Quantum gases in the unitary limit and...

Size: px
Start display at page:

Download "Quantum gases in the unitary limit and..."

Transcription

1 Quantum gases in the unitary limit and... Andre LeClair Cornell university Benasque July

2 Outline The unitary limit of quantum gases S-matrix based approach to thermodynamics Application to the unitary limit Hubbard model. (unitary gases work done with Pye-ton How, 2010, JSTAT)

3 Motivations: Intriguing examples of scale invariant theories with z=2 dynamical exponent (Schrodinger symmetry). experimental realizations: cold atoms tuned through a Feshbach resonance. surface of neutron stars. non-relativistic AdS/CFT description? Is there a bound on shear viscosity to entropy density? η/s 4πk B???

4 Unitary limit of quantum gases Model actions for bosons and fermions: S = ( ( ) ) d d xdt iφ t φ φ 2 2m g 4 (φ φ) 2 S = d d xdt ( α=, iψ α tψ α ψ α 2 2m g 2 ψ ψ ψ ψ )

5 Renormalization group: flows to low energy: d<2 0 g g unitary limit d>2 BEC g BCS 0 g d=2 0 g g

6 d=3 case: at the fixed point, a=scattering length diverges. z=2 scale invariant theory. Only energy scales are the chemical potential and temperature. On BEC side, the 2-fermion bound state can condense. BCS side well described by BCS theory at small coupling. (no bound state on this side.) in unitary limit: Very strongly coupled. No small parameter like na 3 new methods are needed.

7 motivate the method with the: d=1 case S-matrix: S = k k ig/4 k k + ig/4 Unitary limit: g S 1 Turns out to be a free fermion. Difficult to see perturbatively, but clear from the TBA.

8 Thermodynamic Bethe Ansatz in 1d free energy: F = 1 β dk log ( 1 + e βε(k)) ε(k) = ω k 1 β dk K(k, k ) log ( ) 1 + e βε(k ) β = 1/T K = i k log S ω k = k 2 /2m = single particle energy In the unitary limit, just a free fermion.

9 The formalism: a TBA-like approach in any dimension density: n = µ F = d d k (2π) d f(k) Making a Legendre transformation in the chemical potential and occupation number f, one can show there exists a functional F where the free energy is given by: variational principle: δϝ δf = 0

10 Starting point: Z = Z π de e βe Tr Im E log Ŝ(E) (Dashen, Ma, Bernstein, 1969) Can derive: Ϝ = Ϝ 0 + Ϝ 1 Ϝ 0 = Ϝ 1 = 1 2 d 2 k (2π) 2 ((ω k µ)f 1β [(f 1) log(1 f) f log f] ) d 2 k (2π) 2 energy d 2 k entropy (2π) 2 f(k ) G(k, k ) f(k) F = E - TS (see Landau-Lifshitz) (keep only 2-body terms) 2πδ (E ω k ω k ) V G(k, k ) = i < k, k log Ŝ(E) k, k >

11 Final result. Variational principle gives: 1 f(k) = Fe βε(k) + 1 ε(k) = ω k µ d d k (2π) G(k, 1 d k ) e βε(k ) + 1 F pseudo-energy integral eqn F = T d 2 k (2π) 2 [ log(1 + e βε ) + β 2 ] 1 e βε (ε ω + µ) + 1 (different signs for bosons) µ = chemical potential

12 Structure of the kernel G G = i 2I log ( ) 1/gR ii/2 1/g R + ii/2 L = i d d p 1 (2π) d E ω p ω K p + 2iɛ S-matrix ( = I + iγ (1-loop integral) renormalized coupling: g R = g 1 gγ/2 K E and are the total energy and momentum of the 2 particles!! Non -perturbative, well-defined expansion in 1/g!!

13 Application to 3d unitary gas ( G(k, k 8π ) = i m k k log ( ) 1/gR ( im k k /16π 1/g R + im k k /16π g R = g ( 1 g/g In the unitary limit, g g g scattering length: a = mg R /2π a ± S-matrix: S 1

14 d>2 bound state BEC g BCS 0 no bound state g a = + (repulsive) a = (attractive) G 8π2 m k k -/+ corresponds to repulsive/attractive (for small g, G = -g )

15 Formally define it as S=-1, i.e. coupling goes to infinity. not an RG fixed point in usual sense, but still scale invariant. Occurs ( at very low energies (infinitely attractive) or very high energy. (infinitely repulsive). G( k ) = 4π m 4 cases: attractive/repulsive bosons/fermions

