the Mysteries of Matter with the CERN Large Hadron Collider An Introduction/Overview of Particle Physics Unravelling the Mysteries of Matter with the CERN Large Hadron Collider An Introduction/Overview of Particle Physics Introductory Lecture August 3rd 2014 International Centre for Theoretical Physics and

More information

Overview* of experimental results in heavy ion collisions

Overview* of experimental results in heavy ion collisions Overview* of experimental results in heavy ion collisions Dipartimento di Fisica Sperimentale dell Universita di Torino and INFN Torino * The selection criteria of the results presented here are (to some

More information

The Secret of Mass. Can we Evaporate the Vacuum at RHIC?

The Secret of Mass. Can we Evaporate the Vacuum at RHIC? : Can we Evaporate the Vacuum at RHIC? Texas A&M University February 24, 2007 Outline The Beauty of Nature: Symmetries The Beauty of Nature: Symmetries What is a symmetry? Geometry: Certain operations

More information

1 Introduction. 2 The hadronic many body problem

1 Introduction. 2 The hadronic many body problem Models Lecture 18 1 Introduction In the next series of lectures we discuss various models, in particluar models that are used to describe strong interaction problems. We introduce this by discussing the

More information

Dense Matter and Neutrinos. J. Carlson - LANL

Dense Matter and Neutrinos. J. Carlson - LANL Dense Matter and Neutrinos J. Carlson - LANL Neutron Stars and QCD phase diagram Nuclear Interactions Quantum Monte Carlo Low-Density Equation of State High-Density Equation of State Neutron Star Matter

More information

Nuclear Physics from Quantum Chromo- Dynamics (QCD)

Nuclear Physics from Quantum Chromo- Dynamics (QCD) Nuclear Physics from Quantum Chromo- Dynamics (QCD) A strange journey from nuclei to quarks and gluons... then back again through extra dimensions and atomic traps H. Bhabha, B. Peters, Paris 1953 B. Peters,

More information

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April Quarkonia physics in Heavy Ion Collisions Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April 5 2013 1 2 Contents Introduction (QGP, Heavy Ion Collisions, Quarkonia) Quarkonia at the SPS

More information

Little bang.. On earth experiments emulating time between second after the BIG_Bang. PartI : actors (particles) Tools (accelerators)

Little bang.. On earth experiments emulating time between second after the BIG_Bang. PartI : actors (particles) Tools (accelerators) Little bang.. On earth experiments emulating time between 0.001-1 second after the BIG_Bang PartI : actors (particles) Tools (accelerators) Can we restore creation of matter in experiments on Earth? Structure

More information

The God particle at last? Science Week, Nov 15 th, 2012

The God particle at last? Science Week, Nov 15 th, 2012 The God particle at last? Science Week, Nov 15 th, 2012 Cormac O Raifeartaigh Waterford Institute of Technology CERN July 4 th 2012 (ATLAS and CMS ) A new particle of mass 125 GeV Why is the Higgs particle

More information

Modern Accelerators for High Energy Physics

Modern Accelerators for High Energy Physics Modern Accelerators for High Energy Physics 1. Types of collider beams 2. The Tevatron 3. HERA electron proton collider 4. The physics from colliders 5. Large Hadron Collider 6. Electron Colliders A.V.

More information

A Comparative Study of Quark-Gluon Plasma at the Core of a Neutron Star and in the Very Early Universe. Frikkie de Bruyn

A Comparative Study of Quark-Gluon Plasma at the Core of a Neutron Star and in the Very Early Universe. Frikkie de Bruyn A Comparative Study of Quark-Gluon Plasma at the Core of a Neutron Star and in the Very Early Universe By Frikkie de Bruyn Introduction 1 Study of quark-gluon plasma fluid is of mutual Interest to both

More information

1. What does this poster contain?

1. What does this poster contain? This poster presents the elementary constituents of matter (the particles) and their interactions, the latter having other particles as intermediaries. These elementary particles are point-like and have

More information

QCD Matter under Extreme Conditions

QCD Matter under Extreme Conditions Physics Colloquium QCD Matter under Extreme Conditions Neda Sadooghi Department of Physics Sharif University of Technology Tehran-Iran October 2006 How everything began? How everything will end? The Big

More information

High Energy Physics. QuarkNet summer workshop June 24-28, 2013

High Energy Physics. QuarkNet summer workshop June 24-28, 2013 High Energy Physics QuarkNet summer workshop June 24-28, 2013 1 The Birth of Particle Physics In 1896, Thompson showed that electrons were particles, not a fluid. In 1905, Einstein argued that photons

More information

Primordial (Big Bang) Nucleosynthesis

Primordial (Big Bang) Nucleosynthesis Primordial (Big Bang) Nucleosynthesis H Li Be Which elements? He METALS - 1942: Gamow suggests a Big Bang origin of the elements. - 1948: Alpher, Bethe & Gamow: all elements are synthesized minutes after

More information

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University!