16 Results Scale invariance implies the scaling form: F = ζ(5/2) ( mt 2π ) 3/2 T c(µ/t ) Critical points must occur at fixed values of These points can be expressed as: c=1 for free boson at zero chem.pot. µ/t. nλ d T c = constant (bosons) λ T = 2π/mT. T c /T F = constant (fermions)

17 Fermions s/n Entropy per particle for fermions critical point T/T F T c /T F 0.1. consistent with lattice Monte Carlo

18 Bosons Evidence for an interacting version of BEC (new) n c λ 3 T = 1.325, (µ/t = x c = ) compare with non-interacting BEC: x c = 0 and n c λ 3 T = ζ(3/2) = 2.61,

19 500 f diverges Occupation number for bosons x c b κ = βk 2 /2m κt (mt ) 3/2 Compressibility for bosons diverges x = µ/t

20 Viscosity to entropy density ratio η/s Viscosity entropy for attractive fermions T/T F η s > πk B In good agreement with experiments

21 0.4 η/s Viscosity to entropy ratio for bosons T/T c η s > πk B a more perfect fluid than fermions

22 High Temperature Superconductivity Start here 4(&)!-5$* 0463!"#$%&'()*&+,-.!),/-+' 0!123 7!'89':;''''''''<26'!"12'''''''''''''''''''''''7"!'=&/$> Not here (doping a Mott insulator)

23 Hubbard Model Gas H = t ( c ri,α c r j,α) t ( c ri,α c r j,α) + U n r n r <i,j>,α=, <i,j>,α=, r diagonalize free part treat as local *free, single particle energies: ω k = 2t (cos(k x a) + cos(k y a)) 4t cos(k x a) cos(k y a) * can treat as a gas with coupling Cuprates: t 0.3, g 13 g = U/t

24 t 0.3, attractive 10 5 G U/t = E/t repulsive 5 10 U/t = 5 U/t = 13.5, 14 U/t = 15 Conclusion: for t =-0.3, g must be greater than 12.8 for an attractive band to exist.

25 g=15, t =0, -0.1, -0.3, -0.4 t = G E/t t = Conclusion: no superconductivity if t =0

26 Fermi surfaces for hole doping h=0,.1,.2,.3, Attractive band in pink

27 ?? Can we see the phase transitions?? T/t UCTION hole doping Dark regions: no solution to pseudogap equation T c /t 0.02

28 !e End

Dynamical mean field approach to correlated lattice systems in and out of equilibrium

Dynamical mean field approach to correlated lattice systems in and out of equilibrium Dynamical mean field approach to correlated lattice systems in and out of equilibrium Philipp Werner University of Fribourg, Switzerland Kyoto, December 2013 Overview Dynamical mean field approximation

More information

(Super) Fluid Dynamics. Thomas Schaefer, North Carolina State University

(Super) Fluid Dynamics. Thomas Schaefer, North Carolina State University (Super) Fluid Dynamics Thomas Schaefer, North Carolina State University Hydrodynamics Hydrodynamics (undergraduate version): Newton s law for continuous, deformable media. Fluids: Gases, liquids, plasmas,...

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

Intersections of nuclear physics and cold atom physics

Intersections of nuclear physics and cold atom physics Intersections of nuclear physics and cold atom physics Thomas Schaefer North Carolina State University Unitarity limit Consider simple square well potential a < 0 a =, ǫ B = 0 a > 0, ǫ B > 0 Unitarity

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/27 History/motivation BCS/BEC crossover Unitarity regime Schrödinger symmetry Plan Geometric

More information

Scale invariant fluid dynamics for the dilute Fermi gas at unitarity

Scale invariant fluid dynamics for the dilute Fermi gas at unitarity Scale invariant fluid dynamics for the dilute Fermi gas at unitarity Thomas Schaefer North Carolina State University Fluids: Gases, Liquids, Plasmas,... Hydrodynamics: Long-wavelength, low-frequency dynamics

More information

Landau s Fermi Liquid Theory

Landau s Fermi Liquid Theory Thors Hans Hansson Stockholm University Outline 1 Fermi Liquids Why, What, and How? Why Fermi liquids? What is a Fermi liquids? Fermi Liquids How? 2 Landau s Phenomenological Approach The free Fermi gas

More information

Transport coefficients from Kinetic Theory: Bulk viscosity, Diffusion, Thermal conductivity. Debarati Chatterjee

Transport coefficients from Kinetic Theory: Bulk viscosity, Diffusion, Thermal conductivity. Debarati Chatterjee Transport coefficients from Kinetic Theory: Bulk viscosity, Diffusion, Thermal conductivity Debarati Chatterjee Recap: Hydrodynamics of nearly perfect fluids Hydrodynamics: correlation functions at low

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

BCS-BEC Crossover and the Unitary Fermi Gas

BCS-BEC Crossover and the Unitary Fermi Gas BCS-BEC Crossover and the Unitary Fermi Gas Mohit Randeria 1 and Edward Taylor 2 1 The Ohio State University 2 McMaster University arxiv:1306.5785v3 [cond-mat.quant-gas] 8 Apr 2014 Abstract: The crossover

More information

Lattice modulation experiments with fermions in optical lattices and more

Lattice modulation experiments with fermions in optical lattices and more Lattice modulation experiments with fermions in optical lattices and more Nonequilibrium dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University Rajdeep Sensarma Harvard

More information

Equation of state of the unitary Fermi gas

Equation of state of the unitary Fermi gas Equation of state of the unitary Fermi gas Igor Boettcher Institute for Theoretical Physics, University of Heidelberg with S. Diehl, J. M. Pawlowski, and C. Wetterich C o ld atom s Δ13, 11. 1. 2013 tio

More information

The Mott Metal-Insulator Transition

The Mott Metal-Insulator Transition Florian Gebhard The Mott Metal-Insulator Transition Models and Methods With 38 Figures Springer 1. Metal Insulator Transitions 1 1.1 Classification of Metals and Insulators 2 1.1.1 Definition of Metal

More information

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke BCS-BEC Crossover Hauptseminar: Physik der kalten Gase Robin Wanke Outline Motivation Cold fermions BCS-Theory Gap equation Feshbach resonance Pairing BEC of molecules BCS-BEC-crossover Conclusion 2 Motivation

More information

A rigorous solution to unitary Bose Gases

A rigorous solution to unitary Bose Gases A rigorous solution to unitary Bose Gases Fei Zhou University of British Columbia, Vancouver and Canadian Institute for Advanced Research At INT cold gas workshop, University of Washington, April 16, 2015

More information

Mesonic and nucleon fluctuation effects in nuclear medium

Mesonic and nucleon fluctuation effects in nuclear medium Mesonic and nucleon fluctuation effects in nuclear medium Research Center for Nuclear Physics Osaka University Workshop of Recent Developments in QCD and Quantum Field Theories National Taiwan University,

More information

The BCS-BEC Crossover and the Unitary Fermi Gas

The BCS-BEC Crossover and the Unitary Fermi Gas Lecture Notes in Physics 836 The BCS-BEC Crossover and the Unitary Fermi Gas Bearbeitet von Wilhelm Zwerger 1. Auflage 2011. Taschenbuch. xvi, 532 S. Paperback ISBN 978 3 642 21977 1 Format (B x L): 15,5

More information

Non-relativistic AdS/CFT

Non-relativistic AdS/CFT Non-relativistic AdS/CFT Christopher Herzog Princeton October 2008 References D. T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry, Phys. Rev. D 78,

More information

Thermodynamics of the polarized unitary Fermi gas from complex Langevin. Joaquín E. Drut University of North Carolina at Chapel Hill

Thermodynamics of the polarized unitary Fermi gas from complex Langevin. Joaquín E. Drut University of North Carolina at Chapel Hill Thermodynamics of the polarized unitary Fermi gas from complex Langevin Joaquín E. Drut University of North Carolina at Chapel Hill INT, July 2018 Acknowledgements Organizers Group at UNC-CH (esp. Andrew

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA

Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA Lianyi He ( 何联毅 ) Department of Physics, Tsinghua University 2016 Hangzhou Workshop on Quantum Degenerate Fermi Gases,

More information

Recent Developments in Holographic Superconductors. Gary Horowitz UC Santa Barbara

Recent Developments in Holographic Superconductors. Gary Horowitz UC Santa Barbara Recent Developments in Holographic Superconductors Gary Horowitz UC Santa Barbara Outline 1) Review basic ideas behind holographic superconductors 2) New view of conductivity and the zero temperature limit

More information

Research Overview. Vijay B. Shenoy. February 13, Centre for Condensed Matter Theory, IISc Bangalore

Research Overview. Vijay B. Shenoy. February 13, Centre for Condensed Matter Theory, IISc Bangalore Research Overview Vijay B. Shenoy Centre for Condensed Matter Theory, IISc Bangalore shenoy@physics.iisc.ernet.in February 13, 213 1 / 18 Research Group Jayantha Vyasanakere Yogeshwar Prasad Saraswat Sudeep