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Overview! Introduction! Basic ideas of EFT! Basic Examples of EFT! Algorithm of EFT! Review NN scattering! NN scattering

More information

Heavy Ions at the LHC: First Results

Heavy Ions at the LHC: First Results Heavy Ions at the LHC: First Results Thomas Schaefer North Carolina State University Heavy ion collision: Geometry R Au /γ y R Au x b z rapidity : y = 1 2 log ( E + pz E p z ) transverse momentum : p 2

More information

The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe

The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe Anna Goussiou Department of Physics, UW & ATLAS Collaboration, CERN Kane Hall, University of Washington

More information

Introduction to perturbative QCD and factorization

Introduction to perturbative QCD and factorization Introduction to perturbative QCD and factorization Part 1 M. Diehl Deutsches Elektronen-Synchroton DESY Ecole Joliot Curie 2018 DESY Plan of lectures 0. Brief introduction 1. Renormalisation, running coupling,

More information

Particles in the Early Universe

Particles in the Early Universe Particles in the Early Universe David Morrissey Saturday Morning Physics, October 16, 2010 Using Little Stuff to Explain Big Stuff David Morrissey Saturday Morning Physics, October 16, 2010 Can we explain

More information

Phase diagram of QCD: the critical point

Phase diagram of QCD: the critical point Phase diagram of QCD: the critical point p. 1/1 Phase diagram of QCD: the critical point M. Stephanov U. of Illinois at Chicago Phase diagram of QCD: the critical point p. 2/1 Phase Diagram of QCD Basic

More information

32 IONIZING RADIATION, NUCLEAR ENERGY, AND ELEMENTARY PARTICLES

32 IONIZING RADIATION, NUCLEAR ENERGY, AND ELEMENTARY PARTICLES 32 IONIZING RADIATION, NUCLEAR ENERGY, AND ELEMENTARY PARTICLES 32.1 Biological Effects of Ionizing Radiation γ-rays (high-energy photons) can penetrate almost anything, but do comparatively little damage.

More information

M. Cobal, PIF 2006/7. Quarks

M. Cobal, PIF 2006/7. Quarks Quarks Quarks Quarks are s = ½ fermions, subject to all kind of interactions. They have fractional electric charges Quarks and their bound states are the only particles which interact strongly Like leptons,

More information

PHY-105: Introduction to Particle and Nuclear Physics

PHY-105: Introduction to Particle and Nuclear Physics M. Kruse, Spring 2011, Phy-105 PHY-105: Introduction to Particle and Nuclear Physics Up to 1900 indivisable atoms Early 20th century electrons, protons, neutrons Around 1945, other particles discovered.

More information

Lecture Overview... Modern Problems in Nuclear Physics I

Lecture Overview... Modern Problems in Nuclear Physics I Lecture Overview... Modern Problems in Nuclear Physics I D. Blaschke (U Wroclaw, JINR, MEPhI) G. Röpke (U Rostock) A. Sedrakian (FIAS Frankfurt, Yerevan SU) 1. Path Integral Approach to Partition Function

More information

The Flavors of the Quark-Gluon Plasma

The Flavors of the Quark-Gluon Plasma The Flavors of the Quark-Gluon Plasma Berndt Mueller SQM 2008 - October 6-10, 2008 The QGP is a strange state of matter 2 QCD phase diagram T Quark- Gluon Critical end point? Plasma Strange quarks play

More information

2007 Section A of examination problems on Nuclei and Particles

2007 Section A of examination problems on Nuclei and Particles 2007 Section A of examination problems on Nuclei and Particles 1 Section A 2 PHYS3002W1 A1. A fossil containing 1 gramme of carbon has a radioactivity of 0.03 disintegrations per second. A living organism

More information

Hagedorn Legacy 50 y of Hagedorn Temperature Introductory Remarks, Friday November 13, Hagedorn at CERN 1978

Hagedorn Legacy 50 y of Hagedorn Temperature Introductory Remarks, Friday November 13, Hagedorn at CERN 1978 Hagedorn at CERN 1978 Why are we here: Hagedorn Temperature is the pivotal idea that opened to study high energy density matter defining our Universe in primordial times. It was put forwards at CERN 50

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 7-3: THE STRUCTURE OF MATTER Questions From Reading Activity? Essential Idea: It is believed that all the matter around us is made up of fundamental

More information