More information

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in D Fermi Gases Carlos A. R. Sa de Melo Georgia Institute of Technology QMath13 Mathematical Results in Quantum

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

Anisotropic fluid dynamics. Thomas Schaefer, North Carolina State University

Anisotropic fluid dynamics. Thomas Schaefer, North Carolina State University Anisotropic fluid dynamics Thomas Schaefer, North Carolina State University Outline We wish to extract the properties of nearly perfect (low viscosity) fluids from experiments with trapped gases, colliding

More information

Quantum Cluster Methods (CPT/CDMFT)

Quantum Cluster Methods (CPT/CDMFT) Quantum Cluster Methods (CPT/CDMFT) David Sénéchal Département de physique Université de Sherbrooke Sherbrooke (Québec) Canada Autumn School on Correlated Electrons Forschungszentrum Jülich, Sept. 24,

More information

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9 Preface v Chapter 1 Introduction 1 1.1 Prerequisites and textbooks......................... 1 1.2 Physical phenomena and theoretical tools................. 5 1.3 The path integrals..............................

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/20 What is common for strong coupled cold atoms and QGP? Cold atoms and AdS/CFT p.2/20

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Functional RG for few-body physics

Functional RG for few-body physics Functional RG for few-body physics Michael C Birse The University of Manchester Review of results from: Schmidt and Moroz, arxiv:0910.4586 Krippa, Walet and Birse, arxiv:0911.4608 Krippa, Walet and Birse,

More information

Unitary Fermi gas in the ɛ expansion

Unitary Fermi gas in the ɛ expansion Unitary Fermi gas in the ɛ expansion Yusuke Nishida Department of Physics, University of Tokyo December 006 PhD Thesis Abstract We construct systematic expansions around four and two spatial dimensions

More information

BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP

BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP May 2007 Cold Atom Collaborators: Qijin Chen J. Stajic (U Chicago; LANL) Yan He (U. Chicago) ChihChun Chien (U. Chicago)

More information

How to get a superconductor out of a black hole

How to get a superconductor out of a black hole How to get a superconductor out of a black hole Christopher Herzog Princeton October 2009 Quantum Phase Transition: a phase transition between different quantum phases (phases of matter at T = 0). Quantum

More information

Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations

Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations Aurel Bulgac,, Joaquin E. Drut and Piotr Magierski University of Washington, Seattle, WA

More information

Physics 127a: Class Notes

Physics 127a: Class Notes Physics 7a: Class Notes Lecture 4: Bose Condensation Ideal Bose Gas We consider an gas of ideal, spinless Bosons in three dimensions. The grand potential (T,µ,V) is given by kt = V y / ln( ze y )dy, ()

More information

High-Temperature Superfluidity

High-Temperature Superfluidity High-Temperature Superfluidity Tomoki Ozawa December 10, 2007 Abstract With the recent advancement of the technique of cooling atomic gases, it is now possible to make fermionic atom gases into superfluid

More information

QGP, Hydrodynamics and the AdS/CFT correspondence

QGP, Hydrodynamics and the AdS/CFT correspondence QGP, Hydrodynamics and the AdS/CFT correspondence Adrián Soto Stony Brook University October 25th 2010 Adrián Soto (Stony Brook University) QGP, Hydrodynamics and AdS/CFT October 25th 2010 1 / 18 Outline

More information

The bosonic Kondo effect:

The bosonic Kondo effect: The bosonic Kondo effect: probing spin liquids and multicomponent cold gases Serge Florens Institut für Theorie der Kondensierten Materie (Karlsruhe) with: Lars Fritz, ITKM (Karlsruhe) Matthias Vojta,

More information

Magnetism and Superconductivity in Decorated Lattices

Magnetism and Superconductivity in Decorated Lattices Magnetism and Superconductivity in Decorated Lattices Mott Insulators and Antiferromagnetism- The Hubbard Hamiltonian Illustration: The Square Lattice Bipartite doesn t mean N A = N B : The Lieb Lattice

More information

Effective Field Theory and. the Nuclear Many-Body Problem

Effective Field Theory and. the Nuclear Many-Body Problem Effective Field Theory and the Nuclear Many-Body Problem Thomas Schaefer North Carolina State University 1 Nuclear Effective Field Theory Low Energy Nucleons: Nucleons are point particles Interactions

More information

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016 Nuclear structure III: Nuclear and neutron matter Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

More information

From Critical Phenomena to Holographic Duality in Quantum Matter

From Critical Phenomena to Holographic Duality in Quantum Matter From Critical Phenomena to Holographic Duality in Quantum Matter Joe Bhaseen TSCM Group King s College London 2013 Arnold Sommerfeld School Gauge-Gravity Duality and Condensed Matter Physics Arnold Sommerfeld

More information

Quantum limited spin transport in ultracold atomic gases

Quantum limited spin transport in ultracold atomic gases Quantum limited spin transport in ultracold atomic gases Searching for the perfect SPIN fluid... Tilman Enss (Uni Heidelberg) Rudolf Haussmann (Uni Konstanz) Wilhelm Zwerger (TU München) Technical University

More information

VII.B Canonical Formulation

VII.B Canonical Formulation VII.B Canonical Formulation Using the states constructed in the previous section, we can calculate the canonical density matrix for non-interacting identical particles. In the coordinate representation

More information

Squeezing and superposing many-body states of Bose gases in confining potentials

Squeezing and superposing many-body states of Bose gases in confining potentials Squeezing and superposing many-body states of Bose gases in confining potentials K. B. Whaley Department of Chemistry, Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley Quantum Information and

More information

Dimensional BCS-BEC crossover

Dimensional BCS-BEC crossover Dimensional BCS-BEC crossover Igor Boettcher Institute for Theoretical Physics, Heidelberg University ERG 2014 Outline Ultracold atoms BCS-BEC Crossover 2D Experiments with... Theory Experiment C. Wetterich

More information

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks Thomas Schaefer, North Carolina State University RHIC serves the perfect fluid Experiments at RHIC are consistent with the idea that a thermalized

More information

Pairing in Nuclear and Neutron Matter Screening effects

Pairing in Nuclear and Neutron Matter Screening effects Pairing Degrees of Freedom in Nuclei and Nuclear Medium Seattle, Nov. 14-17, 2005 Outline: Pairing in Nuclear and Neutron Matter Screening effects U. Lombardo pairing due to the nuclear (realistic) interaction

More information

Superfluidity in bosonic systems

Superfluidity in bosonic systems Superfluidity in bosonic systems Rico Pires PI Uni Heidelberg Outline Strongly coupled quantum fluids 2.1 Dilute Bose gases 2.2 Liquid Helium Wieman/Cornell A. Leitner, from wikimedia When are quantum

More information

Emergent Quantum Criticality

Emergent Quantum Criticality (Non-)Fermi Liquids and Emergent Quantum Criticality from gravity Hong Liu Massachusetts setts Institute te of Technology HL, John McGreevy, David Vegh, 0903.2477 Tom Faulkner, HL, JM, DV, to appear Sung-Sik

More information

Universality in Few- and Many-Body Systems

Universality in Few- and Many-Body Systems Universality in Few- and Many-Body Systems Lucas Platter Institute for Nuclear Theory University of Washington Collaborators: Braaten, Hammer, Kang, Phillips, Ji Ultracold Gases the scattering length a

More information

The running of couplings and anomalous thermodynamics in Bose gases near resonance

The running of couplings and anomalous thermodynamics in Bose gases near resonance The running of couplings and anomalous thermodynamics in Bose gases near resonance Fei Zhou University of British Columbia, Vancouver At INT, University of Washington, Seattle, May 7, 2014 Supported by:

More information

An introduction to lattice field theory

An introduction to lattice field theory An introduction to lattice field theory, TIFR, Mumbai, India CBM School, Darjeeling 21 23 January, 2014 1 The path integral formulation 2 Field theory, divergences, renormalization 3 Example 1: the central

More information

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other 1 The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other phases of matter that have been experimentally observed,

More information

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme SIEW-ANN CHEONG and C. L. HENLEY, LASSP, Cornell U March 25, 2004 Support: NSF grants DMR-9981744, DMR-0079992 The Big Picture GOAL Ground

More information

(Nearly) Scale invariant fluid dynamics for the dilute Fermi gas in two and three dimensions. Thomas Schaefer North Carolina State University

(Nearly) Scale invariant fluid dynamics for the dilute Fermi gas in two and three dimensions. Thomas Schaefer North Carolina State University (Nearly) Scale invariant fluid dynamics for the dilute Fermi gas in two and three dimensions Thomas Schaefer North Carolina State University Outline I. Conformal hydrodynamics II. Observations (3d) III.

More information

Inverse square potential, scale anomaly, and complex extension

Inverse square potential, scale anomaly, and complex extension Inverse square potential, scale anomaly, and complex extension Sergej Moroz Seattle, February 2010 Work in collaboration with Richard Schmidt ITP, Heidelberg Outline Introduction and motivation Functional

More information

Towards a quantitative FRG approach for the BCS-BEC crossover

Towards a quantitative FRG approach for the BCS-BEC crossover Towards a quantitative FRG approach for the BCS-BEC crossover Michael M. Scherer Theoretisch Physikalisches Institut, Jena University in collaboration with Sebastian Diehl, Stefan Flörchinger, Holger Gies,

More information

Strongly Correlated Physics With Ultra-Cold Atoms

Strongly Correlated Physics With Ultra-Cold Atoms Strongly Correlated Physics With Ultra-Cold Atoms Predrag Nikolić Rice University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Sponsors W.M.Keck Program in Quantum

More information

BCS-BEC Cross over: Using the ERG

BCS-BEC Cross over: Using the ERG BCS-BEC Cross over: Using the ERG Niels Walet with Mike Birse, Boris Krippa and Judith McGovern School of Physics and Astronomy University of Manchester RPMBT14, Barcelona, 2007 Outline 1 Introduction

More information

Bardeen Bardeen, Cooper Cooper and Schrieffer and Schrieffer 1957

Bardeen Bardeen, Cooper Cooper and Schrieffer and Schrieffer 1957 Unexpected aspects of large amplitude nuclear collective motion Aurel Bulgac University of Washington Collaborators: Sukjin YOON (UW) Kenneth J. ROCHE (ORNL) Yongle YU (now at Wuhan Institute of Physics

More information

Chapter 14. Ideal Bose gas Equation of state

Chapter 14. Ideal Bose gas Equation of state Chapter 14 Ideal Bose gas In this chapter, we shall study the thermodynamic properties of a gas of non-interacting bosons. We will show that the symmetrization of the wavefunction due to the indistinguishability

More information

General relativity and the cuprates

General relativity and the cuprates General relativity and the cuprates Gary T. Horowitz and Jorge E. Santos Department of Physics, University of California, Santa Barbara, CA 93106, U.S.A. E-mail: gary@physics.ucsb.edu, jss55@physics.ucsb.edu

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Diagrammatic Monte Carlo

Diagrammatic Monte Carlo Sign Problems and Complex Actions, ECT*, Trento, March 2-6, 2009 Diagrammatic Monte Carlo Boris Svistunov University of Massachusetts, Amherst Nikolay Prokof ev Kris Van Houcke (Umass/Ghent) Evgeny Kozik

More information

The nature of superfluidity in the cold atomic unitary Fermi gas

The nature of superfluidity in the cold atomic unitary Fermi gas The nature of superfluidity in the cold atomic unitary Fermi gas Introduction Yoram Alhassid (Yale University) Finite-temperature auxiliary-field Monte Carlo (AFMC) method The trapped unitary Fermi gas

More information

Is a system of fermions in the crossover BCS-BEC. BEC regime a new type of superfluid?

Is a system of fermions in the crossover BCS-BEC. BEC regime a new type of superfluid? Is a system of fermions in the crossover BCS-BEC BEC regime a new type of superfluid? Finite temperature properties of a Fermi gas in the unitary regime Aurel Bulgac,, Joaquin E. Drut, Piotr Magierski

More information

The Superfluid-Insulator transition

The Superfluid-Insulator transition The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989). Superfluid-insulator transition Ultracold 87 Rb atoms

More information

Quantum simulations, adiabatic transformations,

Quantum simulations, adiabatic transformations, Quantum simulations, adiabatic transformations, and resonating valence bond states Aspen June 2009 Simon Trebst Microsoft Station Q UC Santa Barbara Ulrich Schollwöck Matthias Troyer Peter Zoller High

More information

Applications of AdS/CFT correspondence to cold atom physics

Applications of AdS/CFT correspondence to cold atom physics Applications of AdS/CFT correspondence to cold atom physics Sergej Moroz in collaboration with Carlos Fuertes ITP, Heidelberg Outline Basics of AdS/CFT correspondence Schrödinger group and correlation

More information

Relativistic magnetotransport in graphene

Relativistic magnetotransport in graphene Relativistic magnetotransport in graphene Markus Müller in collaboration with Lars Fritz (Harvard) Subir Sachdev (Harvard) Jörg Schmalian (Iowa) Landau Memorial Conference June 6, 008 Outline Relativistic

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 26 Jan 2007

arxiv:cond-mat/ v1 [cond-mat.supr-con] 26 Jan 2007 Competition of Fermi surface symmetry breaing and superconductivity arxiv:cond-mat/0701660v1 [cond-mat.supr-con] 26 Jan 2007 Hiroyui Yamase and Walter Metzner Max-Planc-Institute for Solid State Research,

More information

Pairing in many-fermion systems: an exact-renormalisation-group treatment

Pairing in many-fermion systems: an exact-renormalisation-group treatment Pairing in many-fermion systems: an exact-renormalisation-group treatment Michael C Birse, Judith A McGovern (University of Manchester) Boris Krippa, Niels R Walet (UMIST) Birse, Krippa, McGovern and Walet,

More information

Lifshitz Hydrodynamics

Lifshitz Hydrodynamics Lifshitz Hydrodynamics Yaron Oz (Tel-Aviv University) With Carlos Hoyos and Bom Soo Kim, arxiv:1304.7481 Outline Introduction and Summary Lifshitz Hydrodynamics Strange Metals Open Problems Strange Metals

More information

Super Efimov effect. Sergej Moroz University of Washington. together with Yusuke Nishida and Dam Thanh Son. Tuesday, April 1, 14

Super Efimov effect. Sergej Moroz University of Washington. together with Yusuke Nishida and Dam Thanh Son. Tuesday, April 1, 14 Super Efimov effect together with Yusuke Nishida and Dam Thanh Son Sergej Moroz University of Washington Few-body problems They are challenging but useful: Newton gravity Quantum atoms Quantum molecules

More information

MOTTNESS AND STRONG COUPLING

MOTTNESS AND STRONG COUPLING MOTTNESS AND STRONG COUPLING ROB LEIGH UNIVERSITY OF ILLINOIS Rutgers University April 2008 based on various papers with Philip Phillips and Ting-Pong Choy PRL 99 (2007) 046404 PRB 77 (2008) 014512 PRB

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

EXPLODING BOSE-EINSTEIN CONDENSATES AND COLLAPSING NEUTRON STARS DRIVEN BY CRITICAL MAGNETIC FIELDS

EXPLODING BOSE-EINSTEIN CONDENSATES AND COLLAPSING NEUTRON STARS DRIVEN BY CRITICAL MAGNETIC FIELDS EXPLODING BOSE-EINSTEIN CONDENSATES AND COLLAPSING NEUTRON STARS DRIVEN BY CRITICAL MAGNETIC FIELDS H. PÉREZ ROJAS, A. PÉREZ MARTíNEZ Instituto de Cibernética, Matemática y Física, 10400 La Habana, Cuba

More information

Experiments with an Ultracold Three-Component Fermi Gas

Experiments with an Ultracold Three-Component Fermi Gas Experiments with an Ultracold Three-Component Fermi Gas The Pennsylvania State University Ken O Hara Jason Williams Eric Hazlett Ronald Stites John Huckans Overview New Physics with Three Component Fermi

More information

Quantum phase transitions and pairing in Strongly Attractive Fermi Atomic Gases

Quantum phase transitions and pairing in Strongly Attractive Fermi Atomic Gases Quantum phase transitions and pairing in Strongly Attractive Fermi Atomic Gases M.T. Batchelor Department of Theoretical Physics and Mathematical Sciences Institute In collaboration with X.W. Guan, C.

More information

Relativistic quantum criticality and the AdS/CFT correspondence

Relativistic quantum criticality and the AdS/CFT correspondence Relativistic quantum criticality and the AdS/CFT correspondence Indian Institute of Science, Bangalore, Dec 7, 2010 Lecture notes arxiv:1010.0682 arxiv: 1012.0299 sachdev.physics.harvard.edu HARVARD J.

More information

The Hubbard model out of equilibrium - Insights from DMFT -

The Hubbard model out of equilibrium - Insights from DMFT - The Hubbard model out of equilibrium - Insights from DMFT - t U Philipp Werner University of Fribourg, Switzerland KITP, October 212 The Hubbard model out of equilibrium - Insights from DMFT - In collaboration

More information

Quantum impurities in a bosonic bath

Quantum impurities in a bosonic bath Ralf Bulla Institut für Theoretische Physik Universität zu Köln 27.11.2008 contents introduction quantum impurity systems numerical renormalization group bosonic NRG spin-boson model bosonic single-impurity

More information

(Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System

(Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System (Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System Daisuke Satow (RIKEN/BNL) Collaborators: Jean-Paul Blaizot (Saclay CEA, France) Yoshimasa Hidaka (RIKEN, Japan) Supersymmetry

More information

Aditi Mitra New York University

Aditi Mitra New York University Superconductivity following a quantum quench Aditi Mitra New York University Supported by DOE-BES and NSF- DMR 1 Initially system of free electrons. Quench involves turning on attractive pairing interactions.

More information

Sound modes and the two-stream instability in relativistic superfluids

Sound modes and the two-stream instability in relativistic superfluids Madrid, January 17, 21 1 Andreas Schmitt Institut für Theoretische Physik Technische Universität Wien 1 Vienna, Austria Sound modes and the two-stream instability in relativistic superfluids M.G. Alford,

More information

Superfluidity and Condensation

Superfluidity and Condensation Christian Veit 4th of June, 2013 2 / 29 The discovery of superfluidity Early 1930 s: Peculiar things happen in 4 He below the λ-temperature T λ = 2.17 K 1938: Kapitza, Allen & Misener measure resistance

More information

Many-Body Problems and Quantum Field Theory

Many-Body Problems and Quantum Field Theory Philippe A. Martin Francois Rothen Many-Body Problems and Quantum Field Theory An Introduction Translated by Steven Goldfarb, Andrew Jordan and Samuel Leach Second Edition With 102 Figures, 7 Tables and

More information

Confining ultracold atoms on a ring in reduced dimensions

Confining ultracold atoms on a ring in reduced dimensions Confining ultracold atoms on a ring in reduced dimensions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Charge and heat dynamics in nano-systems Orsay, October 11, 2011 What

More information

Self-consistent Conserving Approximations and Renormalization in Quantum Field Theory at Finite Temperature

Self-consistent Conserving Approximations and Renormalization in Quantum Field Theory at Finite Temperature Self-consistent Conserving Approximations and Renormalization in Quantum Field Theory at Finite Temperature Hendrik van Hees in collaboration with Jörn Knoll Contents Schwinger-Keldysh real-time formalism

More information

Ground-state properties, excitations, and response of the 2D Fermi gas

Ground-state properties, excitations, and response of the 2D Fermi gas Ground-state properties, excitations, and response of the 2D Fermi gas Introduction: 2D FG and a condensed matter perspective Auxiliary-field quantum Monte Carlo calculations - exact* here Results on spin-balanced

More information

Dynamical properties of strongly correlated electron systems studied by the density-matrix renormalization group (DMRG) Takami Tohyama

Dynamical properties of strongly correlated electron systems studied by the density-matrix renormalization group (DMRG) Takami Tohyama Dynamical properties of strongly correlated electron systems studied by the density-matrix renormalization group (DMRG) Takami Tohyama Tokyo University of Science Shigetoshi Sota AICS, RIKEN Outline Density-matrix

More information

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality Hans-Henning Klauss Institut für Festkörperphysik TU Dresden 1 References [1] Stephen Blundell, Magnetism in Condensed

More information

Functional renormalization for ultracold quantum gases

Functional renormalization for ultracold quantum gases Functional renormalization for ultracold quantum gases Stefan Floerchinger (Heidelberg) S. Floerchinger and C. Wetterich, Phys. Rev. A 77, 053603 (2008); S. Floerchinger and C. Wetterich, arxiv:0805.2571.

More information

Magnetism and Superconductivity on Depleted Lattices

Magnetism and Superconductivity on Depleted Lattices Magnetism and Superconductivity on Depleted Lattices 1. Square Lattice Hubbard Hamiltonian: AF and Mott Transition 2. Quantum Monte Carlo 3. The 1/4 depleted (Lieb) lattice and Flat Bands 4. The 1/5 depleted

More information

Scaling Theory. Roger Herrigel Advisor: Helmut Katzgraber

Scaling Theory. Roger Herrigel Advisor: Helmut Katzgraber Scaling Theory Roger Herrigel Advisor: Helmut Katzgraber 7.4.2007 Outline The scaling hypothesis Critical exponents The scaling hypothesis Derivation of the scaling relations Heuristic explanation Kadanoff

More information

Superconductivity from repulsion

Superconductivity from repulsion Superconductivity from repulsion Andrey Chubukov University of Minnesota University of Virginia Feb. 0, 07 Superconductivity: Zero-resistance state of interacting electrons A superconductor expels a magnetic

More information

Critical Region of the QCD Phase Transition

Critical Region of the QCD Phase Transition Critical Region of the QCD Phase Transition Mean field vs. Renormalization group B.-J. Schaefer 1 and J. Wambach 1,2 1 Institut für Kernphysik TU Darmstadt 2 GSI Darmstadt 18th August 25 Uni. Graz B.-J.

More information